未验证 提交 074065e5 编写于 作者: 卖鱼的哲学 提交者: GitHub

fix expand/uniform_random && concat/transpose to new api on xpu (#29280)

* fix expand && concat/transpose to new api

* update uniform_random_op

* update xpu_header
上级 4064354a
...@@ -11,18 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,18 +11,12 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/concat_op.h" #include "paddle/fluid/operators/concat_op.h"
#include <memory> #include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/platform/xpu_header.h"
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif
#ifdef PADDLE_WITH_XPU
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -32,8 +26,8 @@ template <typename DeviceContext, typename T> ...@@ -32,8 +26,8 @@ template <typename DeviceContext, typename T>
class ConcatXPUKernel : public framework::OpKernel<T> { class ConcatXPUKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X"); auto ins = ctx.MultiInput<framework::LoDTensor>("X");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out"); framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
int axis = ctx.Attr<int>("axis"); int axis = ctx.Attr<int>("axis");
PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument( PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
"The input should not be null.")); "The input should not be null."));
...@@ -47,6 +41,7 @@ class ConcatXPUKernel : public framework::OpKernel<T> { ...@@ -47,6 +41,7 @@ class ConcatXPUKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(), PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(),
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"concat: axis shoud < ins[0]->dims()!")); "concat: axis shoud < ins[0]->dims()!"));
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
out->mutable_data<T>(place); out->mutable_data<T>(place);
std::vector<int> choose_idx; std::vector<int> choose_idx;
...@@ -57,43 +52,54 @@ class ConcatXPUKernel : public framework::OpKernel<T> { ...@@ -57,43 +52,54 @@ class ConcatXPUKernel : public framework::OpKernel<T> {
n++; n++;
} }
} }
PADDLE_ENFORCE_LE(n, 8, platform::errors::InvalidArgument(
"XPU only surpport at most 8 tensors for now"));
PADDLE_ENFORCE_GT( PADDLE_ENFORCE_GT(
n, 0, platform::errors::InvalidArgument("No tensor need concat?")); n, 0, platform::errors::InvalidArgument("No tensor need concat?"));
int h = 1;
int w_except_axis = 1; // If axis is 0, the lod of the output is not the same as inputs.
for (int i = 0; i < axis; ++i) { if (axis == 0 && ins[0]->lod().size() > 0) {
h *= (ins[choose_idx[0]]->dims())[i]; size_t lod_size_0 = ins[0]->lod().size();
} size_t lod_size = lod_size_0;
for (int i = axis + 1; i < ins[0]->dims().size(); ++i) { for (size_t i = 1; i < ins.size(); ++i) {
w_except_axis *= (ins[choose_idx[0]]->dims())[i]; if (ins[i]->lod().size() > 0) {
} PADDLE_ENFORCE_EQ(
for (int i = 1; i < n; ++i) { ins[i]->lod().size(), lod_size_0,
int hh = 1; platform::errors::Unimplemented(
int ww = 1; "The lod level of all input LoDTensors should be same. "
for (int j = 0; j < axis; ++j) { "Maybe different lod level of input LoDTensors can concat,"
hh *= (ins[choose_idx[i]]->dims())[j]; "it is not supported currently. The lod level of %dth input "
} "is %d and first input is %d.",
for (int j = axis + 1; j < ins[i]->dims().size(); ++j) { i, ins[i]->lod().size(), lod_size_0));
ww *= (ins[choose_idx[i]]->dims())[j]; } else {
} lod_size = 0;
PADDLE_ENFORCE_EQ(hh, h, platform::errors::InvalidArgument( break;
"concat: h should be eual!")); }
PADDLE_ENFORCE_EQ(ww, w_except_axis, }
platform::errors::InvalidArgument( if (lod_size) {
"concat: w should be eual except for axis!")); auto* out_lod = out->mutable_lod();
for (size_t i = 1; i < ins.size(); ++i) {
auto in_lod = ConvertToLengthBasedLoD(ins[i]->lod());
AppendLoD(out_lod, in_lod);
} }
}
}
auto input_dims = ins[0]->dims();
std::vector<std::vector<int>> xdims_list(n);
for (int i = 0; i < n; ++i) {
std::vector<int> tmp_dims(input_dims.size());
for (int j = 0; j < input_dims.size(); ++j) {
tmp_dims[j] = ins[i]->dims()[j];
}
xdims_list[i] = tmp_dims;
}
