diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index 926d9601ea259700018a258ec7851820b94007b0..67d9365377c602ace96c6f3abf993c0d08c40d9f 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -173,7 +173,7 @@ paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_l paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '25f0dd786a98aac31490020725604fe1')) paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', '30eeab67154ef09ab3e884117a8d4aee')) paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', '3720b4a386585094435993deb028b592')) -paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e50940f3ce5a08cc477b72f517491bf3')) +paddle.fluid.layers.topk (ArgSpec(args=['input', 'k', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e645c2f6c24cf076260d380df929e243')) paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_times', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(0, False, None, None)), ('document', '79aaea078ddea57a82ed7906d71dedc7')) paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'eeb1591cfc854c6ffdac77b376313c44')) paddle.fluid.layers.transpose (ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8e72db173d4c082e27cb11f31d8c9bfa')) @@ -192,7 +192,7 @@ paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29')) paddle.fluid.layers.autoincreased_step_counter (ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)), ('document', 'd016c137beb9a4528b7378b437d00151')) paddle.fluid.layers.reshape (ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', 'd7a6d59e464a7ef1184eb6caefeb49f1')) -paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ebbac07662a6e22e8e299ced880c7775')) +paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '61d8be0c5af7b9313b0bdb8697c7d4de')) paddle.fluid.layers.unsqueeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b9bd3129d36a70e7c4385df51ff71c62')) paddle.fluid.layers.lod_reset (ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)), ('document', '74498d37dd622ac472cb36887fce09ea')) paddle.fluid.layers.lod_append (ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=None), ('document', '37663c7c179e920838a250ea0e28d909')) @@ -235,7 +235,7 @@ paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=Non paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', 'f14efa9e5fd2e8b3d976cdda38eff43f')) paddle.fluid.layers.flatten (ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', '424ff350578992f201f2c5c30959ef89')) paddle.fluid.layers.sequence_mask (ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None)), ('document', '6c3f916921b24edaad220f1fcbf039de')) -paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', 'a76f347bf27ffe21b990340d5d9524d5')) +paddle.fluid.layers.stack (ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,)), ('document', '666d995b36e9f287d77f09189370fb3a')) paddle.fluid.layers.pad2d (ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None)), ('document', '4e277f064c1765f77f946da194626ca1')) paddle.fluid.layers.unstack (ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'b0c4ca08d4eb295189e1b107c920d093')) paddle.fluid.layers.sequence_enumerate (ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None)), ('document', 'b870fed41abd2aecf929ece65f555fa1')) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index b526f2228b01dc4ddbb1bc9dfb1ede1ca01fe2eb..fef73b96ac0980b82a7bf1ebc4153a7ffd95455c 100755 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -6710,62 +6710,70 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): def topk(input, k, name=None): """ - This operator is used to find values and indices of the k largest entries + This OP is used to find values and indices of the k largest entries for the last dimension. - If the input is a vector (1-D Tensor), finds the k largest entries in the vector - and outputs their values and indices as vectors. Thus values[j] is the j-th - largest entry in input, and its index is indices[j]. + If the input is a 1-D Tensor, finds the k largest entries and outputs + their values and indices. If the input is a Tensor with higher rank, this operator computes the top k entries along the last dimension. - For example: - .. code-block:: text - If: - input = [[5, 4, 2, 3], + Case 1: + + Input: + input.shape = [3, 4] + input.data = [[5, 4, 2, 3], [9, 7, 10, 25], [6, 2, 10, 1]] k = 2 - Then: + Output: The first output: - values = [[5, 4], + values.shape = [3, 2] + values.data = [[5, 4], [10, 25], [6, 10]] The second output: - indices = [[0, 1], + indices.shape = [3, 2] + indices.data = [[0, 1], [2, 3], [0, 2]] Args: - input(Variable): The input variable which can be a vector or Tensor with - higher rank. - k(int | Variable): The number of top elements to look for along the last dimension - of input. - name(str|None): A name for this layer(optional). If set None, the layer - will be named automatically. - Default: None + input(Variable): The input tensor. Support data types: float32, float64. + k(int | Variable): The number of top elements to look for along the last dimension + of input tensor. + name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: - Tuple[Variable]: A tuple with two elements. Each element is a Variable. - The first one is k largest elements along each last - dimensional slice. The second one is indices of values - within the last dimension of input. + Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`. + Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values. Raises: - ValueError: If k < 1 or k is not less than the last dimension of input + ValueError: If :math:`k < 1` or :math:`k > last dimension of input`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers - input = layers.data(name="input", shape=[13, 11], dtype='float32') - top5_values, top5_indices = layers.topk(input, k=5) + # set batch size=None + input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32') + top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5] + + # 1D Tensor + input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32') + top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5] + + # k=Variable + input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32') + vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0] + vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k] + """ helper = LayerHelper("top_k", **locals()) values = helper.create_variable_for_type_inference(dtype=input.dtype) @@ -8597,48 +8605,56 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): def squeeze(input, axes, name=None): """ - Remove single-dimensional entries from the shape of a tensor. Takes a - parameter axes with a list of axes to squeeze. If axes is not provided, all - the single dimensions will be removed from the shape. If an axis is - selected with shape entry not equal to one, an error is raised. + This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will + remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal + to one will be deleted. - For example: - .. code-block:: text + .. code-block:: text - Case 1: + Case1: - Given + Input: X.shape = (1, 3, 1, 5) - and axes = [0] - we get: + Output: Out.shape = (3, 1, 5) - Case 2: + Case2: - Given + Input: X.shape = (1, 3, 1, 5) - and axes = [] - we get: + Output: Out.shape = (3, 5) + Case3: + + Input: + X.shape = [1,3,1,5] + axes = [-2] + Output: + Out.shape = [1,3,5] + Args: - input (Variable): The input variable to be squeezed. - axes (list): List of integers, indicating the dimensions to be squeezed. - name (str|None): Name for this layer. + input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64. + axes (list): One integer or List of integers, indicating the dimensions to be squeezed. + Axes range is :math:`[-rank(input), rank(input))`. + If axes is negative, :math:`axes=axes+rank(input)`. + name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: - Variable: Output squeezed variable. + Variable: Output squeezed Tensor. Data type is same as input Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers - x = layers.data(name='x', shape=[5, 1, 10]) - y = layers.squeeze(input=x, axes=[1]) + # set batch size=None + x = fluid.data(name='x', shape=[None, 5, 1, 10]) + y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10] + """ assert not in_dygraph_mode(), ( "squeeze layer is not supported in dygraph mode yet.") @@ -12203,74 +12219,82 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): def stack(x, axis=0): """ - **Stack Layer** - This layer stacks all of the input :code:`x` along axis. - - Input :code:`x` can be a single variable, a :code:`list` of variables, - or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or - :code:`tuple`, the shapes of all these variables must be the same. - Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`, - the shape of the output variable would be - :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`. - If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`. - If :code:`axis` is None, it would be replaced with 0. - - For Example: + This OP stacks all the inputs :code:`x` along axis. .. code-block:: text Case 1: + Input: + x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] - x[0].dims = [1, 2] + x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] - x[1].dims = [1, 2] + x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] - x[2].dims = [1, 2] Attrs: axis = 0 Output: + Out.dims = [3, 1, 2] Out.data =[ [ [1.0, 2.0] ], [ [3.0, 4.0] ], [ [5.0, 6.0] ] ] - Out.dims = [3, 1, 2] + Case 2: - Given + + + Input: + x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] - x[0].dims = [1, 2] + x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] - x[1].dims = [1, 2] + x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] - x[2].dims = [1, 2] + Attrs: axis = 1 or axis = -2 Output: + Out.shape = [1, 3, 2] Out.data =[ [ [1.0, 2.0] [3.0, 4.0] [5.0, 6.0] ] ] - Out.dims = [1, 3, 2] + Args: - x (Variable|list(Variable)|tuple(Variable)): Input variables. - axis (int|None): The axis along which all inputs are stacked. + x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors. + If :code:`x` is a :code:`list`, the shapes of all these Tensors + must be the same. Supposing input is N dims + Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims + Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`. + Support data types: float32, float64, int32, int64. + axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`. + R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`. + The default value of axis is 0. Returns: - Variable: The stacked variable. + Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers - x1 = layers.data(name='x1', shape=[1, 2], dtype='int32') - x2 = layers.data(name='x2', shape=[1, 2], dtype='int32') - data = layers.stack([x1,x2]) + # set batch size=None + x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32') + x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32') + # stack Tensor list + data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2] + + data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2] + + # stack single Tensor + data = layers.stack(x1) # stack according to axis 0, data.shape=[1, None, 1, 2] """