Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
04f20b83
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
04f20b83
编写于
4月 21, 2022
作者:
B
baoachun
提交者:
GitHub
4月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mkldnn int8 pass [step1] (#41579) (#42045)
上级
d24a402e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
751 addition
and
0 deletion
+751
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h
paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h
+77
-0
paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.cc
...le/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.cc
+582
-0
paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.h
paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.h
+91
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
04f20b83
...
@@ -140,6 +140,7 @@ if(WITH_MKLDNN)
...
@@ -140,6 +140,7 @@ if(WITH_MKLDNN)
pass_library
(
batch_norm_act_fuse_pass inference DIR mkldnn
)
pass_library
(
batch_norm_act_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
pass_library
(
multi_gru_seq_fuse_pass inference DIR mkldnn
)
pass_library
(
quant_dequant_mkldnn_pass inference DIR mkldnn
)
endif
()
endif
()
if
(
WITH_IPU
)
if
(
WITH_IPU
)
...
...
paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h
0 → 100644
浏览文件 @
04f20b83
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
static
void
SaveInfoInTheFirstOp
(
ir
::
Graph
*
graph
,
const
std
::
string
&
flag
,
const
std
::
string
&
key_suffix
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>&
info_map
)
{
VLOG
(
3
)
<<
"save variables in the first op's attr"
;
const
std
::
string
suffix
=
"_"
+
key_suffix
+
"_"
+
flag
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
()
||
op_node
->
Op
()
->
Type
()
==
"feed"
||
op_node
->
Op
()
->
Type
()
==
"fetch"
)
continue
;
op_node
->
Op
()
->
SetAttr
(
flag
,
true
);
for
(
auto
iter
=
info_map
.
begin
();
iter
!=
info_map
.
end
();
++
iter
)
{
op_node
->
Op
()
->
SetAttr
(
iter
->
first
+
suffix
,
iter
->
second
);
}
break
;
}
}
static
void
GetInfoFromTheFirstOp
(
ir
::
Graph
*
graph
,
const
std
::
string
&
flag
,
const
std
::
string
&
key_suffix
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
info_map
)
{
VLOG
(
3
)
<<
"get variables from the first op's attr"
;
const
std
::
string
suffix
=
"_"
+
key_suffix
+
"_"
+
flag
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
()
||
op_node
->
Op
()
->
Type
()
==
"feed"
||
op_node
->
Op
()
->
Type
()
==
"fetch"
)
continue
;
auto
*
op_desc
=
op_node
->
Op
();
if
(
op_desc
->
GetAttrIfExists
<
bool
>
(
flag
))
{
op_desc
->
RemoveAttr
(
flag
);
std
::
vector
<
std
::
string
>
attr_names
=
op_desc
->
AttrNames
();
for
(
auto
fake_name
:
attr_names
)
{
size_t
pos
=
fake_name
.
find
(
suffix
);
if
(
pos
!=
std
::
string
::
npos
)
{
std
::
string
name
=
fake_name
.
substr
(
0
,
pos
);
auto
scales_vector
=
BOOST_GET_CONST
(
std
::
vector
<
float
>
,
op_desc
->
GetAttr
(
fake_name
));
info_map
->
insert
(
std
::
make_pair
(
name
,
scales_vector
));
op_desc
->
RemoveAttr
(
fake_name
);
}
}
break
;
}
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.cc
0 → 100644
浏览文件 @
04f20b83
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
#include "paddle/fluid/framework/op_version_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
QuantDequantMkldnnPass
::
MarkSkipQuantizedOps
(
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
skip_ops
)
const
{
VLOG
(
3
)
<<
"mark skip quantized ops"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
skip_ops
.
count
(
op_node
->
Name
()))
{
auto
*
op_desc
=
op_node
->
Op
();
if
(
!
op_desc
->
HasAttr
(
"quantization_type"
))
{
bool
is_quantized_op
=
true
;
for
(
auto
*
node_input
:
op_node
->
inputs
)
{
for
(
auto
*
node_input_input
:
node_input
->
inputs
)
{
if
(
!
node_input_input
->
IsOp
())
continue
;
if
(
node_input_input
->
Name
().
find
(
"quantize_dequantize"
)
==
std
::
string
::
npos
)
{
is_quantized_op
=
false
;
break
;
}
}
if
(
!
is_quantized_op
)
break
;
}
if
(
!
is_quantized_op
)
{
op_node
->
Op
()
->
SetAttr
(
"skip_quant"
,
1
);
}
}
}
}
}
void
QuantDequantMkldnnPass
::
MarkSkipQuantizedPool2d
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"mark avg pool2d as skip quantized op"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
op_node
->
Name
()
==
"pool2d"
)
{
auto
*
op_desc
=
op_node
->
Op
();
auto
pool_type
=
BOOST_GET_CONST
(
std
::
string
,
op_desc
->
GetAttr
(
"pooling_type"
));
if
(
pool_type
==
"avg"
)
{
op_node
->
Op
()
->
SetAttr
(
"skip_quant"
,
1
);
}
}
}
}
void
QuantDequantMkldnnPass
::
CollectInfoFromFake
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
fake_dequantize_types
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
weight_thresholds
)
const
{
VLOG
(
3
)
<<
"gather weight_thresholds from fake dequantized ops"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
fake_dequantize_types
.