auto& dev_ctx = ctx.template device_context<DeviceContext>(); auto& dev_ctx = ctx.template device_context<DeviceContext>();
std::unique_ptr<int[]> in_w_host(new int[n]); std::vector<const T*> ptrs;
std::unique_ptr<const float* []> ptrs(new const float*[n]);
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
ptrs[i] = ins[choose_idx[i]]->data<T>(); ptrs.push_back(ins[choose_idx[i]]->data<T>());
in_w_host[i] = w_except_axis * (ins[choose_idx[i]]->dims())[axis];
} }
int r = int r = xpu::concat<T>(dev_ctx.x_context(), ptrs, out->data<T>(),
xpu::concat<float>(dev_ctx.x_context(), h, (const int*)in_w_host.get(), xdims_list, axis);
n, (const float**)ptrs.get(), out->data<T>());
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS, r, XPU_SUCCESS,
platform::errors::External( platform::errors::External(
...@@ -102,6 +108,7 @@ class ConcatXPUKernel : public framework::OpKernel<T> { ...@@ -102,6 +108,7 @@ class ConcatXPUKernel : public framework::OpKernel<T> {
r)); r));
} }
}; };
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ConcatGradXPUKernel : public framework::OpKernel<T> { class ConcatGradXPUKernel : public framework::OpKernel<T> {
public: public:
...@@ -132,13 +139,15 @@ class ConcatGradXPUKernel : public framework::OpKernel<T> { ...@@ -132,13 +139,15 @@ class ConcatGradXPUKernel : public framework::OpKernel<T> {
static_cast<int64_t>(ins[0]->dims().size())); static_cast<int64_t>(ins[0]->dims().size()));
// get output tensor that the name is not kEmptyVarName // get output tensor that the name is not kEmptyVarName
std::vector<framework::Tensor*> outputs; std::vector<framework::Tensor*> outputs;
std::vector<int> choose_idx;
int n = 0;
for (size_t j = 0; j < outs.size(); ++j) { for (size_t j = 0; j < outs.size(); ++j) {
if (out_var_names[j] != framework::kEmptyVarName && if (out_var_names[j] != framework::kEmptyVarName &&
outs[j]->numel() != 0UL) { outs[j]->numel() != 0UL) {
outs[j]->mutable_data<T>(ctx.GetPlace()); outs[j]->mutable_data<T>(ctx.GetPlace());
outputs.push_back(outs[j]); outputs.push_back(outs[j]);
} else { choose_idx.push_back(j);
outputs.push_back(nullptr); n++;
} }
} }
PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument( PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument(
...@@ -146,23 +155,31 @@ class ConcatGradXPUKernel : public framework::OpKernel<T> { ...@@ -146,23 +155,31 @@ class ConcatGradXPUKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_LT(axis, out_grad->dims().size(), PADDLE_ENFORCE_LT(axis, out_grad->dims().size(),
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"concat_grad: axis shoud < ins[0]->dims()!")); "concat_grad: axis shoud < ins[0]->dims()!"));
auto out_grad_stride = framework::stride_numel(out_grad->dims());
int n = outputs.size(); auto input_dims = ins[0]->dims();
PADDLE_ENFORCE_LE(n, 16, std::vector<int> split_list(n);
platform::errors::InvalidArgument( std::vector<int> xdims_list(input_dims.size());
"XPU only surpport at most 16 tensors for now")); int total_length = 0;
int h = out_grad_stride[0] / out_grad_stride[axis]; for (int i = 0; i < n; ++i) {
auto& dev_ctx = ctx.template device_context<DeviceContext>(); split_list[i] = ins[i]->dims()[axis];
std::unique_ptr<int[]> in_w_host(new int[n]); total_length += ins[i]->dims()[axis];
std::unique_ptr<float* []> ptrs(new float*[n]); }
for (int i = 0; i < input_dims.size(); ++i) {
if (i == axis) {
continue;
}
xdims_list[i] = input_dims[i];
}
xdims_list[axis] = total_length;
std::vector<T*> ptrs(n);
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
auto out_stride = framework::stride_numel(outputs[i]->dims());
ptrs[i] = outputs[i]->data<T>(); ptrs[i] = outputs[i]->data<T>();
in_w_host[i] = out_stride[axis];
} }
int r = xpu::concat_grad(dev_ctx.x_context(), h, in_w_host.get(), n,
reinterpret_cast<float**>(ptrs.get()), auto& dev_ctx = ctx.template device_context<DeviceContext>();
out_grad->data<T>()); int r = xpu::split<T>(dev_ctx.x_context(), out_grad->data<T>(), ptrs,
xdims_list, split_list, axis);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS, r, XPU_SUCCESS,
platform::errors::External( platform::errors::External(
......
