未验证 提交 078dd05b 编写于 作者: F Feiyu Chan 提交者: GitHub

add Conv2D/Conv2DTranspose/Conv3D/Conv3DTranspose in paddle.nn.layer (#23488)

* add Conv/ConvTranspose layers in paddle.nn.layer, test=develop

* add example code in docstring, test=develop

* update unittests to work with test_runner, test=develop
上级 66cae915
......@@ -651,12 +651,11 @@ class Conv3DTranspose(layers.Layer):
] + self._filter_size
self.weight = self.create_parameter(
dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
if self._bias_attr:
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
pre_bias = self._helper.create_variable_for_type_inference(
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv2DTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=(16, 16),
num_channels=6,
num_filters=8,
filter_size=3,
padding=0,
stride=1,
dilation=1,
groups=1,
act=None,
no_bias=False,
use_cudnn=True,
data_format="NCHW",
dtype="float32"):
super(Conv2DTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.act = act
self.no_bias = no_bias
self.use_cudnn = use_cudnn
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
input_shape = (self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
else:
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size] * 2
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
else:
self.bias = None
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
weight_attr = I.NumpyArrayInitializer(self.weight)
if self.bias is None:
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv2d(
x_var,
self.num_filters,
self.filter_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
feed_dict = {"input": self.input}
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
y_var = F.conv2d(
x_var,
w_var,
b_var if not self.no_bias else None,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
conv = nn.Conv2D(
self.num_channels,
self.num_filters,
self.filter_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format,
dtype=self.dtype)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
place = fluid.CPUPlace()
result1 = self.fluid_layer(place)
result2 = self.functional(place)
with dg.guard(place):
result3 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv2DErrorTestCase(Conv2DTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv2DTestCase(methodName='runTest'))
suite.addTest(
Conv2DTestCase(
methodName='runTest', stride=[1, 2], dilation=2))
suite.addTest(
Conv2DTestCase(
methodName='runTest', stride=2, dilation=(2, 1)))
suite.addTest(
Conv2DTestCase(
methodName='runTest', padding="same", no_bias=True, act="sigmoid"))
suite.addTest(
Conv2DTestCase(
methodName='runTest', filter_size=(3, 3), padding='valid'))
suite.addTest(Conv2DTestCase(methodName='runTest', padding=(2, 3)))
suite.addTest(Conv2DTestCase(methodName='runTest', padding=[1, 2, 2, 1]))
suite.addTest(
Conv2DTestCase(
methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
suite.addTest(Conv2DTestCase(methodName='runTest', data_format="NHWC"))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
data_format="NHWC",
padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
suite.addTest(
Conv2DTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
use_cudnn=False,
act="sigmoid",
padding="valid"))
def add_error_cases(suite):
suite.addTest(
Conv2DErrorTestCase(
methodName='runTest', use_cudnn="not_valid"))
suite.addTest(
Conv2DErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv2DTransposeTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=(16, 16),
num_channels=6,
num_filters=8,
filter_size=3,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
act=None,
no_bias=False,
use_cudnn=True,
data_format="NCHW",
dtype="float32"):
super(Conv2DTransposeTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.output_size = output_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.act = act
self.no_bias = no_bias
self.use_cudnn = use_cudnn
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
input_shape = (self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
else:
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size] * 2
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_channels, self.num_filters
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
else:
self.bias = None
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
weight_attr = I.NumpyArrayInitializer(self.weight)
if self.bias is None:
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv2d_transpose(
x_var,
self.num_filters,
filter_size=self.filter_size,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
feed_dict = {"input": self.input}
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
y_var = F.conv2d_transpose(
x_var,
w_var,
None if self.no_bias else b_var,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
