提交 06063b70 编写于 作者: L LielinJiang 提交者: whs

add op locality_aware_nms, test=develop (#20976)

上级 fc385777
......@@ -21,6 +21,7 @@ detection_library(iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu)
detection_library(mine_hard_examples_op SRCS mine_hard_examples_op.cc)
detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc)
detection_library(locality_aware_nms_op SRCS locality_aware_nms_op.cc poly_util.cc gpc.cc)
detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu)
detection_library(density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu)
detection_library(anchor_generator_op SRCS anchor_generator_op.cc
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/nms_util.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
class LocalityAwareNMSOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("BBoxes"), true,
"Input(BBoxes) of MultiClassNMS should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasInput("Scores"), true,
"Input(Scores) of MultiClassNMS should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
"Output(Out) of MultiClassNMS should not be null.");
auto box_dims = ctx->GetInputDim("BBoxes");
auto score_dims = ctx->GetInputDim("Scores");
auto score_size = score_dims.size();
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(score_size, 3, "The rank of Input(Scores) must be 3");
PADDLE_ENFORCE_EQ(box_dims.size(), 3,
"The rank of Input(BBoxes) must be 3");
PADDLE_ENFORCE_EQ(box_dims[2] == 4 || box_dims[2] == 8 ||
box_dims[2] == 16 || box_dims[2] == 24 ||
box_dims[2] == 32,
true,
"The last dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16");
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
"The 2nd dimension of Input(BBoxes) must be equal to "
"last dimension of Input(Scores), which represents the "
"predicted bboxes.");
}
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "Scores"),
platform::CPUPlace());
}
};
template <class T>
void PolyWeightedMerge(const T* box1, T* box2, const T score1, const T score2,
const size_t box_size) {
for (size_t i = 0; i < box_size; ++i) {
box2[i] = (box1[i] * score1 + box2[i] * score2) / (score1 + score2);
}
}
template <class T>
void GetMaxScoreIndexWithLocalityAware(
T* scores, T* bbox_data, int64_t box_size, const T threshold, int top_k,
int64_t num_boxes, std::vector<std::pair<T, int>>* sorted_indices,
const T nms_threshold, const bool normalized) {
std::vector<bool> skip(num_boxes, true);
int index = -1;
for (int64_t i = 0; i < num_boxes; ++i) {
if (index > -1) {
T overlap = T(0.);
if (box_size == 4) {
overlap = JaccardOverlap<T>(bbox_data + i * box_size,
bbox_data + index * box_size, normalized);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if (box_size == 8 || box_size == 16 || box_size == 24 || box_size == 32) {
overlap =
PolyIoU<T>(bbox_data + i * box_size, bbox_data + index * box_size,
box_size, normalized);
}
if (overlap > nms_threshold) {
PolyWeightedMerge(bbox_data + i * box_size,
bbox_data + index * box_size, scores[i],
scores[index], box_size);
scores[index] += scores[i];
} else {
skip[index] = false;
index = i;
}
} else {
index = i;
}
}
if (index > -1) {
skip[index] = false;
}
for (int64_t i = 0; i < num_boxes; ++i) {
if (scores[i] > threshold && skip[i] == false) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
template <typename T>
class LocalityAwareNMSKernel : public framework::OpKernel<T> {
public:
void LocalityAwareNMSFast(Tensor* bbox, Tensor* scores,
const T score_threshold, const T nms_threshold,
const T eta, const int64_t top_k,
std::vector<int>* selected_indices,
const bool normalized) const {
// The total boxes for each instance.
