You need to sign in or sign up before continuing.
提交 06a3a887 编写于 作者: Y Yan Chunwei 提交者: Qiao Longfei

feature/nmt add encoder (#6323)

* init nmt

* encoder ready

* only generation implementation

waiting for dynamic rnn ready to train

* init python

* remove decoder temporary

* clean

* clean
上级 c22cf594
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor, g_scope
from paddle.v2.fluid.optimizer import SGDOptimizer
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as pd
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 512
word_dim = 512
IS_SPARSE = True
batch_size = 50
max_length = 50
topk_size = 50
trg_dic_size = 10000
src_word_id = layers.data(name="src_word_id", shape=[1], dtype='int64')
src_embedding = layers.embedding(
input=src_word_id,
size=[dict_size, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(name='vemb'))
def encoder():
lstm_hidden0, lstm_0 = layers.dynamic_lstm(
input=src_embedding,
size=hidden_dim,
candidate_activation='sigmoid',
cell_activation='sigmoid')
lstm_hidden1, lstm_1 = layers.dynamic_lstm(
input=src_embedding,
size=hidden_dim,
candidate_activation='sigmoid',
cell_activation='sigmoid',
is_reverse=True)
bidirect_lstm_out = layers.concat([lstm_hidden0, lstm_hidden1], axis=0)
return bidirect_lstm_out
def decoder_trainer(context):
'''
decoder with trainer
'''
pass
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def main():
encoder_out = encoder()
# TODO(jacquesqiao) call here
decoder_trainer(encoder_out)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(8000), buf_size=1000),
batch_size=batch_size)
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
batch_id = 0
for pass_id in xrange(2):
print 'pass_id', pass_id
for data in train_data():
print 'batch', batch_id
batch_id += 1
if batch_id > 10: break
word_data = to_lodtensor(map(lambda x: x[0], data), place)
outs = exe.run(framework.default_main_program(),
feed={'src_word_id': word_data, },
fetch_list=[encoder_out])
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册