Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
06c3cce9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
06c3cce9
编写于
12月 01, 2021
作者:
Z
Zhanlue Yang
提交者:
GitHub
12月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Handled dispensable tensors in AutoCodeGen for Eager Dygraph (#37723)
上级
f91e2331
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
314 addition
and
175 deletion
+314
-175
paddle/fluid/eager/auto_code_generator/eager_generator.cc
paddle/fluid/eager/auto_code_generator/eager_generator.cc
+191
-73
paddle/fluid/pybind/op_function_generator.cc
paddle/fluid/pybind/op_function_generator.cc
+2
-102
paddle/fluid/pybind/op_function_generator.h
paddle/fluid/pybind/op_function_generator.h
+121
-0
未找到文件。
paddle/fluid/eager/auto_code_generator/eager_generator.cc
浏览文件 @
06c3cce9
...
...
@@ -22,6 +22,7 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/op_function_generator.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
...
...
@@ -358,18 +359,149 @@ static bool CheckOpProto(proto::OpProto* op_proto) {
return
true
;
}
/* --------------------------------------- */
/* --------- Preprocess Ins/Outs --------- */
/* --------------------------------------- */
static
void
PurifyOpProto
(
const
proto
::
OpProto
&
op_proto
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_inputs_name_pos_map
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_outputs_name_pos_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_outs_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_fwd_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_grad_slotname_map
,
std
::
vector
<
proto
::
OpProto
::
Var
>*
in_vars
,
std
::
vector
<
proto
::
OpProto
::
Var
>*
out_vars
,
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>*
grad_ins
,
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>*
grad_outs
)
{
// Op Name
const
std
::
string
op_name
=
op_proto
.
type
();
// Handle dispensable inputs
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
())
{
std
::
string
input_name
=
input
.
name
();
// Delete dispensable tensor unless specified in op_ins_map
if
(
input
.
dispensable
())
{
if
(
!
op_ins_map
.
count
(
op_name
)
||
!
op_ins_map
[
op_name
].
count
(
input_name
))
{
VLOG
(
6
)
<<
"Removing Dispensable Input: "
<<
input_name
;
// in_vars
auto
iter
=
in_vars
->
begin
();
for
(
iter
=
in_vars
->
begin
();
iter
!=
in_vars
->
end
();
iter
++
)
{
if
(
iter
->
name
()
==
input_name
)
{
break
;
}
}
in_vars
->
erase
(
iter
);
// grad_outs_slotname_map
auto
grad_outs_slotname_map_purified
=
*
grad_outs_slotname_map
;
for
(
const
auto
&
iter
:
*
grad_outs_slotname_map
)
{
const
std
::
string
&
grad_output_name
=
iter
.
first
;
const
std
::
string
&
matched_input_name
=
iter
.
second
;
if
(
matched_input_name
==
input_name
)
{
grad_outs_slotname_map_purified
.
erase
(
grad_output_name
);
PADDLE_ENFORCE
(
grad_outs
->
count
(
grad_output_name
)
>
0
,
paddle
::
platform
::
errors
::
Fatal
(
"Unable to find gradient output name in grad_outs."
));
// grad_outs
grad_outs
->
erase
(
grad_output_name
);
}
}
*
grad_outs_slotname_map
=
grad_outs_slotname_map_purified
;
// grad_ins_fwd_slotname_map: output as tensorwrapper
if
(
grad_ins_fwd_slotname_map
->
count
(
input_name
))
grad_ins_fwd_slotname_map
->
erase
(
input_name
);
// grad_ins: output as tensorwrapper
if
(
grad_ins
->
count
(
input_name
))
grad_ins
->
erase
(
input_name
);
}
}
}
for
(
const
proto
::
OpProto
::
Var
&
output
:
op_proto
.
outputs
())
{
std
::
string
output_name
=
output
.
name
();
// Delete dispensable tensor unless specified in op_outs_map
if
(
output
.
dispensable
())
{
if
(
!
op_outs_map
.
count
(
op_name
)
||
!
op_outs_map
[
op_name
].
count
(
output_name
))
{
VLOG
(
6
)
<<
"Removing Dispensable Output: "
<<
output_name
;
// out_vars
auto
iter
=
out_vars
->
begin
();
for
(
iter
=
out_vars
->
begin
();
iter
!=
out_vars
->
end
();
iter
++
)
{
if
(
iter
->
name
()
==
output_name
)
{
break
;
}
}
out_vars
->
erase
(
iter
);
// grad_ins_grad_slotname_map
auto
grad_ins_grad_slotname_map_purified
=
*
grad_ins_grad_slotname_map
;
for
(
const
auto
&
iter
:
*
grad_ins_grad_slotname_map
)
{
const
std
::
string
&
grad_input_name
=
iter
.
first
;
const
std
::
string
&
matched_output_name
=
iter
.
second
;
if
(
matched_output_name
==
output_name
)
{
grad_ins_grad_slotname_map_purified
.
erase
(
grad_input_name
);
PADDLE_ENFORCE
(
grad_ins
->
count
(
grad_input_name
)
>
0
,
paddle
::
platform
::
errors
::
Fatal
(
"Unable to find gradient input name in grad_ins."