conv = nn.Conv2DTranspose(
self.num_channels,
self.num_filters,
self.filter_size,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format,
dtype=self.dtype)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
place = fluid.CPUPlace()
result1 = self.fluid_layer(place)
result2 = self.functional(place)
with dg.guard(place):
result3 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv2DTransposeErrorTestCase(Conv2DTransposeTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv2DTransposeTestCase(methodName='runTest', act="relu"))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', stride=[1, 2], no_bias=True, dilation=2))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest',
filter_size=(3, 3),
output_size=[20, 36],
stride=[1, 2],
dilation=2))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', stride=2, dilation=(2, 1)))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', padding="valid"))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', padding='valid'))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', filter_size=1, padding=(2, 3)))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', padding=[1, 2, 2, 1]))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', data_format="NHWC"))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest',
data_format="NHWC",
padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv2DTransposeTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
use_cudnn=False,
act="sigmoid",
padding="valid"))
def add_error_cases(suite):
suite.addTest(
Conv2DTransposeErrorTestCase(
methodName='runTest', use_cudnn="not_valid"))
suite.addTest(
Conv2DTransposeErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
suite.addTest(
Conv2DTransposeErrorTestCase(
methodName='runTest', output_size="not_valid"))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv3DTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=(8, 8, 8),
num_channels=6,
num_filters=8,
filter_size=3,
padding=0,
stride=1,
dilation=1,
groups=1,
act=None,
no_bias=False,
use_cudnn=True,
data_format="NCDHW",
dtype="float32"):
super(Conv3DTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.act = act
self.no_bias = no_bias
self.use_cudnn = use_cudnn
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
input_shape = (self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
else:
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size] * 3
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
else:
self.bias = None
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1, -1, self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
weight_attr = I.NumpyArrayInitializer(self.weight)
if self.bias is None:
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv3d(
x_var,
self.num_filters,
self.filter_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
feed_dict = {"input": self.input}
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1, -1, self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
y_var = F.conv3d(
x_var,
w_var,
None if self.no_bias else b_var,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
conv = nn.Conv3D(
self.num_channels,
self.num_filters,
self.filter_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format,
dtype=self.dtype)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
place = fluid.CPUPlace()
result1 = self.fluid_layer(place)
result2 = self.functional(place)
with dg.guard(place):
result3 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv3DErrorTestCase(Conv3DTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv3DTestCase(methodName='runTest'))
suite.addTest(
Conv3DTestCase(
methodName='runTest', stride=[1, 2, 1], dilation=2))
suite.addTest(
Conv3DTestCase(
methodName='runTest', stride=2, dilation=(2, 1, 2)))
suite.addTest(
Conv3DTestCase(
methodName='runTest', padding="same", no_bias=True))
suite.addTest(
Conv3DTestCase(
methodName='runTest', filter_size=(3, 2, 3), padding='valid'))
suite.addTest(Conv3DTestCase(methodName='runTest', padding=(2, 3, 1)))
suite.addTest(
Conv3DTestCase(
methodName='runTest', padding=[1, 2, 2, 1, 2, 3]))
suite.addTest(
Conv3DTestCase(
methodName='runTest',
padding=[[0, 0], [0, 0], [1, 2], [2, 1], [2, 2]]))
suite.addTest(Conv3DTestCase(methodName='runTest', data_format="NDHWC"))
suite.addTest(
Conv3DTestCase(
methodName='runTest',
data_format="NDHWC",
padding=[[0, 0], [1, 1], [3, 3], [2, 2], [0, 0]]))
suite.addTest(
Conv3DTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv3DTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
use_cudnn=False,
act="sigmoid",
padding="valid"))
def add_error_cases(suite):
suite.addTest(
Conv3DErrorTestCase(
methodName='runTest', use_cudnn="not_valid"))
suite.addTest(