int64_t num_boxes = bbox->dims()[0];
// 4: [xmin ymin xmax ymax]
// 8: [x1 y1 x2 y2 x3 y3 x4 y4]
// 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16
int64_t box_size = bbox->dims()[1];
std::vector<std::pair<T, int>> sorted_indices;
T adaptive_threshold = nms_threshold;
T* bbox_data = bbox->data<T>();
T* scores_data = scores->data<T>();
GetMaxScoreIndexWithLocalityAware(
scores_data, bbox_data, box_size, score_threshold, top_k, num_boxes,
&sorted_indices, nms_threshold, normalized);
selected_indices->clear();
while (sorted_indices.size() != 0) {
const int idx = sorted_indices.front().second;
bool keep = true;
for (size_t k = 0; k < selected_indices->size(); ++k) {
if (keep) {
const int kept_idx = (*selected_indices)[k];
T overlap = T(0.);
// 4: [xmin ymin xmax ymax]
if (box_size == 4) {
overlap =
JaccardOverlap<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, normalized);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if (box_size == 8 || box_size == 16 || box_size == 24 ||
box_size == 32) {
overlap = PolyIoU<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, box_size,
normalized);
}
keep = overlap <= adaptive_threshold;
} else {
break;
}
}
if (keep) {
selected_indices->push_back(idx);
}
sorted_indices.erase(sorted_indices.begin());
if (keep && eta < 1 && adaptive_threshold > 0.5) {
adaptive_threshold *= eta;
}
}
// delete bbox_data;
}
void LocalityAwareNMS(const framework::ExecutionContext& ctx, Tensor* scores,
Tensor* bboxes, const int scores_size,
std::map<int, std::vector<int>>* indices,
int* num_nmsed_out) const {
int64_t background_label = ctx.Attr<int>("background_label");
int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
bool normalized = ctx.Attr<bool>("normalized");
T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));
int num_det = 0;
int64_t class_num = scores->dims()[0];
Tensor bbox_slice, score_slice;
for (int64_t c = 0; c < class_num; ++c) {
if (c == background_label) continue;
score_slice = scores->Slice(c, c + 1);
bbox_slice = *bboxes;
LocalityAwareNMSFast(&bbox_slice, &score_slice, score_threshold,
nms_threshold, nms_eta, nms_top_k, &((*indices)[c]),
normalized);
num_det += (*indices)[c].size();
}
*num_nmsed_out = num_det;
const T* scores_data = scores->data<T>();
if (keep_top_k > -1 && num_det > keep_top_k) {
const T* sdata;
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for (const auto& it : *indices) {
int label = it.first;
sdata = scores_data + label * scores->dims()[1];
const std::vector<int>& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j];
score_index_pairs.push_back(
std::make_pair(sdata[idx], std::make_pair(label, idx)));
}
}
// Keep top k results per image.
std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
SortScorePairDescend<std::pair<int, int>>);
score_index_pairs.resize(keep_top_k);
// Store the new indices.
std::map<int, std::vector<int>> new_indices;
for (size_t j = 0; j < score_index_pairs.size(); ++j) {
int label = score_index_pairs[j].second.first;
int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx);
}
new_indices.swap(*indices);
*num_nmsed_out = keep_top_k;
}
}
void LocalityAwareNMSOutput(
const platform::DeviceContext& ctx, const Tensor& scores,
const Tensor& bboxes,
const std::map<int, std::vector<int>>& selected_indices,
const int scores_size, Tensor* outs, int* oindices = nullptr,
const int offset = 0) const {
int64_t predict_dim = scores.dims()[1];
int64_t box_size = bboxes.dims()[1];
if (scores_size == 2) {
box_size = bboxes.dims()[2];
}
int64_t out_dim = box_size + 2;
auto* scores_data = scores.data<T>();
auto* bboxes_data = bboxes.data<T>();
auto* odata = outs->data<T>();
const T* sdata;
Tensor bbox;
bbox.Resize({scores.dims()[0], box_size});
int count = 0;
for (const auto& it : selected_indices) {
int label = it.first;
const std::vector<int>& indices = it.second;
sdata = scores_data + label * predict_dim;
for (size_t j = 0; j < indices.size(); ++j) {
int idx = indices[j];
odata[count * out_dim] = label; // label
const T* bdata;
bdata = bboxes_data + idx * box_size;
odata[count * out_dim + 1] = sdata[idx]; // score
if (oindices != nullptr) {
oindices[count] = offset + idx;
}
// xmin, ymin, xmax, ymax or multi-points coordinates
std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
count++;
}
}
}
void Compute(const framework::ExecutionContext& ctx) const override {
auto* boxes_input = ctx.Input<LoDTensor>("BBoxes");
auto* scores_input = ctx.Input<LoDTensor>("Scores");
auto* outs = ctx.Output<LoDTensor>("Out");
auto score_dims = scores_input->dims();
auto score_size = score_dims.size();
auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
LoDTensor scores;
LoDTensor boxes;
TensorCopySync(*scores_input, platform::CPUPlace(), &scores);
TensorCopySync(*boxes_input, platform::CPUPlace(), &boxes);
std::vector<std::map<int, std::vector<int>>> all_indices;
std::vector<size_t> batch_starts = {0};
int64_t batch_size = score_dims[0];
int64_t box_dim = boxes.dims()[2];
int64_t out_dim = box_dim + 2;
int num_nmsed_out = 0;
Tensor boxes_slice, scores_slice;
int n = batch_size;
for (int i = 0; i < n; ++i) {
scores_slice = scores.Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
boxes_slice = boxes.Slice(i, i + 1);