...@@ -17,8 +17,6 @@ limitations under the License. */ ...@@ -17,8 +17,6 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/xpu_header.h" #include "paddle/fluid/platform/xpu_header.h"
#include "xpu/refactor/math.h"
#include "xpu/refactor/nn.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -56,6 +56,12 @@ inline std::vector<int> get_expand_times( ...@@ -56,6 +56,12 @@ inline std::vector<int> get_expand_times(
TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor); TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor);
expand_data = cpu_expand_tensor.data<int>(); expand_data = cpu_expand_tensor.data<int>();
} }
#ifdef PADDLE_WITH_XPU
if (platform::is_xpu_place(expand_tensor->place())) {
TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor);
expand_data = cpu_expand_tensor.data<int>();
}
#endif
auto vec_epxand_times = auto vec_epxand_times =
std::vector<int>(expand_data, expand_data + expand_tensor->numel()); std::vector<int>(expand_data, expand_data + expand_tensor->numel());
return vec_epxand_times; return vec_epxand_times;
...@@ -72,7 +78,15 @@ inline std::vector<int> get_expand_times( ...@@ -72,7 +78,15 @@ inline std::vector<int> get_expand_times(
framework::Tensor temp; framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp); TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_times.push_back(*temp.data<int32_t>()); vec_epxand_times.push_back(*temp.data<int32_t>());
} else { }
#ifdef PADDLE_WITH_XPU
else if (platform::is_xpu_place(tensor->place())) { // NOLINT
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_epxand_times.push_back(*temp.data<int32_t>());
}
#endif
else { // NOLINT
vec_epxand_times.push_back(*tensor->data<int32_t>()); vec_epxand_times.push_back(*tensor->data<int32_t>());
} }
} }
......
...@@ -17,105 +17,27 @@ limitations under the License. */ ...@@ -17,105 +17,27 @@ limitations under the License. */
#include <memory> #include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/platform/xpu_header.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using framework::Tensor; using framework::Tensor;
bool XPUSupported(int ndims, const std::vector<int>& axis) {
/*
* XPU currently support:
* permute = {0, 2, 1}, permute = {1, 0},
* permute = {0, 2, 1, 3}, permute = {1, 0, 2},
* permute = {0, 2, 3, 1}
*/
bool is_supported = false;
std::vector<int> permute_10(2, 0);
std::vector<int> permute_102(3, 0);
std::vector<int> permute_021(3, 0);
std::vector<int> permute_210(3, 0);
std::vector<int> permute_0213(4, 0);
std::vector<int> permute_0231(4, 0);
std::vector<int> permute_0312(4, 0);
std::vector<int> permute_3201(4, 0);
permute_10[0] = 1;
permute_102[0] = 1;
permute_102[2] = 2;
permute_021[1] = 2;
permute_021[2] = 1;
permute_210[0] = 2;
permute_210[1] = 1;
permute_0213[1] = 2;
permute_0213[2] = 1;
permute_0213[3] = 3;
permute_0231[1] = 2;
permute_0231[2] = 3;
permute_0231[3] = 1;
permute_0312[1] = 3;
permute_0312[2] = 1;
permute_0312[3] = 2;
permute_3201[0] = 3;
permute_3201[1] = 2;
permute_3201[3] = 1;
switch (ndims) {
case 2:
if (axis == permute_10) {
is_supported = true;
}
break;
case 3:
if ((axis == permute_021) || (axis == permute_102) ||
(axis == permute_210)) {
is_supported = true;
}
break;
case 4:
if ((axis == permute_0213) || (axis == permute_0231) ||
(axis == permute_0312) || (axis == permute_3201)) {
is_supported = true;
}
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Tensors with rank only 2, 3 and 4 are supported on XPU"));
}
return is_supported;
}