count
(
op_node
->
Name
()))
{
auto
*
op_desc
=
op_node
->
Op
();
auto
x_var_name
=
op_desc
->
Input
(
"X"
)[
0
];
if
(
op_desc
->
HasAttr
(
"max_range"
))
{
const
float
max_range
=
BOOST_GET_CONST
(
float
,
op_desc
->
GetAttr
(
"max_range"
));
std
::
vector
<
float
>
thresholds
=
{
127
*
127
/
max_range
};
weight_thresholds
->
insert
(
std
::
make_pair
(
x_var_name
,
thresholds
));
}
else
{
auto
scale_name
=
op_desc
->
Input
(
"Scales"
)[
0
];
auto
*
var
=
scope
->
FindVar
(
scale_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"The Scales variable [%s] of dequantize op is not found."
,
var
));
auto
*
scale_tensor
=
var
->
GetMutable
<
LoDTensor
>
();
auto
*
scale_data
=
scale_tensor
->
data
<
float
>
();
std
::
vector
<
float
>
thresholds
{};
for
(
int
i
=
0
;
i
<
scale_tensor
->
numel
();
i
++
)
{
thresholds
.
push_back
(
scale_data
[
i
]);
}
weight_thresholds
->
insert
(
std
::
make_pair
(
x_var_name
,
thresholds
));
}
}
}
}
void
QuantDequantMkldnnPass
::
CollectInputScalesFromFake
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_types
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
var_quant_scales
)
const
{
VLOG
(
3
)
<<
"gather input scales from fake quantized ops"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
op_node
->
Name
()
==
"fake_quantize_dequantize_moving_average_abs_max"
||
fake_quantize_types
.
count
(
op_node
->
Name
()))
{
auto
*
op_desc
=
op_node
->
Op
();
const
int
bit_length
=
BOOST_GET_CONST
(
int
,
op_desc
->
GetAttr
(
"bit_length"
));
PADDLE_ENFORCE_EQ
(
bit_length
,
8
,
platform
::
errors
::
InvalidArgument
(
"Unsupported number quantization "
"bits: %d, only 8 is supported now."
,
bit_length
));
auto
x_var_name
=
op_desc
->
Input
(
"X"
)[
0
];
auto
scale_name
=
op_desc
->
Input
(
"InScale"
)[
0
];
auto
out_var_name
=
op_desc
->
Output
(
"Out"
)[
0
];
auto
*
var
=
scope
->
FindVar
(
scale_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"The InScale variable [%s] of quantize op is not found."
,
var
));
auto
*
scale_tensor
=
var
->
GetMutable
<
LoDTensor
>
();
auto
*
scale_data
=
scale_tensor
->
data
<
float
>
();
float
scale
=
1.0
/
scale_data
[
0
];
if
(
std
::
isinf
(
scale
)
||
std
::
isnan
(
scale
))
{
scale
=
0.0
;
}
if
(
!
var_quant_scales
->
count
(
x_var_name
))
{
std
::
vector
<
float
>
scale_v
=
{
scale
};
var_quant_scales
->
insert
(
std
::
make_pair
(
x_var_name
,
scale_v
));
}
if
(
!
var_quant_scales
->
count
(
out_var_name
))
{
std
::
vector
<
float
>
scale_v
=
{
scale
};
var_quant_scales
->
insert
(
std
::
make_pair
(
out_var_name
,
scale_v
));
}
}
}
}
void
QuantDequantMkldnnPass
::
CollectOutputScalesFromAttr
(
ir
::
Graph
*
graph
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
var_quant_scales
)
const
{
VLOG
(
3
)
<<
"gather output scales from op's attr"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
auto
*
op_desc
=
op_node
->
Op
();
if
(
op_desc
->
HasAttr
(
"out_threshold"
))
{
const
float
attr_scale
=
BOOST_GET_CONST
(
float
,
op_desc
->
GetAttr
(
"out_threshold"
));
if
(
attr_scale
==
0.0
)
continue
;
float
scale
=
1.0
/
attr_scale
;
std
::
vector
<
float
>
scale_v
=
{
scale
};
auto
var_name_map
=
op_desc
->
Outputs
();
for
(
auto
iter
=
var_name_map
.
begin
();
iter
!=
var_name_map
.