));
// grad_ins
grad_ins
->
erase
(
grad_input_name
);
}
}
*
grad_ins_grad_slotname_map
=
grad_ins_grad_slotname_map_purified
;
// grad_ins_fwd_slotname_map: output as tensorwrapper
if
(
grad_ins_fwd_slotname_map
->
count
(
output_name
))
grad_ins_fwd_slotname_map
->
erase
(
output_name
);
// grad_ins: output as tensorwrapper
if
(
grad_ins
->
count
(
output_name
))
grad_ins
->
erase
(
output_name
);
}
}
}
/* ------ Maping forward slot name to fwd position ------ */
size_t
in_pos
=
0
;
for
(
const
auto
&
var
:
*
in_vars
)
{
VLOG
(
6
)
<<
"Mapping input tensor: "
<<
var
.
name
()
<<
" To position: "
<<
in_pos
;
(
*
fwd_inputs_name_pos_map
)[
var
.
name
()]
=
in_pos
;
in_pos
++
;
}
size_t
out_pos
=
0
;
for
(
const
auto
&
var
:
*
out_vars
)
{
VLOG
(
6
)
<<
"Mapping output tensor: "
<<
var
.
name
()
<<
" To position: "
<<
out_pos
;
(
*
fwd_outputs_name_pos_map
)[
var
.
name
()]
=
out_pos
;
out_pos
++
;
}
}
/* -------------------------------- */
/* --------- Collect Info --------- */
/* -------------------------------- */
static
bool
CollectInformationFromOpInfo
(
const
paddle
::
framework
::
OpInfo
&
op_info
,
std
::
vector
<
paddle
::
framework
::
AttributeMap
>*
grad_node_default_attr_maps
,
std
::
vector
<
std
::
string
>*
grad_op_types
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_inputs_name_pos_map
,
std
::
unordered_map
<
std
::
string
,
size_t
>*
fwd_outputs_name_pos_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_outs_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_fwd_slotname_map
,
std
::
map
<
std
::
string
,
std
::
string
>*
grad_ins_grad_slotname_map
,
std
::
vector
<
proto
::
OpProto
::
Var
>*
in_vars
,
std
::
vector
<
proto
::
OpProto
::
Var
>*
out_vars
,
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>*
grad_ins
,
...
...
@@ -380,6 +512,13 @@ static bool CollectInformationFromOpInfo(
const
std
::
string
&
op_type
=
op_proto
.
type
();
std
::
vector
<
int64_t
>
dims
=
{
1
,
1
,
1
,
1
};
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
())
{
in_vars
->
push_back
(
input
);
}
for
(
const
proto
::
OpProto
::
Var
&
output
:
op_proto
.
outputs
())
{
out_vars
->
push_back
(
output
);
}
/* ------ Prepare "ins" ------ */
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VarBase
>>>
...
...
@@ -494,7 +633,6 @@ static bool CollectInformationFromOpInfo(
for
(
auto
iter
=
grad_node
->
begin
();
iter
<
grad_node
->
end
();
iter
++
)
{
// Each OpBase
paddle
::
imperative
::
OpBase
&
op_base
=
*
iter
;
grad_node_default_attr_maps
->
push_back
(
op_base
.
DefaultAttrsMap
());
grad_op_types
->
push_back
(
op_base
.
Type
());
}
...
...
@@ -538,22 +676,6 @@ static bool CollectInformationFromOpInfo(
grad_outs_slotname_map
);
VLOG
(
6
)
<<
"Finished Slotname Matching for Grad_Outs"
;
/* ------ Maping forward slot name to fwd position ------ */
size_t
in_pos
=
0
;
for
(
const
auto
&
iter
:
ins
)
{
VLOG
(
6
)
<<
"Mapping input tensor: "
<<
iter
.
first
<<
" To position: "
<<
in_pos
;
(
*
fwd_inputs_name_pos_map
)[
iter
.
first
]
=
in_pos
;
in_pos
++
;
}
size_t
out_pos
=
0
;
for
(
const
auto
&
iter
:
outs
)
{
VLOG
(
6
)
<<
"Mapping output tensor: "
<<
iter
.
first
<<
" To position: "
<<
out_pos
;
(
*
fwd_outputs_name_pos_map
)[
iter
.
first
]
=
out_pos
;
out_pos
++
;
}
return
true
;
}
...
...
@@ -561,16 +683,13 @@ static bool CollectInformationFromOpInfo(
/* --------- CodeGen: Forward GradNode Creation ------ */
/* --------------------------------------------------- */
static
std
::
string
GenerateGradNodeCreationContent
(
const
std
::
vector
<
paddle
::
framework
::
AttributeMap
>&
grad_node_default_attr_maps
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_inputs_name_pos_map
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_outputs_name_pos_map
,
const
std
::
map
<
std
::
string
,
std
::
string
>&
grad_ins_fwd_slotname_map
,
const
proto
::
OpProto
&
op_proto
)
{
const
std
::
string
&
op_type
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
in_vars
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
out_vars
)
{
VLOG
(
6
)
<<
"Generating GradNode Creation codes"
;
const
std
::
string
&
op_type
=
op_proto
.
type
();
// [Generation] Construct GradOpNode
// Run ComputeRequiredGrad
...
