未验证 提交 05499c71 编写于 作者: X xiaoguoguo626807 提交者: GitHub

【Prim】comp_elementwise_double_grad (first part) (#53385)

* add mul doubel grad

* add sub_double_grad

* add add sub high test

* add mutiply test

* modify other unsqueeze

* delete api.yaml

* only for make ci run

* midify unsqueeze

* modify unsqueeze

* tmp

* modify operants gen
上级 3474e09c
......@@ -67,6 +67,9 @@ black_ops_list = [
prim_white_list = [
"matmul_double_grad",
"tanh_double_grad",
"add_double_grad",
"multiply_double_grad",
"subtract_double_grad",
]
# dict of special api that forward api's output will affect bacward api's output
......
......@@ -99,6 +99,42 @@ class ElementwiseAddDoubleGradMaker : public framework::SingleGradOpMaker<T> {
}
};
class ElementwiseAddCompositeDoubleGradOpMaker
: public prim::CompositeGradOpMakerBase {
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
public:
void Apply() override {
// get input
paddle::Tensor y = this->GetSingleForwardInput("Y");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
paddle::optional<paddle::Tensor> ddx =
this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
paddle::optional<paddle::Tensor> ddy =
this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));
// get output
paddle::Tensor grad_out_grad_t =
this->GetSingleInputGrad(framework::GradVarName("Out"));
// get attr
int axis = static_cast<int>(this->Attr<int>("axis"));
PADDLE_ENFORCE_EQ(
axis,
-1,
phi::errors::InvalidArgument("We only support axis = -1 in composite "
"add_doubel_grad but we got: ",
axis));
paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);
VLOG(6) << "Runing add_double_grad composite func";
prim::add_double_grad<prim::DescTensor>(
y, out_grad, ddx, ddy, axis, grad_out_grad);
this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
}
};
template <typename T>
class ElementwiseAddTripleGradMaker : public framework::SingleGradOpMaker<T> {
public:
......@@ -139,7 +175,8 @@ REGISTER_OPERATOR(
ops::ElementwiseGradOpInplaceInferer,
ops::ElementwiseGradNoBufVarsInferer,
ops::ElementwiseAddDoubleGradMaker<paddle::framework::OpDesc>,
ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>);
ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>,
ops::ElementwiseAddCompositeDoubleGradOpMaker);
REGISTER_OPERATOR(
elementwise_add_grad_grad,
......
......@@ -118,6 +118,56 @@ class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
}
};
class ElementwiseMulCompositeDoubleGradOpMaker
: public prim::CompositeGradOpMakerBase {
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
public:
void Apply() override {
// get input
paddle::Tensor x = this->GetSingleForwardInput("X");
paddle::Tensor y = this->GetSingleForwardInput("Y");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
paddle::optional<paddle::Tensor> ddx =
this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
paddle::optional<paddle::Tensor> ddy =
this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));
// get attr
int axis = static_cast<int>(this->Attr<int>("axis"));
PADDLE_ENFORCE_EQ(
axis,
-1,
phi::errors::InvalidArgument("We only support axis = -1 in composite "
"add_doubel_grad but we got: ",
axis));
// get output
paddle::Tensor x_grad_t = this->GetSingleInputGrad("X");
paddle::Tensor y_grad_t = this->GetSingleInputGrad("Y");
paddle::Tensor grad_out_grad_t =
this->GetSingleInputGrad(framework::GradVarName("Out"));
// get output ptr
paddle::Tensor* x_grad = this->GetOutputPtr(&x_grad_t);
paddle::Tensor* y_grad = this->GetOutputPtr(&y_grad_t);
paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
// get output orginal name
std::string x_grad_name = this->GetOutputName(x_grad_t);
std::string y_grad_name = this->GetOutputName(y_grad_t);
std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);