boxes_slice.Resize({score_dims[2], box_dim});
std::map<int, std::vector<int>> indices;
LocalityAwareNMS(ctx, &scores_slice, &boxes_slice, score_size, &indices,
&num_nmsed_out);
all_indices.push_back(indices);
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
}
int num_kept = batch_starts.back();
if (num_kept == 0) {
T* od = outs->mutable_data<T>({1, 1}, ctx.GetPlace());
od[0] = -1;
batch_starts = {0, 1};
} else {
outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
int offset = 0;
int* oindices = nullptr;
for (int i = 0; i < n; ++i) {
scores_slice = scores.Slice(i, i + 1);
boxes_slice = boxes.Slice(i, i + 1);
scores_slice.Resize({score_dims[1], score_dims[2]});
boxes_slice.Resize({score_dims[2], box_dim});
int64_t s = batch_starts[i];
int64_t e = batch_starts[i + 1];
if (e > s) {
Tensor out = outs->Slice(s, e);
LocalityAwareNMSOutput(dev_ctx, scores_slice, boxes_slice,
all_indices[i], score_dims.size(), &out,
oindices, offset);
}
}
}
framework::LoD lod;
lod.emplace_back(batch_starts);
outs->set_lod(lod);
}
};
class LocalityAwareNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("BBoxes",
"Two types of bboxes are supported:"
"1. (Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax], when box size equals to 4.");
AddInput("Scores",
"Two types of scores are supported:"
"1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
"class number, M is number of bounding boxes. For each category "
"there are total M scores which corresponding M bounding boxes. "
" Please note, M is equal to the 2nd dimension of BBoxes. ");
AddAttr<int>(
"background_label",
"(int, default: -1) "
"The index of background label, the background label will be ignored. "
"If set to -1, then all categories will be considered.")
.SetDefault(-1);
AddAttr<float>("score_threshold",
"(float) "
"Threshold to filter out bounding boxes with low "
"confidence score. If not provided, consider all boxes.");
AddAttr<int>("nms_top_k",
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences aftern the filtering detections based on "
"score_threshold");
AddAttr<float>("nms_threshold",
"(float, default: 0.3) "
"The threshold to be used in NMS.")
.SetDefault(0.3);
AddAttr<float>("nms_eta",
"(float) "
"The parameter for adaptive NMS.")
.SetDefault(1.0);
AddAttr<int>("keep_top_k",
"(int64_t) "
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step.");
AddAttr<bool>("normalized",
"(bool, default true) "
"Whether detections are normalized.")
.SetDefault(true);
AddOutput("Out",
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax] or "
"(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
"detections. Each row has 10 values: "
"[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
"total number of detections in this mini-batch."
"For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox.");
AddComment(R"DOC(
This operator is to do locality-aware non maximum suppression (NMS) on a batched
of boxes and scores.
Firstly, this operator merge box and score according their IOU(intersection over union).
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bbox for this image.
Please get more information from the following papers:
https://arxiv.org/abs/1704.03155.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
locality_aware_nms, ops::LocalityAwareNMSOp, ops::LocalityAwareNMSOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(locality_aware_nms, ops::LocalityAwareNMSKernel<float>,
ops::LocalityAwareNMSKernel<double>);
......@@ -13,7 +13,7 @@ limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/poly_util.h"
#include "paddle/fluid/operators/detection/nms_util.h"
namespace paddle {
namespace operators {
......@@ -85,84 +85,6 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
}
};
template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
template <class T>
static inline void GetMaxScoreIndex(
const std::vector<T>& scores, const T threshold, int top_k,
std::vector<std::pair<T, int>>* sorted_indices) {
for (size_t i = 0; i < scores.size(); ++i) {
if (scores[i] > threshold) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
if (box[2] < box[0] || box[3] < box[1]) {
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return static_cast<T>(0.);
} else {
const T w = box[2] - box[0];
const T h = box[3] - box[1];
if (normalized) {
return w * h;
} else {
// If coordinate values are not within range [0, 1].
return (w + 1) * (h + 1);
}
}
}
template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
const bool normalized) {
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
box2[3] < box1[1]) {
return static_cast<T>(0.);
} else {
const T inter_xmin = std::max(box1[0], box2[0]);
const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]);
T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
T inter_w = inter_xmax - inter_xmin + norm;
T inter_h = inter_ymax - inter_ymin + norm;
const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized);
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
const bool normalized) {
T bbox1_area = PolyArea<T>(box1, box_size, normalized);
T bbox2_area = PolyArea<T>(box2, box_size, normalized);
T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
// If coordinate values are invalid
// if area size <= 0, return 0.