...
@@ -578,7 +697,7 @@ static std::string GenerateGradNodeCreationContent(
// then generate: "egr::AutogradMeta* p_autograd_out =
// egr::EagerUtils::autograd_meta("op_proto->outputs()[0].name()")"
std
::
string
get_autograd_meta_str
=
" // Prepare Autograd Meta
\n
"
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
input
:
in_vars
)
{
const
std
::
string
&
input_name
=
input
.
name
();
const
std
::
string
&
input_autograd_name
=
"p_autograd_"
+
input_name
;
...
...
@@ -602,7 +721,7 @@ static std::string GenerateGradNodeCreationContent(
// If single output slotname and not duplicable,
// then generate: "egr::AutogradMeta* p_autograd_out =
// egr::EagerUtils::autograd_meta("op_proto.outputs()[0].name()")"
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
p_proto
.
outputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
ut_vars
)
{
const
std
::
string
&
output_name
=
output
.
name
();
const
std
::
string
&
output_autograd_name
=
"p_autograd_"
+
output_name
;
...
...
@@ -636,8 +755,8 @@ static std::string GenerateGradNodeCreationContent(
// [GradOpNode] Generation
std
::
string
grad_node_creation_str
=
""
;
size_t
bwd_in_slot_num
=
o
p_proto
.
outputs
()
.
size
();
size_t
bwd_out_slot_num
=
op_proto
.
inputs
()
.
size
();
size_t
bwd_in_slot_num
=
o
ut_vars
.
size
();
size_t
bwd_out_slot_num
=
in_vars
.
size
();
const
char
*
GRAD_OP_NODE_TEMPLATE
=
" auto grad_node = std::make_shared<GradNode%s>(%d, %d);
\n
"
;
grad_node_creation_str
+=
" // Create GradOpNode
\n
"
;
...
...
@@ -669,7 +788,7 @@ static std::string GenerateGradNodeCreationContent(
// [GradOpNode] SetGradOutMeta
// [GradOpNode] Add Edges
std
::
string
compute_require_grad_args
=
"trace_backward"
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
input
:
in_vars
)
{
const
std
::
string
&
input_name
=
input
.
name
();
const
std
::
string
&
input_autograd_name
=
"p_autograd_"
+
input_name
;
compute_require_grad_args
+=
", &"
+
input_autograd_name
;
...
...
@@ -689,7 +808,7 @@ static std::string GenerateGradNodeCreationContent(
// [AutogradMeta] SetOutRank
// [AutogradMeta] SetHistory
std
::
string
pass_stop_gradient_args
=
"false"
;
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
p_proto
.
outputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
ut_vars
)
{
const
std
::
string
&
output_name
=
output
.
name
();
const
std
::
string
&
output_autograd_name
=
"p_autograd_"
+
output_name
;
pass_stop_gradient_args
+=
", &"
+
output_autograd_name
;
...
...
@@ -743,8 +862,6 @@ static std::string AppendUseOp(const std::string& op_type) {
/* --------- CodeGen: Forward ----- */
/* -------------------------------- */
static
std
::
pair
<
std
::
string
,
std
::
string
>
GenerateForwardFunctionContents
(
const
std
::
vector
<
paddle
::
framework
::
AttributeMap
>&
grad_node_default_attr_maps
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_inputs_name_pos_map
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_outputs_name_pos_map
,
const
std
::
map
<
std
::
string
,
std
::
string
>&
grad_ins_fwd_slotname_map
,
...
...
@@ -758,7 +875,8 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>&
grad_outs
,
const
proto
::
OpProto
&
op_proto
)
{
const
std
::
string
&
op_type
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
in_vars
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
out_vars
)
{
/*
// Forward Function Example:
std::tuple<vector<Tensor>, Tensor, vector<Tensor>>
...
...
@@ -779,6 +897,7 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
,ConstructDuplicableOutput(Out1Num)} };
// According to op_proto->attrs()
egr::legacy::RunOp("op_type", ins, outs, attr_map,
Controller.Instance().GetExpectedPlace(), {});
...
...
@@ -795,8 +914,6 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
*/
VLOG
(
6
)
<<
"Generating Dygraph Forward Function"
;
const
std
::
string
&
op_type
=
op_proto
.
type
();
std
::
string
generated_function_body
=
""
;
std
::
string
dygraph_function_args_str
=
""
;
...
...
@@ -806,8 +923,8 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
// [Generation] Get Ins Map
std
::
string
ins_contents_str
=
""
;
std
::
vector
<
std
::
string
>
input_args_str_list
(
op_proto
.
inputs
()
.
size
());
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
()
)
{
std
::
vector
<
std
::
string
>
input_args_str_list
(
in_vars
.
size
());
for
(
const
proto
::
OpProto
::
Var
&
input
:
in_vars
)
{
const
std
::
string
&
input_name
=
input
.
name
();
size_t
input_position
=
fwd_inputs_name_pos_map
.
at
(
input_name
);
if
(
input
.
duplicable
())
{
...