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class TransposeXPUKernel : public framework::OpKernel<T> { class TransposeXPUKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto x = context.Input<framework::Tensor>("X"); auto x = context.Input<framework::Tensor>("X");
auto out = context.Output<framework::Tensor>("Out"); auto out = context.Output<framework::Tensor>("Out");
// axis is permute // axis is permute
auto axis = context.Attr<std::vector<int>>("axis"); auto axis = context.Attr<std::vector<int>>("axis");
int ndims = axis.size(); int ndims = axis.size();
const auto x_dims = x->dims(); const auto x_dims = x->dims();
const T* x_data = x->data<T>(); const T* x_data = x->data<T>();
T* y_data = out->mutable_data<T>(context.GetPlace()); T* y_data = out->mutable_data<T>(context.GetPlace());
if (!XPUSupported(ndims, axis)) { if (out->numel() == 0) {
VLOG(0) << "XPU does not support the permute, try to do on cpu";
framework::Tensor x_cpu;
framework::Tensor out_cpu;
auto x_cpu_data = x_cpu.mutable_data<T>(x->dims(), platform::CPUPlace());
auto out_cpu_data =
out_cpu.mutable_data<T>(out->dims(), platform::CPUPlace());
memory::Copy(platform::CPUPlace(), reinterpret_cast<void*>(x_cpu_data),
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
(const void*)x_data, x->numel() * sizeof(T));
const platform::CPUDeviceContext* cpu_dev_ctx =
static_cast<const platform::CPUDeviceContext*>(
platform::DeviceContextPool::Instance().Get(
platform::CPUPlace()));
TransCompute<platform::CPUDeviceContext, T>(ndims, *cpu_dev_ctx, x_cpu,
&out_cpu, axis);
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
reinterpret_cast<void*>(y_data), platform::CPUPlace(),
(const void*)out_cpu_data, out->numel() * sizeof(T));
return; return;
} }
...@@ -123,10 +45,9 @@ class TransposeXPUKernel : public framework::OpKernel<T> { ...@@ -123,10 +45,9 @@ class TransposeXPUKernel : public framework::OpKernel<T> {
for (int i = 0; i < ndims; ++i) { for (int i = 0; i < ndims; ++i) {
x_shape_host[i] = x_dims[i]; x_shape_host[i] = x_dims[i];
} }
int* permute_host = axis.data();
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::transpose(dev_ctx.x_context(), x_data, y_data, int r = xpu::transpose<T>(dev_ctx.x_context(), x_data, y_data, x_shape_host,
x_shape_host.data(), permute_host, ndims); axis);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS, r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r)); platform::errors::External("XPU kernel error! error code=%d", r));
...@@ -151,20 +72,13 @@ class TransposeGradXPUKernel : public framework::OpKernel<T> { ...@@ -151,20 +72,13 @@ class TransposeGradXPUKernel : public framework::OpKernel<T> {
} }
int ndims = axis.size(); int ndims = axis.size();
if (!XPUSupported(ndims, reversed_axis)) {
PADDLE_THROW(
platform::errors::Unimplemented("XPU does not support the permute"));
}
std::vector<int> out_shape_host(ndims, 0); std::vector<int> out_shape_host(ndims, 0);
for (int i = 0; i < ndims; ++i) { for (int i = 0; i < ndims; ++i) {
out_shape_host[i] = out_grad->dims()[i]; out_shape_host[i] = out_grad->dims()[i];
} }
int* permute_host = reversed_axis.data();
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::transpose(dev_ctx.x_context(), out_grad->data<T>(), int r = xpu::transpose<T>(dev_ctx.x_context(), out_grad->data<T>(),
x_grad->data<T>(), out_shape_host.data(), x_grad->data<T>(), out_shape_host, reversed_axis);
permute_host, ndims);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS, r, xpu::Error_t::SUCCESS,
platform::errors::External("XPU kernel error! error code=%d", r)); platform::errors::External("XPU kernel error! error code=%d", r));
......