VLOG(6) << "Runing multiply_double_grad composite func";
prim::multiply_double_grad<prim::DescTensor>(
x, y, out_grad, ddx, ddy, axis, x_grad, y_grad, grad_out_grad);
// recover output name
this->RecoverOutputName(x_grad_t, x_grad_name);
this->RecoverOutputName(y_grad_t, y_grad_name);
this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
}
};
template <typename T>
class ElementwiseMulTripleGradMaker : public framework::SingleGradOpMaker<T> {
public:
......@@ -162,7 +212,8 @@ REGISTER_OPERATOR(
elementwise_mul_grad,
ops::ElementwiseOpGrad,
ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);
ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>,
ops::ElementwiseMulCompositeDoubleGradOpMaker);
REGISTER_OPERATOR(
elementwise_mul_grad_grad,
......
......@@ -102,6 +102,42 @@ class ElementwiseSubDoubleGradMaker : public framework::SingleGradOpMaker<T> {
}
};
class ElementwiseSubCompositeDoubleGradOpMaker
: public prim::CompositeGradOpMakerBase {
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
public:
void Apply() override {
// get input
paddle::Tensor y = this->GetSingleForwardInput("Y");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
paddle::optional<paddle::Tensor> ddx =
this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
paddle::optional<paddle::Tensor> ddy =
this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));
// get output
paddle::Tensor grad_out_grad_t =
this->GetSingleInputGrad(framework::GradVarName("Out"));
// get attr
int axis = static_cast<int>(this->Attr<int>("axis"));
PADDLE_ENFORCE_EQ(
axis,
-1,
phi::errors::InvalidArgument("We only support axis = -1 in composite "
"subtract_doubel_grad but we got: ",
axis));
paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);
VLOG(6) << "Runing subtract_double_grad composite func";
prim::subtract_double_grad<prim::DescTensor>(
y, out_grad, ddx, ddy, axis, grad_out_grad);
this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
}
};
} // namespace operators
} // namespace paddle
......@@ -124,7 +160,9 @@ REGISTER_OPERATOR(
ops::ElementwiseGradOpInplaceInferer,
ops::ElementwiseGradNoBufVarsInferer,
ops::ElementwiseSubDoubleGradMaker<paddle::framework::OpDesc>,
ops::ElementwiseSubDoubleGradMaker<paddle::imperative::OpBase>);
ops::ElementwiseSubDoubleGradMaker<paddle::imperative::OpBase>,
ops::ElementwiseSubCompositeDoubleGradOpMaker);
REGISTER_OPERATOR(elementwise_sub_grad_grad,
ops::ElementwiseOpDoubleGradWithoutDXDY,
ops::ElementwiseDoubleGradOpInplaceInferer,
......
......@@ -12,7 +12,6 @@
- bitwise_not
- bitwise_or
- bitwise_xor
- unsqueeze
- exp
- scale
- matmul
......
......@@ -249,6 +249,30 @@ void subtract_grad(const Tensor& x,
}
}
template <typename T>
void subtract_double_grad(const Tensor& y,
const Tensor& grad_out,
const paddle::optional<Tensor>& grad_x_grad,
const paddle::optional<Tensor>& grad_y_grad,
int axis,
Tensor* grad_out_grad) {
if (grad_out_grad) {
// ddout = ddx - ddy
if (!grad_x_grad && !grad_y_grad) {
grad_out_grad = nullptr;
} else {
Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
if (grad_x_grad) {
ddout = ddout + grad_x_grad.get();
}
if (grad_y_grad) {
ddout = ddout - grad_y_grad.get();
}
set_output<T>(ddout, grad_out_grad);
}
}
}
template <typename T>
void add_grad(const Tensor& x,
const Tensor& y,
......@@ -291,6 +315,30 @@ void add_grad(const Tensor& x,
}
}
template <typename T>
void add_double_grad(const Tensor& y,
const Tensor& grad_out,
const paddle::optional<Tensor>& grad_x_grad,
const paddle::optional<Tensor>& grad_y_grad,
int axis,
Tensor* grad_out_grad) {
if (grad_out_grad) {
// ddout = ddx + ddy
if (!grad_x_grad && !grad_y_grad) {
grad_out_grad = nullptr;
} else {
Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
if (grad_x_grad) {
ddout = ddout + grad_x_grad.get();