...
@@ -848,7 +965,7 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
// [Generation] Get Outs Map
std
::
string
outs_contents_str
=
""
;
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
p_proto
.
outputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
ut_vars
)
{
const
std
::
string
&
output_name
=
output
.
name
();
std
::
string
outnum
=
"1"
;
if
(
output
.
duplicable
())
{
...
...
@@ -898,17 +1015,17 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
" egr::Controller::Instance().GetExpectedPlace(),
\n
"
" &default_attrs, true, {});
\n
"
;
std
::
string
trace_op_str
=
paddle
::
string
::
Sprintf
(
FWD_TRACE_OP_TEMPLATE
,
op_
proto
.
type
()
);
paddle
::
string
::
Sprintf
(
FWD_TRACE_OP_TEMPLATE
,
op_
type
);
generated_function_body
+=
trace_op_str
;
generated_function_body
+=
"
\n
"
;
VLOG
(
6
)
<<
"Generated AttrMap & TraceOp"
;
// [Generation] Convert output VarBase to Vector/Tensor
size_t
output_size
=
o
p_proto
.
outputs
()
.
size
();
size_t
output_size
=
o
ut_vars
.
size
();
std
::
vector
<
std
::
string
>
return_contents
(
output_size
);
std
::
vector
<
std
::
string
>
return_types
(
output_size
);
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
p_proto
.
outputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
ut_vars
)
{
const
std
::
string
&
output_name
=
output
.
name
();
std
::
string
out_tensor_str
;
size_t
return_position
=
fwd_outputs_name_pos_map
.
at
(
output_name
);
...
...
@@ -937,8 +1054,8 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
// [Generation] ComputeRequireGrad -> GradNodeCreation
std
::
string
grad_node_creation_body_str
=
GenerateGradNodeCreationContent
(
grad_node_default_attr_maps
,
fwd_in
puts_name_pos_map
,
fwd_outputs_name_pos_map
,
grad_ins_fwd_slotname_map
,
op_proto
);
fwd_inputs_name_pos_map
,
fwd_out
puts_name_pos_map
,
grad_ins_fwd_slotname_map
,
op_type
,
in_vars
,
out_vars
);
generated_function_body
+=
grad_node_creation_body_str
;
generated_function_body
+=
"
\n
"
;
VLOG
(
6
)
<<
"Generated GradNode Creation codes"
;
...
...
@@ -1004,8 +1121,6 @@ static std::pair<std::string, std::string> GenerateForwardFunctionContents(
/* --------- CodeGen: GradNode::operator() ------ */
/* ---------------------------------------------- */
static
std
::
string
GenerateGradNodeCCContents
(
const
std
::
vector
<
paddle
::
framework
::
AttributeMap
>&
grad_node_default_attr_maps
,
const
std
::
vector
<
std
::
string
>&
grad_op_types
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_inputs_name_pos_map
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
fwd_outputs_name_pos_map
,
...
...
@@ -1020,7 +1135,8 @@ static std::string GenerateGradNodeCCContents(
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>&
grad_outs
,
const
proto
::
OpProto
&
op_proto
)
{
const
std
::
string
&
op_type
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
in_vars
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
out_vars
)
{
VLOG
(
6
)
<<
"Generating Grad Node CC"
;
/* [Outline]
...
...
@@ -1066,7 +1182,6 @@ static std::string GenerateGradNodeCCContents(
}
*/
const
std
::
string
&
op_type
=
op_proto
.
type
();
std
::
string
generated_grad_function_body
=
""
;
// [Generation] Get Tracer
...
...
@@ -1122,7 +1237,7 @@ static std::string GenerateGradNodeCCContents(
// [Generation] Get Outs Map
std
::
unordered_set
<
std
::
string
>
duplicable_input_name_set
;
for
(
const
auto
&
in
:
op_proto
.
inputs
()
)
{
for
(
const
auto
&
in
:
in_vars
)
{
if
(
in
.
duplicable
())
duplicable_input_name_set
.
insert
(
in
.
name
());
}
...
...
@@ -1173,7 +1288,7 @@ static std::string GenerateGradNodeCCContents(
// [Generation] Get Attrs Map
std
::
string
trace_opbase_str
=
""
;
for
(
size_t
i
=
0
;
i
<
grad_
node_default_attr_map
s
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
grad_
op_type
s
.
size
();
i
++
)
{
const
std
::
string
&
op_base_type
=
grad_op_types
[
i
];
const
char
*
TRACE_OP_TEMPLATE
=
...
...