...@@ -29,37 +29,68 @@ class XPUUniformRandomKernel : public framework::OpKernel<T> { ...@@ -29,37 +29,68 @@ class XPUUniformRandomKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext &ctx) const override { void Compute(const framework::ExecutionContext &ctx) const override {
framework::Tensor *tensor = nullptr; framework::Tensor *tensor = nullptr;
auto out_var = ctx.OutputVar("Out"); auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) { std::vector<int64_t> new_shape;
tensor = out_var->GetMutable<framework::LoDTensor>(); auto list_new_shape_tensor =
} else if (out_var->IsType<framework::SelectedRows>()) { ctx.MultiInput<framework::Tensor>("ShapeTensorList");
auto shape = ctx.Attr<std::vector<int64_t>>("shape"); if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
if (ctx.HasInput("ShapeTensor")) {
auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
new_shape = GetNewDataFromShapeTensor(shape_tensor);
} else if (list_new_shape_tensor.size() > 0) {
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
}
}
if (out_var->IsType<framework::SelectedRows>()) {
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>(); auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
tensor = selected_rows->mutable_value(); tensor = selected_rows->mutable_value();
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
if (!new_shape.empty()) shape = new_shape;
tensor->Resize(framework::make_ddim(shape)); tensor->Resize(framework::make_ddim(shape));
selected_rows->mutable_rows()->reserve(shape[0]); selected_rows->mutable_rows()->reserve(shape[0]);
} else if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
} else { } else {
PADDLE_THROW(platform::errors::InvalidArgument( PADDLE_THROW(platform::errors::InvalidArgument(
"Expected type of Output(out) in uniform_random_op must be " "Expected type of Output(out) in uniform_random_op must be Tensor, "
"LoDTensor, " "SelectedRows. But got "
"SelectedRows. But got unsupport type: %s.", "unsupport type: %s.",
framework::ToTypeName(out_var->Type()))); framework::ToTypeName(out_var->Type())));
} }
T *data = tensor->mutable_data<T>(ctx.GetPlace()); T *data = tensor->mutable_data<T>(ctx.GetPlace());
int64_t size = tensor->numel(); int64_t size = tensor->numel();
std::unique_ptr<T[]> data_cpu(new T[size]);
std::uniform_real_distribution<T> dist( std::uniform_real_distribution<T> dist(
static_cast<T>(ctx.Attr<float>("min")), static_cast<T>(ctx.Attr<float>("min")),
static_cast<T>(ctx.Attr<float>("max"))); static_cast<T>(ctx.Attr<float>("max")));
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed")); unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
// corresponding XPU device.
auto engine = framework::GetCPURandomEngine(seed); auto engine = framework::GetCPURandomEngine(seed);
std::unique_ptr<T[]> data_cpu(new T[size]);
for (int64_t i = 0; i < size; ++i) { for (int64_t i = 0; i < size; ++i) {
data_cpu[i] = dist(*engine); data_cpu[i] = dist(*engine);
} }
unsigned int diag_num =
static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
unsigned int diag_step =
static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
if (diag_num > 0) {
PADDLE_ENFORCE_GT(
size, (diag_num - 1) * (diag_step + 1),
platform::errors::InvalidArgument(
"ShapeInvalid: the diagonal's elements is equal (num-1) "
"* (step-1) with num %d, step %d,"
"It should be smaller than %d, but received %d",
diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
for (int64_t i = 0; i < diag_num; ++i) {
int64_t pos = i * diag_step + i;
data_cpu[pos] = diag_val;
}
}
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), data, memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()), data,
platform::CPUPlace(), reinterpret_cast<void *>(data_cpu.get()), platform::CPUPlace(), reinterpret_cast<void *>(data_cpu.get()),
size * sizeof(T)); size * sizeof(T));
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include "paddle/fluid/platform/errors.h" #include "paddle/fluid/platform/errors.h"
#include "xpu/api.h" #include "xpu/api.h"
#include "xpu/refactor/math.h"
#include "xpu/refactor/nn.h" #include "xpu/refactor/nn.h"
#include "xpu/runtime.h" #include "xpu/runtime.h"
#include "xpu/runtime_ex.h" #include "xpu/runtime_ex.h"
......