return T(0.);
} else {
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
const framework::Tensor& items, const int class_id,
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/operators/detection/poly_util.h"
namespace paddle {
namespace operators {
template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
template <class T>
static inline void GetMaxScoreIndex(
const std::vector<T>& scores, const T threshold, int top_k,
std::vector<std::pair<T, int>>* sorted_indices) {
for (size_t i = 0; i < scores.size(); ++i) {
if (scores[i] > threshold) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
if (box[2] < box[0] || box[3] < box[1]) {
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return static_cast<T>(0.);
} else {
const T w = box[2] - box[0];
const T h = box[3] - box[1];
if (normalized) {
return w * h;
} else {
// If coordinate values are not within range [0, 1].
return (w + 1) * (h + 1);
}
}
}
template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
const bool normalized) {
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
box2[3] < box1[1]) {
return static_cast<T>(0.);
} else {
const T inter_xmin = std::max(box1[0], box2[0]);
const T inter_ymin = std::max(box1[1], box2[1]);
const T inter_xmax = std::min(box1[2], box2[2]);
const T inter_ymax = std::min(box1[3], box2[3]);
T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
T inter_w = inter_xmax - inter_xmin + norm;
T inter_h = inter_ymax - inter_ymin + norm;
const T inter_area = inter_w * inter_h;
const T bbox1_area = BBoxArea<T>(box1, normalized);
const T bbox2_area = BBoxArea<T>(box2, normalized);
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
const bool normalized) {
T bbox1_area = PolyArea<T>(box1, box_size, normalized);
T bbox2_area = PolyArea<T>(box2, box_size, normalized);
T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
// If coordinate values are invalid
// if area size <= 0, return 0.
return T(0.);
} else {
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
} // namespace operators
} // namespace paddle
......@@ -53,6 +53,7 @@ __all__ = [
'yolo_box',
'box_clip',
'multiclass_nms',
'locality_aware_nms',
'retinanet_detection_output',
'distribute_fpn_proposals',
'box_decoder_and_assign',
......@@ -3147,6 +3148,124 @@ def multiclass_nms(bboxes,
return output
def locality_aware_nms(bboxes,
scores,
score_threshold,
nms_top_k,
keep_top_k,
nms_threshold=0.3,
normalized=True,
nms_eta=1.,
background_label=-1,
name=None):
"""
**Local Aware NMS**
`Local Aware NMS <https://arxiv.org/abs/1704.03155>`_ is to do locality-aware non maximum
suppression (LANMS) on boxes and scores.
Firstly, this operator merge box and score according their IOU
(intersection over union). In the NMS step, this operator greedily selects a
subset of detection bounding boxes that have high scores larger than score_threshold,
if providing this threshold, then selects the largest nms_top_k confidences scores
if nms_top_k is larger than -1. Then this operator pruns away boxes that have high
IOU overlap with already selected boxes by adaptive threshold NMS based on parameters
of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): A 3-D Tensor with shape [N, M, 4 or 8 16 24 32]
represents the predicted locations of M bounding
bboxes, N is the batch size. Each bounding box
has four coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
The data type is float32 or float64.
scores (Variable): A 3-D Tensor with shape [N, C, M] represents the
predicted confidence predictions. N is the batch
size, C is the class number, M is number of bounding
boxes. Now only support 1 class. For each category
there are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension of
BBoxes. The data type is float32 or float64.
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: -1
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the locality aware nms op, please refer to :ref:`api_guide_Name` .
Default: None.
Returns:
Variable: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {1} and Out only contains one value
which is -1.
(After version 1.3, when no boxes detected, the lod is changed
from {0} to {1}). The data type is float32 or float64.