@@ -1230,10 +1345,9 @@ static std::string GenerateGradNodeCCContents(
/* --------- CodeGen: GradNode Header ------ */
/* ----------------------------------------- */
static
std
::
string
GenerateGradNodeHeaderContents
(
const
std
::
vector
<
paddle
::
framework
::
AttributeMap
>&
grad_node_default_attr_maps
,
const
std
::
map
<
std
::
string
,
std
::
string
>&
grad_ins_fwd_slotname_map
,
const
proto
::
OpProto
&
op_proto
)
{
const
std
::
string
&
op_type
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
in_vars
,
const
std
::
vector
<
proto
::
OpProto
::
Var
>&
out_vars
)
{
VLOG
(
6
)
<<
"Generating Grad Node Header"
;
const
char
*
GRAD_NODE_TEMPLATE
=
...
...
@@ -1261,8 +1375,6 @@ static std::string GenerateGradNodeHeaderContents(
"%s
\n
"
"};"
;
const
std
::
string
&
op_type
=
op_proto
.
type
();
// [Generation] Handle Attributes
std
::
string
set_attr_map_str
=
" void SetAttrMap(paddle::framework::AttributeMap&& attr_map) {
\n
"
...
...
@@ -1279,12 +1391,12 @@ static std::string GenerateGradNodeHeaderContents(
// [Generation] Handle TensorWrappers
std
::
unordered_set
<
std
::
string
>
duplicable_tensors
;
for
(
const
proto
::
OpProto
::
Var
&
input
:
op_proto
.
inputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
input
:
in_vars
)
{
if
(
input
.
duplicable
())
{
duplicable_tensors
.
insert
(
input
.
name
());
}
}
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
p_proto
.
outputs
()
)
{
for
(
const
proto
::
OpProto
::
Var
&
output
:
o
ut_vars
)
{
if
(
output
.
duplicable
())
{
duplicable_tensors
.
insert
(
output
.
name
());
}
...
...
@@ -1454,13 +1566,12 @@ static void DygraphCodeGeneration(const std::string& output_dir) {
/* ----------------------------- */
/* ---- Collect Information ---- */
/* ----------------------------- */
std
::
vector
<
paddle
::
framework
::
AttributeMap
>
grad_node_default_attr_maps
;
std
::
vector
<
std
::
string
>
grad_op_types
;
std
::
unordered_map
<
std
::
string
,
size_t
>
fwd_inputs_name_pos_map
;
std
::
unordered_map
<
std
::
string
,
size_t
>
fwd_outputs_name_pos_map
;
std
::
map
<
std
::
string
,
std
::
string
>
grad_outs_slotname_map
;
std
::
map
<
std
::
string
,
std
::
string
>
grad_ins_fwd_slotname_map
;
std
::
map
<
std
::
string
,
std
::
string
>
grad_ins_grad_slotname_map
;
std
::
vector
<
proto
::
OpProto
::
Var
>
in_vars
;
std
::
vector
<
proto
::
OpProto
::
Var
>
out_vars
;
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
paddle
::
imperative
::
VariableWrapper
>>>
grad_ins
;
...
...
@@ -1470,13 +1581,20 @@ static void DygraphCodeGeneration(const std::string& output_dir) {
VLOG
(
6
)
<<
"-------- CollectInformationFromOpInfo -------"
;
bool
is_available
=
CollectInformationFromOpInfo
(
op_info
,
&
grad_node_default_attr_maps
,
&
grad_op_types
,
&
fwd_inputs_name_pos_map
,
&
fwd_outputs_name_pos_map
,
&
grad_outs_slotname_map
,
&
grad_ins_fwd_slotname_map
,
&
grad_ins_grad_slotname_map
,
&
grad_ins
,
&
grad_outs
);
op_info
,
&
grad_op_types
,
&
grad_outs_slotname_map
,
&
grad_ins_fwd_slotname_map
,
&
grad_ins_grad_slotname_map
,
&
in_vars
,
&
out_vars
,
&
grad_ins
,
&
grad_outs
);
if
(
!
is_available
)
continue
;
VLOG
(
6
)
<<
"-------- PurifyOpProto -------"
;
std
::
unordered_map
<
std
::
string
,
size_t
>
fwd_inputs_name_pos_map
;
std
::
unordered_map
<
std
::
string
,
size_t
>
fwd_outputs_name_pos_map
;
PurifyOpProto
(
*
op_proto
,
&
fwd_inputs_name_pos_map
,
&
fwd_outputs_name_pos_map
,
&
grad_outs_slotname_map
,
&
grad_ins_fwd_slotname_map
,
&
grad_ins_grad_slotname_map
,
&
in_vars
,
&
out_vars
,
&
grad_ins
,
&
grad_outs
);
/* --------------------------- */
/* --------- CodeGen --------- */
/* --------------------------- */
...
...
@@ -1484,10 +1602,10 @@ static void DygraphCodeGeneration(const std::string& output_dir) {
VLOG
(
6
)
<<
"-------- GenerateForwardFunctionContents -------"
;
std
::
pair
<
std
::
string
,
std
::
string
>
body_and_declaration
=
GenerateForwardFunctionContents
(
grad_node_default_attr_maps
,
fwd_in
puts_name_pos_map
,
fwd_outputs_name_pos_map
,
grad_ins_fw
d_slotname_map
,
grad_
ins_grad_slotname_map
,
grad_outs_slotname_map
,
grad_in
s
,
grad_outs
,
*
op_proto
);
fwd_inputs_name_pos_map
,
fwd_out
puts_name_pos_map
,
grad_ins_fwd_slotname_map
,
grad_ins_gra
d_slotname_map
,
grad_
outs_slotname_map
,
grad_ins
,
grad_outs
,
op_type
,
in_var
s
,
out_vars
);
std
::
string
fwd_function_str
=
body_and_declaration
.
first
;
GenerateForwardDygraphFile
(
op_type
,
output_dir
,
fwd_function_str
);
...