...@@ -19,16 +19,20 @@ import sys ...@@ -19,16 +19,20 @@ import sys
sys.path.append("..") sys.path.append("..")
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest, skip_check_grad_ci from op_test import OpTest, skip_check_grad_ci
from op_test_xpu import XPUOpTest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core from paddle.fluid import compiler, Program, program_guard, core
import paddle import paddle
class TestConcatOp(OpTest): class TestConcatOp(XPUOpTest):
def setUp(self): def setUp(self):
self.op_type = "concat" self.op_type = "concat"
self.dtype = self.get_dtype() self.dtype = self.get_dtype()
self.use_xpu = True
self.use_mkldnn = False
self.init_test_data() self.init_test_data()
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]} self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
self.attrs = {'axis': self.axis} self.attrs = {'axis': self.axis}
...@@ -44,7 +48,7 @@ class TestConcatOp(OpTest): ...@@ -44,7 +48,7 @@ class TestConcatOp(OpTest):
} }
def get_dtype(self): def get_dtype(self):
return "float64" return "float32"
def test_check_output(self): def test_check_output(self):
if paddle.is_compiled_with_xpu(): if paddle.is_compiled_with_xpu():
...@@ -131,7 +135,7 @@ class TestConcatOp6(TestConcatOp): ...@@ -131,7 +135,7 @@ class TestConcatOp6(TestConcatOp):
def test_check_output(self): def test_check_output(self):
if paddle.is_compiled_with_xpu(): if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0) place = paddle.XPUPlace(0)
self.check_output_with_place(place) self.check_output_with_place(place, check_dygraph=False)
def test_check_grad(self): def test_check_grad(self):
if paddle.is_compiled_with_xpu(): if paddle.is_compiled_with_xpu():
...@@ -147,94 +151,6 @@ class TestConcatOp6(TestConcatOp): ...@@ -147,94 +151,6 @@ class TestConcatOp6(TestConcatOp):
self.axis = 0 self.axis = 0
class TestConcatOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# The input type of concat_op should be list.
x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
fluid.layers.concat(x1)
# The item in input must be Variable.
x2 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
x3 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.concat, [x2])
# The input dtype of concat_op must be float16, float32, float64, int32, int64.
x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
fluid.layers.concat([x6, x7])
# The type of axis in concat_op should be int or Variable.
def test_axis_type():
fluid.layers.concat([x6, x7], 3.2)
self.assertRaises(TypeError, test_axis_type)
def test_input_same_dtype():
fluid.layers.concat([x7, x8])
self.assertRaises(TypeError, test_input_same_dtype)
class TestConcatAPI(unittest.TestCase):
def test_fluid_api(self):
x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='float32', name='x_1')
fluid.layers.concat([x_1, x_1], 0)
input_2 = np.random.random([2, 1, 4, 5]).astype("float32")
input_3 = np.random.random([2, 2, 4, 5]).astype("float32")
x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='float32', name='x_2')
x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='float32', name='x_3')
positive_1_int32 = fluid.layers.fill_constant([1], "float32", 1)
positive_1_int64 = fluid.layers.fill_constant([1], "float32", 1)
out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
out_2 = fluid.layers.concat(input=[x_2, x_3], axis=1)
out_3 = fluid.layers.concat(input=[x_2, x_3], axis=1)
exe = fluid.Executor(place=fluid.XPUPlace(0))
[res_1, res_2, res_3] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_2,
"x_2": input_2,
"x_3": input_3},
fetch_list=[out_1, out_2, out_3])
assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
def test_errors(self):
with program_guard(Program(), Program()):
# The item in input must be Variable.
x2 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
x3 = fluid.create_lod_tensor(
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
self.assertRaises(TypeError, paddle.concat, [x2])
# The input dtype of concat_op must be float32.
x4 = fluid.data(shape=[4], dtype='uint8', name='x4')
x5 = fluid.data(shape=[4], dtype='uint8', name='x5')