Examples:
.. code-block:: python
import paddle.fluid as fluid
boxes = fluid.data(name='bboxes', shape=[None, 81, 8],
dtype='float32')
scores = fluid.data(name='scores', shape=[None, 1, 81],
dtype='float32')
out = fluid.layers.locality_aware_nms(bboxes=boxes,
scores=scores,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
"""
shape = scores.shape
assert len(shape) == 3, "dim size of scores must be 3"
assert shape[
1] == 1, "locality_aware_nms only support one class, Tensor score shape must be [N, 1, M]"
helper = LayerHelper('locality_aware_nms', **locals())
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
out = {'Out': output}
helper.append_op(
type="locality_aware_nms",
inputs={'BBoxes': bboxes,
'Scores': scores},
attrs={
'background_label': background_label,
'score_threshold': score_threshold,
'nms_top_k': nms_top_k,
'nms_threshold': nms_threshold,
'nms_eta': nms_eta,
'keep_top_k': keep_top_k,
'nms_eta': nms_eta,
'normalized': normalized
},
outputs={'Out': output})
output.stop_gradient = True
return output
def distribute_fpn_proposals(fpn_rois,
min_level,
max_level,
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import copy
from op_test import OpTest
from test_multiclass_nms_op import iou
import paddle.fluid as fluid
def weight_merge(box1, box2, score1, score2):
for i in range(len(box1)):
box2[i] = (box1[i] * score1 + box2[i] * score2) / (score1 + score2)
def nms(boxes,
scores,
score_threshold,
nms_threshold,
top_k=200,
normalized=True,
eta=1.0):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
scores: (tensor) The class predscores for the img, Shape:[num_priors].
score_threshold: (float) The confidence thresh for filtering low
confidence boxes.
nms_threshold: (float) The overlap thresh for suppressing unnecessary
boxes.
top_k: (int) The maximum number of box preds to consider.
eta: (float) The parameter for adaptive NMS.
Return:
The indices of the kept boxes with respect to num_priors.
"""
index = -1
for i in range(boxes.shape[0]):
if index > -1 and iou(boxes[i], boxes[index],
normalized) > nms_threshold:
weight_merge(boxes[i], boxes[index], scores[i], scores[index])
scores[index] += scores[i]
scores[i] = score_threshold - 1.
else:
index = i
all_scores = copy.deepcopy(scores)
all_scores = all_scores.flatten()
selected_indices = np.argwhere(all_scores > score_threshold)
selected_indices = selected_indices.flatten()
all_scores = all_scores[selected_indices]
sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
sorted_scores = all_scores[sorted_indices]
sorted_indices = selected_indices[sorted_indices]
if top_k > -1 and top_k < sorted_indices.shape[0]:
sorted_indices = sorted_indices[:top_k]
sorted_scores = sorted_scores[:top_k]
selected_indices = []
adaptive_threshold = nms_threshold
for i in range(sorted_scores.shape[0]):
idx = sorted_indices[i]
keep = True
for k in range(len(selected_indices)):
if keep:
kept_idx = selected_indices[k]
overlap = iou(boxes[idx], boxes[kept_idx], normalized)
keep = True if overlap <= adaptive_threshold else False
else:
break
if keep:
selected_indices.append(idx)
if keep and eta < 1 and adaptive_threshold > 0.5:
adaptive_threshold *= eta
return selected_indices
def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
nms_top_k, keep_top_k, normalized, shared):
if shared:
class_num = scores.shape[0]
priorbox_num = scores.shape[1]
else:
box_num = scores.shape[0]
class_num = scores.shape[1]
selected_indices = {}
num_det = 0
for c in range(class_num):
if c == background: continue
if shared:
indices = nms(boxes, scores[c], score_threshold, nms_threshold,
nms_top_k, normalized)
else:
indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
nms_threshold, nms_top_k, normalized)
selected_indices[c] = indices
num_det += len(indices)
if keep_top_k > -1 and num_det > keep_top_k:
score_index = []
for c, indices in selected_indices.items():
for idx in indices:
if shared:
score_index.append((scores[c][idx], c, idx))
else:
score_index.append((scores[idx][c], c, idx))
sorted_score_index = sorted(
score_index, key=lambda tup: tup[0], reverse=True)
sorted_score_index = sorted_score_index[:keep_top_k]
selected_indices = {}
for _, c, _ in sorted_score_index:
selected_indices[c] = []