Conv3DErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv3DTransposeTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=2,
spartial_shape=(8, 8, 8),
num_channels=6,
num_filters=8,
filter_size=3,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
act=None,
no_bias=False,
use_cudnn=True,
data_format="NCDHW",
dtype="float32"):
super(Conv3DTransposeTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.output_size = output_size
self.padding = padding
self.stride = stride
self.dilation = dilation
self.groups = groups
self.act = act
self.no_bias = no_bias
self.use_cudnn = use_cudnn
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = self.data_format == "NDHWC"
if self.channel_last:
input_shape = (self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
else:
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size] * 3
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_channels, self.num_filters
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if self.no_bias:
self.bias = None
else:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1, -1, self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
weight_attr = I.NumpyArrayInitializer(self.weight)
if self.bias is None:
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
y_var = fluid.layers.conv3d_transpose(
x_var,
self.num_filters,
filter_size=self.filter_size,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
param_attr=weight_attr,
bias_attr=bias_attr,
use_cudnn=self.use_cudnn,
act=self.act,
data_format=self.data_format)
feed_dict = {"input": self.input}
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1, -1, self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
y_var = F.conv3d_transpose(
x_var,
w_var,
None if self.no_bias else b_var,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
conv = nn.Conv3DTranspose(
self.num_channels,
self.num_filters,
self.filter_size,
output_size=self.output_size,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
act=self.act,
use_cudnn=self.use_cudnn,
data_format=self.data_format,
dtype=self.dtype)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
place = fluid.CPUPlace()
result1 = self.fluid_layer(place)
result2 = self.functional(place)
with dg.guard(place):
result3 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv3DTransposeErrorTestCase(Conv3DTransposeTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv3DTransposeTestCase(methodName='runTest', act="tanh"))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', stride=[1, 2, 1], dilation=2, no_bias=True))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest',
output_size=[12, 19, 12],
stride=[1, 2, 1],
dilation=2))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', stride=2, dilation=(2, 1, 2)))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', padding="valid"))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', padding='valid'))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', filter_size=1, padding=(2, 3, 1)))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', padding=[1, 2, 2, 3, 2, 1]))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest',
padding=[[0, 0], [0, 0], [2, 3], [1, 2], [2, 1]]))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', data_format="NDHWC"))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest',
data_format="NDHWC",
padding=[[0, 0], [1, 1], [2, 2], [3, 3], [0, 0]]))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv3DTransposeTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
use_cudnn=False,
act="sigmoid",
padding="valid"))
def add_error_cases(suite):
suite.addTest(
Conv3DTransposeErrorTestCase(
methodName='runTest', use_cudnn="not_valid"))
suite.addTest(
Conv3DTransposeErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
suite.addTest(
Conv3DTransposeErrorTestCase(
methodName='runTest', output_size="not_valid"))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()
......@@ -14,7 +14,7 @@
# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
__all__ = []
# __all__ = []
# TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS
......@@ -58,6 +58,8 @@ __all__ = []
# from .layer.loss import MSELoss #DEFINE_ALIAS
from .layer.loss import L1Loss #DEFINE_ALIAS
from .layer import loss #DEFINE_ALIAS
from .layer import conv #DEFINE_ALIAS
from .layer.conv import Conv2D, Conv2DTranspose, Conv3D, Conv3DTranspose #DEFINE_ALIAS
# from .layer.loss import NLLLoss #DEFINE_ALIAS
# from .layer.loss import BCELoss #DEFINE_ALIAS
# from .layer.learning_rate import CosineDecay #DEFINE_ALIAS
......
......@@ -17,6 +17,7 @@
# __all__ = [ ]
# TODO: define alias in functional directory
from . import conv
from .conv import conv2d #DEFINE_ALIAS
from .conv import conv2d_transpose #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS
......