}
if (grad_y_grad) {
ddout = ddout + grad_y_grad.get();
}
set_output<T>(ddout, grad_out_grad);
}
}
}
template <typename T>
void sum_grad(const Tensor& x,
const Tensor& out_grad,
......@@ -328,7 +376,8 @@ void sum_grad(const Tensor& x,
}
}
}
auto out_grad_ = unsqueeze<T>(out_grad, axis_);
auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
x_grad_tmp = out_grad_.expand(IntArray(x_dim));
} else {
x_grad_tmp = out_grad.expand(IntArray(x_dim));
......@@ -521,6 +570,75 @@ void multiply_grad(const Tensor& x,
}
}
template <typename T>
void multiply_double_grad(const Tensor& x,
const Tensor& y,
const Tensor& grad_out,
const paddle::optional<Tensor>& grad_x_grad,
const paddle::optional<Tensor>& grad_y_grad,
int axis,
Tensor* x_grad,
Tensor* y_grad,
Tensor* grad_out_grad) {
if (x_grad) {
if (grad_y_grad) {
auto dx = grad_y_grad.get() * grad_out;
if (dx.dims() != x.dims()) {
auto axes = get_reduce_dims_from_out(dx.dims(), x.dims());
if (!axes.size()) {
set_output<T>(dx, x_grad);
} else {
auto dx_reduce = dx.sum(phi::vectorize(axes), dx.dtype(), false);
if (dx_reduce.dims().size() != x.dims().size()) {
dx_reduce = reshape<T>(dx_reduce, x.shape());
}
set_output<T>(dx_reduce, x_grad);
}
} else {
set_output<T>(dx, x_grad);
}
} else {
x_grad = nullptr;
}
}
if (y_grad) {
if (grad_x_grad) {
auto dy = grad_x_grad.get() * grad_out;
if (dy.dims() != y.dims()) {
auto axes = get_reduce_dims_from_out(dy.dims(), y.dims());
if (!axes.size()) {
set_output<T>(dy, y_grad);
} else {
auto dy_reduce = dy.sum(phi::vectorize(axes), dy.dtype(), false);
if (dy_reduce.dims().size() != y.dims().size()) {
dy_reduce = reshape<T>(dy_reduce, y.shape());
}
set_output<T>(dy_reduce, y_grad);
}
} else {
set_output<T>(dy, y_grad);
}
} else {
y_grad = nullptr;
}
}
if (grad_out_grad) {
if (grad_x_grad && grad_y_grad) {
auto ddout = grad_x_grad.get() * y + grad_y_grad.get() * x;
set_output<T>(ddout, grad_out_grad);
} else if (grad_x_grad) {
auto ddout = grad_x_grad.get() * y;
set_output<T>(ddout, grad_out_grad);
} else if (grad_y_grad) {
auto ddout = grad_y_grad.get() * x;
set_output<T>(ddout, grad_out_grad);
} else {
grad_out_grad = nullptr;
}
}
}
template <typename T>
void expand_grad(const Tensor& x,
const Tensor& out_grad,
......@@ -1063,9 +1181,11 @@ void group_norm_grad(const Tensor& x,
auto p2 = (d2 * mean - d1) * (inv_std_mul_s * inv_std * inv_std);
auto p3 = -p2 * mean - d2 * inv_std_mul_s;
p1 = unsqueeze<T>(p1, std::vector<int64_t>({3}));
p2 = unsqueeze<T>(p2, std::vector<int64_t>({2, 3}));
p3 = unsqueeze<T>(p3, std::vector<int64_t>({2, 3}));
auto first_shape = get_unsqueeze_dims(p1, std::vector<int64_t>({3}));
auto second_shape = get_unsqueeze_dims(p2, std::vector<int64_t>({2, 3}));
p1 = reshape<T>(p1, first_shape);
p2 = reshape<T>(p2, second_shape);
p3 = reshape<T>(p3, second_shape);
auto tmp_1 = reshape<T>(out_grad_data, whole_group_shape) * p1;
auto tmp_2 = reshape<T>(x_data, whole_group_shape) * p2 + p3;
auto x_grad_data = tmp_1 + tmp_2;
......@@ -1078,10 +1198,11 @@ void group_norm_grad(const Tensor& x,
}
if (scale_grad) {
if (scale_ptr) {
auto third_shape = get_unsqueeze_dims(mean, std::vector<int64_t>({2}));
auto tmp1 = (reshape<T>(sum_y_grad_mul_x, shape_group) -
reshape<T>(sum_y_grad, shape_group) *
unsqueeze<T>(mean, std::vector<int64_t>({2}))) *
unsqueeze<T>(inv_std, std::vector<int64_t>({2}));
reshape<T>(mean, third_shape)) *
reshape<T>(inv_std, third_shape);
auto scale_grad_tmp =
reshape<T>(tmp1.sum(std::vector<int64_t>({0}), dtype, false),
IntArray(std::vector<int64_t>({C})));
......@@ -1291,9 +1412,10 @@ void prod_grad(const Tensor& x,
}
}
}
auto out_grad_ = unsqueeze<T>(out_grad, axis_);
auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
x_grad_tmp = out_grad_.expand(IntArray(x_dim));