for s, c, idx in sorted_score_index:
selected_indices[c].append(idx)
if not shared:
for labels in selected_indices:
selected_indices[labels].sort()
num_det = keep_top_k
return selected_indices, num_det
def batched_multiclass_nms(boxes,
scores,
background,
score_threshold,
nms_threshold,
nms_top_k,
keep_top_k,
normalized=True):
batch_size = scores.shape[0]
num_boxes = scores.shape[2]
det_outs = []
lod = []
for n in range(batch_size):
nmsed_outs, nmsed_num = multiclass_nms(
boxes[n],
scores[n],
background,
score_threshold,
nms_threshold,
nms_top_k,
keep_top_k,
normalized,
shared=True)
lod.append(nmsed_num)
if nmsed_num == 0:
continue
tmp_det_out = []
for c, indices in nmsed_outs.items():
for idx in indices:
xmin, ymin, xmax, ymax = boxes[n][idx][:]
tmp_det_out.append([
c, scores[n][c][idx], xmin, ymin, xmax, ymax,
idx + n * num_boxes
])
sorted_det_out = sorted(
tmp_det_out, key=lambda tup: tup[0], reverse=False)
det_outs.extend(sorted_det_out)
return det_outs, lod
class TestLocalAwareNMSOp(OpTest):
def set_argument(self):
self.score_threshold = 0.01
def setUp(self):
self.set_argument()
N = 10
M = 1200
C = 1
BOX_SIZE = 4
background = -1
nms_threshold = 0.3
nms_top_k = 400
keep_top_k = 10
score_threshold = self.score_threshold
scores = np.random.random((N * M, C)).astype('float32')
def softmax(x):
shiftx = x - np.max(x).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
scores = np.apply_along_axis(softmax, 1, scores)
scores = np.reshape(scores, (N, M, C))
scores = np.transpose(scores, (0, 2, 1))
boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
boxes_copy = copy.deepcopy(boxes)
scores_copy = copy.deepcopy(scores)
det_outs, lod = batched_multiclass_nms(
boxes_copy, scores_copy, background, score_threshold, nms_threshold,
nms_top_k, keep_top_k)
lod = [1] if not det_outs else lod
det_outs = [[-1, 0]] if not det_outs else det_outs
det_outs = np.array(det_outs)
nmsed_outs = det_outs[:, :-1].astype('float32')
self.op_type = 'locality_aware_nms'
self.inputs = {'BBoxes': boxes, 'Scores': scores}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'background_label': background,
'nms_threshold': nms_threshold,
'nms_top_k': nms_top_k,
'keep_top_k': keep_top_k,
'score_threshold': score_threshold,
'nms_eta': 1.0,
'normalized': True,
}
def test_check_output(self):
self.check_output()
class TestLocalAwareNMSOpNoBoxes(TestLocalAwareNMSOp):
def set_argument(self):
self.score_threshold = 2.0
class TestLocalAwareNMSOp4Points(OpTest):
def set_argument(self):
self.score_threshold = 0.01
def setUp(self):
self.set_argument()
N = 2
M = 2
C = 1
BOX_SIZE = 8
nms_top_k = 400
keep_top_k = 200
nms_threshold = 0.3
score_threshold = self.score_threshold
scores = np.array([[[0.76319082, 0.73770091]],
[[0.68513154, 0.45952697]]])
boxes = np.array([[[
0.42078365, 0.58117018, 2.92776169, 3.28557757, 4.24344318,
0.92196165, 2.72370856, -1.66141214
], [
0.13856006, 1.86871034, 2.81287224, 3.61381734, 4.5505249,
0.51766346, 2.75630304, -1.91459389
]], [[
1.57533883, 1.3217477, 3.07904942, 3.89512545, 4.78680923,
1.96914586, 3.539482, -1.59739244
], [
0.55084125, 1.71596215, 2.52476074, 3.18940435, 5.09035159,
0.91959482, 3.71442385, -0.57299128
]]])
det_outs = np.array([[
0., 1.5008917, 0.28206837, 1.2140071, 2.8712926, 3.4469104,
4.3943763, 0.7232457, 2.7397292, -1.7858533
], [
0., 1.1446586, 1.1640508, 1.4800063, 2.856528, 3.6118112, 4.908667,
1.5478, 3.609713, -1.1861432
]])
lod = [1, 1]
nmsed_outs = det_outs.astype('float32')
self.op_type = 'locality_aware_nms'
self.inputs = {
'BBoxes': boxes.astype('float32'),
'Scores': scores.astype('float32')
}
self.outputs = {'Out': (nmsed_outs, [lod])}
self.attrs = {
'score_threshold': score_threshold,
'nms_threshold': nms_threshold,
'nms_top_k': nms_top_k,
'keep_top_k': keep_top_k,
'background_label': -1,
'normalized': False
}
def test_check_output(self):
self.check_output()
class TestLocalityAwareNMSAPI(OpTest):
def test_api(self):
boxes = fluid.data(name='bboxes', shape=[None, 81, 8], dtype='float32')
scores = fluid.data(name='scores', shape=[None, 1, 81], dtype='float32')
fluid.layers.locality_aware_nms(
bboxes=boxes,
scores=scores,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册