......@@ -12,7 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define activation functions of neural network
# TODO: define activation functions of neural network
from . import loss
__all__ = [loss]
from . import conv
from .loss import *
from .conv import *
......@@ -12,10 +12,823 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define classes of convolutional neural network
# __all__ = ['Conv2D',
# 'Conv2DTranspose',
# 'Conv3D',
# 'Conv3DTranspose',
# 'TreeConv',
# 'Conv1D']
# TODO: define classes of convolutional neural network
__all__ = [
'Conv2D',
'Conv2DTranspose',
'Conv3D',
'Conv3DTranspose',
# 'TreeConv',
# 'Conv1D'
]
import numpy as np
from ...fluid.dygraph import layers
from ...fluid.initializer import Normal
from .. import functional as F
from ...fluid.layers import utils
from ..functional.conv import _update_padding_nd
def _get_default_param_initializer(num_channels, filter_size):
filter_elem_num = num_channels * np.prod(filter_size)
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0)
class Conv2D(layers.Layer):
"""
This interface is used to construct a callable object of the ``Conv2D`` class.
For more details, refer to code examples.
The convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
the feature map, H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of output feature map,
C is the number of input feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \\sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of filter. It is as same as the output
feature map.
filter_size (int or tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`on both sides
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
stride (int or tuple, optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups (int, optional): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Raises:
ValueError: if ``use_cudnn`` is not a bool value.
Examples:
.. code-block:: python
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
from paddle import nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
conv = nn.Conv2D(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=1,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
data_format="NCHW",
dtype='float32'):
super(Conv2D, self).__init__()
assert param_attr is not False, "param_attr should not be False here."
self._num_channels = num_channels
self._num_filters = num_filters
self._groups = groups
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
self._act = act
self._data_format = data_format
self._dtype = dtype
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
self._use_cudnn = use_cudnn
self._filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
self._stride = utils.convert_to_list(stride, 2, 'stride')
self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
channel_last = (data_format == "NHWC")
self._padding = padding # leave it to F.conv2d
self._param_attr = param_attr
self._bias_attr = bias_attr
num_filter_channels = num_channels // groups
filter_shape = [self._num_filters, num_filter_channels
] + self._filter_size
self.weight = self.create_parameter(
attr=self._param_attr,
shape=filter_shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer(
self._num_channels, filter_shape))
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
out = F.conv2d(
input,
self.weight,
bias=self.bias,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
use_cudnn=self._use_cudnn,
act=self._act,
data_format=self._data_format)
return out
class Conv2DTranspose(layers.Layer):
"""
This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
For more details, refer to code examples.
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input and output
are in NCHW format. Where N is batch size, C is the number of feature map,
H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of input feature map,
C is the number of output feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
The details of convolution transpose layer, please refer to the following explanation and references
`conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of the filter. It is as same as the output
feature map.
filter_size(int or tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
output_size(int or tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
stride(int or tuple, optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Examples:
.. code-block:: python
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
from paddle import nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
conv = nn.Conv2DTranspose(4, 6, (3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
data_format="NCHW",
dtype='float32'):
super(Conv2DTranspose, self).__init__()
assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
self._groups = groups
self._num_channels = num_channels
self._num_filters = num_filters
self._use_cudnn = use_cudnn
self._data_format = data_format
self._dtype = dtype
self._stride = utils.convert_to_list(stride, 2, 'stride')
self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
self._filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
if output_size is None:
self._output_size = output_size
elif isinstance(output_size, (list, tuple, int)):
self._output_size = utils.convert_to_list(output_size, 2,
'output_size')
else:
raise ValueError(
"output_size should be int, ot list[int] or tuple[int]")
self._padding = padding
filter_shape = [self._num_channels, num_filters // groups
] + self._filter_size
self.weight = self.create_parameter(
dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
out = F.conv2d_transpose(
input,
self.weight,
bias=self.bias,
output_size=self._output_size,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
use_cudnn=self._use_cudnn,
act=self._act,
data_format=self._data_format)
return out
class Conv3D(layers.Layer):
"""
**Convlution3D Layer**
The convolution3D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are multidimensional tensors with a shape of
:math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature. Convlution3D is similar with Convlution2D
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of filter. It is as same as the output image channel.
filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square, filter_size_depth = filter_size_height
= filter_size_width = filter_size.
stride (int|tuple, optional): The stride size. If stride is a tuple, it must
contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
stride_D = stride_H = stride_W = stride. The default value is 1.
padding (int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups (int, optional): The groups number of the Conv3d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. The default value is 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. The default value is None.
use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. The default value is True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
The default value is None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCDHW" or "NDHWC". Default: "NCDHW".