self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
# The type of axis in concat_op should be int or Variable.
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
def test_axis_type():
paddle.concat([x6, x7], 3.2)
self.assertRaises(TypeError, test_axis_type)
def test_input_same_dtype():
paddle.concat([x7, x8])
self.assertRaises(TypeError, test_input_same_dtype)
if __name__ == '__main__': if __name__ == '__main__':
paddle.enable_static() paddle.enable_static()
unittest.main() unittest.main()
...@@ -19,24 +19,27 @@ import numpy as np ...@@ -19,24 +19,27 @@ import numpy as np
import sys import sys
sys.path.append("..") sys.path.append("..")
from op_test import OpTest from op_test_xpu import OpTest, XPUOpTest
import paddle import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard from paddle.fluid import compiler, Program, program_guard
class TestXPUTransposeOp(OpTest): class TestXPUTransposeOp(XPUOpTest):
def setUp(self): def setUp(self):
self.init_op_type() self.init_op_type()
self.initTestCase() self.initTestCase()
self.inputs = {'X': np.random.random(self.shape).astype("float64")} self.use_xpu = True
self.use_mkldnn = False
self.inputs = {'X': np.random.random(self.shape).astype("float32")}
self.attrs = { self.attrs = {
'axis': list(self.axis), 'axis': list(self.axis),
'use_mkldnn': False, 'use_mkldnn': False,
'use_xpu': True 'use_xpu': True
} }
self.outputs = { self.outputs = {
'XShape': np.random.random(self.shape).astype("float64"), 'XShape': np.random.random(self.shape).astype("float32"),
'Out': self.inputs['X'].transpose(self.axis) 'Out': self.inputs['X'].transpose(self.axis)
} }
...@@ -121,110 +124,5 @@ class TestCase9(TestXPUTransposeOp): ...@@ -121,110 +124,5 @@ class TestCase9(TestXPUTransposeOp):
self.axis = (6, 1, 3, 5, 0, 2, 4, 7) self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
class TestTransposeOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
def test_x_Variable_check():
# the Input(x)'s type must be Variable
fluid.layers.transpose("not_variable", perm=[1, 0, 2])
self.assertRaises(TypeError, test_x_Variable_check)
def test_x_dtype_check():
# the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
x1 = fluid.layers.data(
name='x1', shape=[10, 5, 3], dtype='bool')
fluid.layers.transpose(x1, perm=[1, 0, 2])
self.assertRaises(TypeError, test_x_dtype_check)
def test_perm_list_check():
# Input(perm)'s type must be list
fluid.layers.transpose(x, perm="[1, 0, 2]")
self.assertRaises(TypeError, test_perm_list_check)
def test_perm_length_and_x_dim_check():
# Input(perm) is the permutation of dimensions of Input(input)
# its length should be equal to dimensions of Input(input)
fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])
self.assertRaises(ValueError, test_perm_length_and_x_dim_check)
def test_each_elem_value_check():
# Each element in Input(perm) should be less than Input(x)'s dimension
fluid.layers.transpose(x, perm=[3, 5, 7])
self.assertRaises(ValueError, test_each_elem_value_check)
class TestTAPI(unittest.TestCase):
def test_out(self):
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[10], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([10]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[10, 5], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([10, 5]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.program_guard(fluid.Program()):
data = fluid.data(shape=[1, 5], dtype="float64", name="data")
data_t = paddle.t(data)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
data_np = np.random.random([1, 5]).astype("float64")
result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
expected_result = np.transpose(data_np)
self.assertEqual((result == expected_result).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([10]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([10, 5]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
with fluid.dygraph.guard():
np_x = np.random.random([1, 5]).astype("float64")
data = fluid.dygraph.to_variable(np_x)
z = paddle.t(data)
np_z = z.numpy()
z_expected = np.array(np.transpose(np_x))
self.assertEqual((np_z == z_expected).all(), True)
def test_errors(self):
with fluid.program_guard(fluid.Program()):
x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')
def test_x_dimension_check():
paddle.t(x)
self.assertRaises(ValueError, test_x_dimension_check)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册