...
@@ -1498,16 +1616,16 @@ static void DygraphCodeGeneration(const std::string& output_dir) {
/* ---- xxx_node.h ---- */
VLOG
(
6
)
<<
"-------- GenerateGradNodeHeaderContents -------"
;
std
::
string
grad_node_h_str
=
GenerateGradNodeHeaderContents
(
grad_
node_default_attr_maps
,
grad_ins_fwd_slotname_map
,
*
op_proto
);
grad_
ins_fwd_slotname_map
,
op_type
,
in_vars
,
out_vars
);
GenerateNodeHFile
(
op_type
,
output_dir
,
grad_node_h_str
);
/* ---- xxx_node.cc ---- */
VLOG
(
6
)
<<
"-------- GenerateGradNodeCCContents -------"
;
std
::
string
grad_node_cc_str
=
GenerateGradNodeCCContents
(
grad_
node_default_attr_maps
,
grad_op_types
,
fwd_in
puts_name_pos_map
,
fwd_outputs_name_pos_map
,
grad_ins_fw
d_slotname_map
,
grad_
ins_grad_slotname_map
,
grad_outs_slotname_map
,
grad_ins
,
grad_out
s
,
*
op_proto
);
grad_
op_types
,
fwd_inputs_name_pos_map
,
fwd_out
puts_name_pos_map
,
grad_ins_fwd_slotname_map
,
grad_ins_gra
d_slotname_map
,
grad_
outs_slotname_map
,
grad_ins
,
grad_outs
,
op_type
,
in_var
s
,
out_vars
);
GenerateNodeCCFile
(
op_type
,
output_dir
,
grad_node_cc_str
);
VLOG
(
6
)
<<
op_type
<<
": Finished Generation"
;
...
...
paddle/fluid/pybind/op_function_generator.cc
浏览文件 @
06c3cce9
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/pybind/op_function_generator.h"
#include <algorithm>
#include <fstream>
#include <iostream>
...
...
@@ -30,108 +32,6 @@
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_ins_map
=
{
{
"layer_norm"
,
{
"X"
,
"Scale"
,
"Bias"
}},
{
"bincount"
,
{
"X"
,
"Weights"
}},
{
"fused_attention"
,
{
"X"
,
"LnScale"
,
"LnBias"
,
"QKVW"
,
"QKVBias"
,
"SrcMask"
,
"OutLinearW"
,
"OutLinearBias"
,
"Ln2Scale"
,
"Ln2Bias"
}},
{
"instance_norm"
,
{
"X"
,
"Scale"
,
"Bias"
}},
{
"gru_unit"
,
{
"Input"
,
"HiddenPrev"
,
"Weight"
,
"Bias"
}},
{
"label_smooth"
,
{
"X"
,
"PriorDist"
}},
{
"assign"
,
{
"X"
}},
{
"reshape2"
,
{
"X"
,
"Shape"
}},
{
"expand"
,
{
"X"
,
"ExpandTimes"
}},
{
"slice"
,
{
"Input"
,
"StartsTensor"
,
"EndsTensor"
}},
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"X"
,
"InScale"
,
"InAccum"
,
"InState"
}},
{
"nll_loss"
,
{
"X"
,
"Label"
,
"Weight"
}},
{
"bilinear_tensor_product"
,
{
"X"
,
"Y"
,
"Weight"
,
"Bias"
}},
{
"gather"
,
{
"X"
,
"Index"
,
"Axis"
}},
{
"roi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"roi_align"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"psroi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"collect_fpn_proposals"
,
{
"MultiLevelRois"
,
"MultiLevelScores"
,
"MultiLevelRoIsNum"
}},
{
"distribute_fpn_proposals"
,
{
"FpnRois"
,
"RoisNum"
}},
{
"warpctc"
,
{
"Logits"
,
"Label"
,
"LogitsLength"
,
"LabelLength"
}},
{
"hierarchical_sigmoid"
,
{
"X"
,
"W"
,
"Label"
,
"PathTable"
,
"PathCode"
,
"Bias"
}},
{
"moving_average_abs_max_scale"
,
{
"X"
,
"InAccum"
,
"InState"
}},
{
"multiclass_nms3"
,
{
"BBoxes"
,
"Scores"
,
"RoisNum"
}},
{
"box_coder"
,
{
"PriorBox"
,
"PriorBoxVar"
,
"TargetBox"
}},
{
"momentum"
,
{
"Param"
,
"Grad"
,
"Velocity"
,
"LearningRate"
,
"MasterParam"
}},
{
"sparse_momentum"
,
{
"Param"
,
"Grad"
,
"Velocity"
,
"Index"
,
"LearningRate"
}},
{
"rnn"
,
{
"Input"
,
"PreState"
,
"WeightList"
,
"SequenceLength"