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
None.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
from paddle import nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
conv = nn.Conv3D(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6, 6)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
padding=0,
stride=1,
dilation=1,
groups=1,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
data_format="NCDHW",
dtype='float32'):
super(Conv3D, self).__init__()
assert param_attr is not False, "param_attr should not be False here."
self._num_channels = num_channels
self._num_filters = num_filters
self._groups = groups
self._act = act
self._use_cudnn = use_cudnn
self._dtype = dtype
self._data_format = data_format
self._stride = utils.convert_to_list(stride, 3, 'stride')
self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
self._filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
channel_last = (data_format == "NDHWC")
self._padding = padding
self._param_attr = param_attr
self._bias_attr = bias_attr
if num_channels % groups != 0:
raise ValueError("num_channels must be divisible by groups.")
num_filter_channels = num_channels // groups
filter_shape = [num_filters, num_filter_channels] + self._filter_size
self.weight = self.create_parameter(
attr=self._param_attr,
shape=filter_shape,
dtype=self._dtype,
default_initializer=_get_default_param_initializer(
self._num_channels, self._filter_size))
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
out = F.conv3d(
input,
self.weight,
bias=self.bias,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
use_cudnn=self._use_cudnn,
act=self._act,
data_format=self._data_format)
return out
class Conv3DTranspose(layers.Layer):
"""
**Convlution3D transpose layer**
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW format. Where N is batch size, C is the number of channels,
D is the depth of the feature, H is the height of the feature, and W
is the width of the feature. Parameters(dilations, strides, paddings) are
two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following
explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
**Note**:
The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv3d_transpose can compute the kernel size automatically.
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of the filter. It is as same as the output
image channel.
filter_size(int|tuple): The filter size. If filter_size is a tuple,
it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
output_size(int or tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
The default value is 1.
dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
The default value is 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. The default value is None.
bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. The default value is None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. The default value is True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
The default value is None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCDHW" or "NDHWC". Default: "NCDHW".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
None.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg
from paddle import nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
place = fluid.CPUPlace()
with dg.guard(place):
x_var = dg.to_variable(x)
conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
y_var = conv(x_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 10, 10, 10)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
output_size=None,
padding=0,
stride=1,
dilation=1,
groups=1,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
data_format="NCDHW",
dtype='float32'):
super(Conv3DTranspose, self).__init__()
if not isinstance(use_cudnn, bool):
raise ValueError("use_cudnn should be True or False")
assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
self._num_channels = num_channels
self._num_filters = num_filters
self._groups = groups
self._use_cudnn = use_cudnn
self._act = act
self._dtype = dtype
self._data_format = data_format
self._stride = utils.convert_to_list(stride, 3, 'stride')
self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
self._filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
channel_last = (data_format == "NDHWC")
self._padding = padding
if output_size is None:
self._output_size = output_size
elif isinstance(output_size, (list, tuple, int)):
self._output_size = utils.convert_to_list(output_size, 3,
'output_size')
else:
raise ValueError(
"output_size should be int, ot list[int] or tuple[int]")
self._param_attr = param_attr
self._bias_attr = bias_attr
filter_shape = [num_channels, num_filters // groups] + self._filter_size
self.weight = self.create_parameter(
dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=[self._num_filters],
dtype=self._dtype,
is_bias=True)
def forward(self, input):
out = F.conv3d_transpose(
input,
self.weight,
bias=self.bias,
output_size=self._output_size,
padding=self._padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
use_cudnn=self._use_cudnn,
act=self._act,
data_format=self._data_format)
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册