auto out_ = unsqueeze<T>(out, axis_);
auto out_ = reshape<T>(out, out_grad_shape);
out_tmp = out_.expand(IntArray(x_dim));
} else {
x_grad_tmp = out_grad.expand(IntArray(x_dim));
......@@ -1346,8 +1468,9 @@ void max_grad(const Tensor& x,
}
}
}
auto out_grad_ = unsqueeze<T>(out_grad, axis_);
auto out_ = unsqueeze<T>(out, axis_);
auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
auto out_ = reshape<T>(out, out_grad_shape);
auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
auto out_tmp = out_.expand(IntArray(x_dim));
auto mask = equal<T>(x, out_tmp);
......
......@@ -114,5 +114,23 @@ static std::vector<DST_T> unsafe_vector_cast(const std::vector<SRC_T>& src) {
return dst;
}
// This fucction compute unsqueeze dims for reshape to replace unsqueeze.
static std::vector<int> get_unsqueeze_dims(const Tensor& origin,
const IntArray& axis) {
auto origin_dims = origin.shape();
auto total_shape_size = origin_dims.size() + axis.size();
std::vector<int> result;
int j = 0, k = 0;
for (size_t i = 0; i < total_shape_size; ++i) {
if (axis[j] == int64_t(i)) {
result.push_back(1);
j++;
} else {
result.push_back(origin_dims[k]);
k++;
}
}
return result;
}
} // namespace prim
} // namespace paddle
......@@ -1865,7 +1865,6 @@
kernel :
func : tanh_double_grad
composite : tanh_double_grad(out, grad_out, grad_x_grad, out_grad, grad_out_grad)
backward : tanh_triple_grad
inplace : (grad_x_grad -> grad_out_grad)
- backward_op : tanh_grad
......@@ -1892,18 +1891,6 @@
func : tanh_shrink_grad
inplace : (out_grad -> x_grad)
- backward_op : tanh_triple_grad
forward : tanh_double_grad (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward) -> Tensor(grad_out_new), Tensor(grad_out_grad)
args : (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward, Tensor grad_out_new_grad, Tensor grad_out_grad_grad)
output : Tensor(out_grad), Tensor(grad_out_forward_grad), Tensor(grad_x_grad_forward_grad)
infer_meta :
func : GeneralTernaryGradInferMeta
param : [out, out, grad_x_grad_forward]
kernel :
func : tanh_triple_grad
inplace : (grad_x_grad_forward -> grad_out_forward_grad)
optional : grad_out_new_grad, grad_out_grad_grad
- backward_op : temporal_shift_grad
forward : temporal_shift(Tensor x, int seg_num, float shift_ratio = 0.25f, str data_format = "NCHW") -> Tensor(out)
args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format)
......
......@@ -30,8 +30,8 @@
kernel :
func : add_double_grad
optional : grad_x_grad, grad_y_grad
backward : add_triple_grad
inplace : (grad_x_grad -> grad_out_grad)
composite : add_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
- backward_op : add_grad
forward : add (Tensor x, Tensor y) -> Tensor(out)
......@@ -47,17 +47,6 @@
backward : add_double_grad
inplace : (out_grad -> x_grad)
- backward_op : add_triple_grad
forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [grad_grad_x, grad_grad_y]
kernel :
func : add_triple_grad
inplace : (grad_grad_out_grad -> grad_grad_x_grad)
- backward_op : amax_grad
forward: amax (Tensor x, int64_t[] axis={}, bool keepdim=false) -> Tensor(out)
args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis={}, bool keepdim=false, bool reduce_all=false)
......@@ -627,8 +616,8 @@
kernel :
func : multiply_double_grad
optional : grad_x_grad, grad_y_grad
backward : multiply_triple_grad
inplace : (grad_x_grad -> grad_out_grad)
composite : multiply_double_grad(x, y, grad_out, grad_x_grad, grad_y_grad, axis, x_grad, y_grad, grad_out_grad)
- backward_op : multiply_grad
forward : multiply (Tensor x, Tensor y) -> Tensor(out)
......@@ -642,17 +631,6 @@
composite: multiply_grad(x, y, out_grad, axis, x_grad, y_grad)
backward : multiply_double_grad
- backward_op : multiply_triple_grad
forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