}},
{
"run_program"
,
{
"X"
,
"Params"
}},
{
"fused_feedforward"
,
{
"Dropout1Seed"
,
"Dropout2Seed"
,
"Linear1Bias"
,
"Linear2Bias"
,
"Ln1Scale"
,
"Ln1Bias"
,
"Ln2Scale"
,
"Ln2Bias"
}},
{
"faster_tokenizer"
,
{
"Text"
,
"Vocab"
,
"TextPair"
}},
{
"matrix_rank"
,
{
"X"
,
"TolTensor"
}},
{
"adam"
,
{
"Param"
,
"Grad"
,
"LearningRate"
,
"Moment1"
,
"Moment2"
,
"Beta1Pow"
,
"Beta2Pow"
,
"MasterParam"
}},
{
"adamw"
,
{
"Param"
,
"Grad"
,
"LearningRate"
,
"Moment1"
,
"Moment2"
,
"Beta1Pow"
,
"Beta2Pow"
,
"MasterParam"
}},
};
// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_outs_map
=
{
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"fused_attention"
,
{
"LnMean"
,
"LnVariance"
,
"LnOut"
,
"QKVOut"
,
"QKVBiasOut"
,
"TransposeOut2"
,
"QKOut"
,
"QKTVOut"
,
"SoftmaxOut"
,
"AttnDropoutMaskOut"
,
"AttnDropoutOut"
,
"SrcMaskOut"
,
"FMHAOut"
,
"OutLinearOut"
,
"DropoutMaskOut"
,
"Ln2Mean"
,
"Ln2Variance"
,
"BiasDropoutResidualOut"
,
"Y"
}},
{
"sync_batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"unique"
,
{
"Out"
,
"Index"
,
"Indices"
,
"Counts"
}},
{
"unique_consecutive"
,
{
"Out"
,
"Index"
,
"Counts"
}},
{
"generate_proposals"
,
{
"RpnRois"
,
"RpnRoiProbs"
,
"RpnRoisNum"
}},
{
"collect_fpn_proposals"
,
{
"FpnRois"
,
"RoisNum"
}},
{
"matrix_nms"
,
{
"Out"
,
"Index"
,
"RoisNum"
}},
{
"distribute_fpn_proposals"
,
{
"MultiFpnRois"
,
"RestoreIndex"
,
"MultiLevelRoIsNum"
}},
{
"moving_average_abs_max_scale"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"multiclass_nms3"
,
{
"Out"
,
"NmsRoisNum"
}},
{
"generate_proposals_v2"
,
{
"RpnRois"
,
"RpnRoiProbs"
,
"RpnRoisNum"
}},
{
"momentum"
,
{
"ParamOut"
,
"VelocityOut"
,
"MasterParamOut"
}},
{
"sparse_momentum"
,
{
"ParamOut"
,
"VelocityOut"
}},
{
"rnn"
,
{
"DropoutState"
,
"Reserve"
,
"Out"
,
"State"
}},
{
"lamb"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
{
"run_program"
,
{
"DOut"
}},
{
"adam"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
,
"MasterParamOut"
}},
{
"adamw"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
,
"MasterParamOut"
}},
};
// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
...
...
paddle/fluid/pybind/op_function_generator.h
0 → 100644
浏览文件 @
06c3cce9
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <set>
#include <string>
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_ins_map
=
{
{
"layer_norm"
,
{
"X"
,
"Scale"
,
"Bias"
}},
{
"bincount"
,
{
"X"
,
"Weights"
}},
{
"fused_attention"
,
{
"X"
,
"LnScale"
,
"LnBias"
,
"QKVW"
,
"QKVBias"
,
"SrcMask"
,
"OutLinearW"
,
"OutLinearBias"
,
"Ln2Scale"
,
"Ln2Bias"
}},
{
"instance_norm"
,
{
"X"
,
"Scale"
,
"Bias"
}},
{
"gru_unit"
,
{
"Input"
,
"HiddenPrev"
,
"Weight"
,
"Bias"
}},
{
"label_smooth"
,
{
"X"
,
"PriorDist"
}},
{
"assign"
,
{
"X"
}},
{
"reshape2"
,
{
"X"
,
"Shape"
}},
{
"expand"
,
{
"X"
,
"ExpandTimes"
}},
{
"slice"
,
{
"Input"
,
"StartsTensor"
,
"EndsTensor"
}},
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"X"
,
"InScale"
,
"InAccum"
,
"InState"
}},
{
"nll_loss"
,
{
"X"
,
"Label"
,
"Weight"
}},
{
"bilinear_tensor_product"
,
{
"X"
,
"Y"
,
"Weight"
,
"Bias"
}},
{
"gather"
,
{
"X"
,
"Index"
,
"Axis"
}},
{