infer_meta :
func : GeneralQuinaryGradInferMeta
param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
kernel :
func : multiply_triple_grad
optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_x_grad, grad_y_grad, grad_grad_out_grad
- backward_op : norm_grad
forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
......@@ -940,6 +918,7 @@
optional : grad_x_grad, grad_y_grad
no_need_buffer : y, grad_out
inplace : (grad_x_grad -> grad_out_grad)
composite : subtract_double_grad(y, grad_out, grad_x_grad, grad_y_grad, axis, grad_out_grad)
- backward_op : subtract_grad
forward : subtract (Tensor x, Tensor y) -> Tensor(out)
......
......@@ -2274,7 +2274,7 @@
attrs : [bool use_mkldnn = false, bool use_cudnn = false]
- op : tanh
backward : tanh_grad, tanh_double_grad (tanh_grad_grad), tanh_triple_grad
backward : tanh_grad, tanh_double_grad (tanh_grad_grad)
inputs :
x : X
outputs :
......
......@@ -14,7 +14,6 @@
- bitwise_not
- bitwise_or
- bitwise_xor
- unsqueeze
- exp
- scale
- matmul
......
......@@ -1492,18 +1492,22 @@ def _append_backward_ops_(
or name in input_grad_names_set
)
is_append_grad = False
input_grad_names = []
for op_desc in grad_op_desc:
input_grad_names = [
input_grad_names += [
name
for name in op_desc.input_arg_names()
if is_grad_name(name)
]
# some code of gradient ops, like increment, are not very
# standard, there is no @GRAD in these ops' inputs.
if len(input_grad_names) == 0:
is_append_grad = True
break
for op_desc in grad_op_desc:
# some code of gradient ops, like increment, are not very
# standard, there is no @GRAD in these ops' inputs.
if _some_in_set_(input_grad_names, input_grad_names_set):
grad_op_descs.append(op_desc)
is_append_grad = True
......
......@@ -92,12 +92,16 @@ class TestTanhTripleGradCheck(unittest.TestCase):
y = paddle.tanh(x)
x_arr = np.random.random(shape).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.triple_grad_check(
[x], y, x_init=x_arr, place=place, eps=eps
)
gradient_checker.triple_grad_check_for_dygraph(
self.tanh_wrapper, [x], y, x_init=x_arr, place=place
)
core._set_prim_backward_enabled(False)
def test_grad(self):
paddle.enable_static()
......@@ -122,12 +126,16 @@ class TestTanhDoubleGradCheck(unittest.TestCase):
y = paddle.tanh(x)
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.double_grad_check(
[x], y, x_init=x_arr, place=place, eps=eps
)
gradient_checker.double_grad_check_for_dygraph(
self.tanh_wrapper, [x], y, x_init=x_arr, place=place
)
core._set_prim_backward_enabled(False)
def test_grad(self):
paddle.enable_static()
......
......@@ -8,5 +8,7 @@ foreach(TEST_OP ${TEST_OPS})
py_test_modules(${TEST_OP} MODULES ${TEST_OP} ENVS ${GC_ENVS})
endforeach()
set_tests_properties(test_comp_high_grad PROPERTIES TIMEOUT 50)
add_subdirectory(eager)
add_subdirectory(static)
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
sys.path.append("../../../../python/paddle/fluid/tests/unittests")
import gradient_checker
import numpy as np
import parameterized as param
from decorator_helper import prog_scope
import paddle
from paddle import fluid
from paddle.fluid import core
@param.parameterized_class(
('shape1', 'shape2'),
[
(
[2, 3, 4],
[2, 3, 4],
),
(
[2, 3, 3, 4],
[3, 1, 4],
),
(
[2, 3, 3, 4],
[3, 1, 1],
),
(
[2, 3, 3, 4],
[2, 3, 1, 4],
),
(
[2, 3, 3, 4],
[2, 3, 1, 1],
),
],
)
class TestAddHighGradCheck(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.shape1 = cls.shape1
cls.shape2 = cls.shape2
def add_wrapper(self, x):
return paddle.add(x[0], x[1])
@prog_scope()
def func_double(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.add(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-2, 2, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.double_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.double_grad_check_for_dygraph(