"roi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"roi_align"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"psroi_pool"
,
{
"X"
,
"ROIs"
,
"RoisNum"
}},
{
"collect_fpn_proposals"
,
{
"MultiLevelRois"
,
"MultiLevelScores"
,
"MultiLevelRoIsNum"
}},
{
"distribute_fpn_proposals"
,
{
"FpnRois"
,
"RoisNum"
}},
{
"warpctc"
,
{
"Logits"
,
"Label"
,
"LogitsLength"
,
"LabelLength"
}},
{
"hierarchical_sigmoid"
,
{
"X"
,
"W"
,
"Label"
,
"PathTable"
,
"PathCode"
,
"Bias"
}},
{
"moving_average_abs_max_scale"
,
{
"X"
,
"InAccum"
,
"InState"
}},
{
"multiclass_nms3"
,
{
"BBoxes"
,
"Scores"
,
"RoisNum"
}},
{
"box_coder"
,
{
"PriorBox"
,
"PriorBoxVar"
,
"TargetBox"
}},
{
"momentum"
,
{
"Param"
,
"Grad"
,
"Velocity"
,
"LearningRate"
,
"MasterParam"
}},
{
"sparse_momentum"
,
{
"Param"
,
"Grad"
,
"Velocity"
,
"Index"
,
"LearningRate"
}},
{
"rnn"
,
{
"Input"
,
"PreState"
,
"WeightList"
,
"SequenceLength"
}},
{
"run_program"
,
{
"X"
,
"Params"
}},
{
"fused_feedforward"
,
{
"Dropout1Seed"
,
"Dropout2Seed"
,
"Linear1Bias"
,
"Linear2Bias"
,
"Ln1Scale"
,
"Ln1Bias"
,
"Ln2Scale"
,
"Ln2Bias"
}},
{
"faster_tokenizer"
,
{
"Text"
,
"Vocab"
,
"TextPair"
}},
{
"matrix_rank"
,
{
"X"
,
"TolTensor"
}},
{
"adam"
,
{
"Param"
,
"Grad"
,
"LearningRate"
,
"Moment1"
,
"Moment2"
,
"Beta1Pow"
,
"Beta2Pow"
,
"MasterParam"
}},
{
"adamw"
,
{
"Param"
,
"Grad"
,
"LearningRate"
,
"Moment1"
,
"Moment2"
,
"Beta1Pow"
,
"Beta2Pow"
,
"MasterParam"
}},
};
// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std
::
map
<
std
::
string
,
std
::
set
<
std
::
string
>>
op_outs_map
=
{
{
"fake_quantize_dequantize_moving_average_abs_max"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"fused_attention"
,
{
"LnMean"
,
"LnVariance"
,
"LnOut"
,
"QKVOut"
,
"QKVBiasOut"
,
"TransposeOut2"
,
"QKOut"
,
"QKTVOut"
,
"SoftmaxOut"
,
"AttnDropoutMaskOut"
,
"AttnDropoutOut"
,
"SrcMaskOut"
,
"FMHAOut"
,
"OutLinearOut"
,
"DropoutMaskOut"
,
"Ln2Mean"
,
"Ln2Variance"
,
"BiasDropoutResidualOut"
,
"Y"
}},
{
"sync_batch_norm"
,
{
"Y"
,
"MeanOut"
,
"VarianceOut"
,
"SavedMean"
,
"SavedVariance"
,
"ReserveSpace"
}},
{
"unique"
,
{
"Out"
,
"Index"
,
"Indices"
,
"Counts"
}},
{
"unique_consecutive"
,
{
"Out"
,
"Index"
,
"Counts"
}},
{
"generate_proposals"
,
{
"RpnRois"
,
"RpnRoiProbs"
,
"RpnRoisNum"
}},
{
"collect_fpn_proposals"
,
{
"FpnRois"
,
"RoisNum"
}},
{
"matrix_nms"
,
{
"Out"
,
"Index"
,
"RoisNum"
}},
{
"distribute_fpn_proposals"
,
{
"MultiFpnRois"
,
"RestoreIndex"
,
"MultiLevelRoIsNum"
}},
{
"moving_average_abs_max_scale"
,
{
"Out"
,
"OutScale"
,
"OutAccum"
,
"OutState"
}},
{
"multiclass_nms3"
,
{
"Out"
,
"NmsRoisNum"
}},
{
"generate_proposals_v2"
,
{
"RpnRois"
,
"RpnRoiProbs"
,
"RpnRoisNum"
}},
{
"momentum"
,
{
"ParamOut"
,
"VelocityOut"
,
"MasterParamOut"
}},
{
"sparse_momentum"
,
{
"ParamOut"
,
"VelocityOut"
}},
{
"rnn"
,
{
"DropoutState"
,
"Reserve"
,
"Out"
,
"State"
}},
{
"lamb"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
}},
{
"run_program"
,
{
"DOut"
}},
{
"adam"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
,
"MasterParamOut"
}},
{
"adamw"
,
{
"ParamOut"
,
"Moment1Out"
,
"Moment2Out"
,
"Beta1PowOut"
,
"Beta2PowOut"
,
"MasterParamOut"
}},
};
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录