self.add_wrapper, [x, y], y=out, x_init=[x_arr, y_arr], place=place
)
core._set_prim_backward_enabled(False)
@prog_scope()
def func_triple(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.add(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-1, 1, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.triple_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.triple_grad_check_for_dygraph(
self.add_wrapper, [x, y], y=out, x_init=[x_arr, y_arr], place=place
)
core._set_prim_backward_enabled(False)
def test_high_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func_double(p)
self.func_triple(p)
@param.parameterized_class(
('shape1', 'shape2'),
[
(
[2, 3, 4],
[2, 3, 4],
),
(
[2, 3, 3, 4],
[3, 1, 4],
),
(
[2, 3, 3, 4],
[3, 1, 1],
),
(
[2, 3, 3, 4],
[2, 3, 1, 4],
),
(
[2, 3, 3, 4],
[2, 3, 1, 1],
),
],
)
class TestSubtractHighGradCheck(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.shape1 = cls.shape1
cls.shape2 = cls.shape2
def subtract_wrapper(self, x):
return paddle.subtract(x[0], x[1])
@prog_scope()
def func_double(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.subtract(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-2, 2, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.double_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.double_grad_check_for_dygraph(
self.subtract_wrapper,
[x, y],
y=out,
x_init=[x_arr, y_arr],
place=place,
)
core._set_prim_backward_enabled(False)
@prog_scope()
def func_triple(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.subtract(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-2, 2, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.triple_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.triple_grad_check_for_dygraph(
self.subtract_wrapper,
[x, y],
y=out,
x_init=[x_arr, y_arr],
place=place,
)
core._set_prim_backward_enabled(False)
def test_high_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func_double(p)
self.func_triple(p)
@param.parameterized_class(
('shape1', 'shape2'),
[
(
[2, 3, 4],
[2, 3, 4],
),
(
[2, 3, 3, 4],
[3, 1, 4],
),
(
[2, 3, 3, 4],
[3, 1, 1],
),
(
[2, 3, 3, 4],
[2, 3, 1, 4],
),
(
[2, 3, 3, 4],
[2, 3, 1, 1],
),
],
)
class TestMultiplyHighGradCheck(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.shape1 = cls.shape1
cls.shape2 = cls.shape2
def multiply_wrapper(self, x):
return paddle.multiply(x[0], x[1])
@prog_scope()
def func_double(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.multiply(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-2, 2, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.double_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.double_grad_check_for_dygraph(
self.multiply_wrapper,
[x, y],
y=out,
x_init=[x_arr, y_arr],
place=place,
)
core._set_prim_backward_enabled(False)
@prog_scope()
def func_triple(self, place):
shape1 = self.shape1
shape2 = self.shape2
eps = 0.0005
dtype = np.float64
x = paddle.static.data('x', shape1, dtype=dtype)
y = paddle.static.data('y', shape2, dtype=dtype)
x.persistable = True
y.persistable = True
out = paddle.multiply(x, y)
x_arr = np.random.uniform(-1, 1, shape1).astype(dtype)
y_arr = np.random.uniform(-1, 1, shape2).astype(dtype)
x_arr[np.abs(x_arr) < 0.005] = 0.002
y_arr[np.abs(y_arr) < 0.005] = 0.002
from paddle.fluid import core
core._set_prim_backward_enabled(True)
gradient_checker.triple_grad_check(
[x, y], y=out, x_init=[x_arr, y_arr], place=place, eps=eps
)
gradient_checker.triple_grad_check_for_dygraph(
self.multiply_wrapper,
[x, y],
y=out,
x_init=[x_arr, y_arr],
place=place,
)
core._set_prim_backward_enabled(False)
def test_high_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func_double(p)
self.func_triple(p)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册