end
();
++
iter
)
{
for
(
auto
var_name
:
iter
->
second
)
{
var_quant_scales
->
insert
(
std
::
make_pair
(
var_name
,
scale_v
));
}
}
}
}
}
void
QuantDequantMkldnnPass
::
CollectFakeQuantizeOps
(
ir
::
Graph
*
graph
,
Node
*
op_node
,
std
::
unordered_set
<
const
Node
*>*
nodes2rm
)
const
{
auto
*
op_desc
=
op_node
->
Op
();
auto
x_var_name
=
op_desc
->
Input
(
"X"
)[
0
];
auto
in_scale_name
=
op_desc
->
Input
(
"InScale"
)[
0
];
auto
out_var_name
=
op_desc
->
Output
(
"Out"
)[
0
];
auto
out_scale_name
=
op_desc
->
Output
(
"OutScale"
)[
0
];
Node
*
fake_quant_in
=
nullptr
;
Node
*
fake_quant_in_scale
=
nullptr
;
for
(
auto
*
node_input
:
op_node
->
inputs
)
{
if
(
node_input
->
Name
()
==
x_var_name
)
{
fake_quant_in
=
node_input
;
break
;
}
else
if
(
node_input
->
Name
()
==
in_scale_name
)
{
fake_quant_in_scale
=
node_input
;
break
;
}
}
Node
*
fake_quant_out
=
nullptr
;
Node
*
fake_quant_out_scale
=
nullptr
;
for
(
auto
*
node_output
:
op_node
->
outputs
)
{
if
(
node_output
->
Name
()
==
out_var_name
)
{
fake_quant_out
=
node_output
;
break
;
}
else
if
(
node_output
->
Name
()
==
out_scale_name
)
{
fake_quant_out_scale
=
node_output
;
break
;
}
}
PADDLE_ENFORCE_NOT_NULL
(
fake_quant_in
,
platform
::
errors
::
NotFound
(
"The input var [%s] of quantize op is not found."
,
x_var_name
));
PADDLE_ENFORCE_NOT_NULL
(
fake_quant_out
,
platform
::
errors
::
NotFound
(
"The output var [%s] of quantize op is not found."
,
out_var_name
));
std
::
string
input_act_name
=
fake_quant_in
->
Var
()
->
Name
();
std
::
string
output_act_name
=
fake_quant_out
->
Var
()
->
Name
();
auto
outlinks
=
fake_quant_out
->
outputs
;
for
(
auto
*
next_node
:
outlinks
)
{
if
(
!
next_node
->
IsOp
())
continue
;
next_node
->
Op
()
->
RenameInput
(
output_act_name
,
input_act_name
);
IR_NODE_LINK_TO
(
fake_quant_in
,
next_node
);
}
nodes2rm
->
insert
(
op_node
);
nodes2rm
->
insert
(
fake_quant_in_scale
);
nodes2rm
->
insert
(
fake_quant_out
);
nodes2rm
->
insert
(
fake_quant_out_scale
);
}
void
QuantDequantMkldnnPass
::
CollectFakeDequantizeOps
(
ir
::
Graph
*
graph
,
Node
*
op_node
,
std
::
unordered_set
<
const
Node
*>*
nodes2rm
)
const
{
auto
*
op_desc
=
op_node
->
Op
();
auto
x_var_name
=
op_desc
->
Input
(
"X"
)[
0
];
auto
out_var_name
=
op_desc
->
Output
(
"Out"
)[
0
];
Node
*
fake_dequant_in
=
nullptr
;
for
(
auto
*
node_input
:
op_node
->
inputs
)
{
if
(
node_input
->
Name
()
==
x_var_name
)
{
fake_dequant_in
=
node_input
;
break
;
}
}
Node
*
fake_dequant_out
=
nullptr
;
for
(
auto
*
node_output
:
op_node
->
outputs
)
{
if
(
node_output
->
Name
()
==
out_var_name
)
{
fake_dequant_out
=
node_output
;
break
;
}
}
PADDLE_ENFORCE_NOT_NULL
(
fake_dequant_in
,
platform
::
errors
::
NotFound
(
"The input var [%s] of dequantize op is not found."
,
x_var_name
));
PADDLE_ENFORCE_NOT_NULL
(
fake_dequant_out
,
platform
::
errors
::
NotFound
(
"The output var [%s] of dequantize op is not found."
,
out_var_name
));
std
::
string
input_act_name
=
fake_dequant_in
->
Var
()
->
Name
();
std
::
string
output_act_name
=
fake_dequant_out
->
Var
()
->
Name
();
auto
outlinks
=
fake_dequant_out
->
outputs
;
for
(
auto
*
next_node
:
outlinks
)
{
next_node
->
Op
()
->
RenameInput
(
output_act_name
,
input_act_name
);
IR_NODE_LINK_TO
(
fake_dequant_in
,
next_node
);
}
nodes2rm
->
insert
(
op_node
);
nodes2rm
->
insert
(
fake_dequant_out
);
}
void
QuantDequantMkldnnPass
::
RemoveFakeOps
(
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_types
,
const
std
::
unordered_set
<
std
::
string
>&
fake_dequantize_types
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_dequantize_types
)
const
{
VLOG
(
3
)
<<
"remove fake quantize and dequantize ops"
;
std
::
unordered_set
<
const
Node
*>
nodes2rm
=
{};
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
fake_quantize_types
.
count
(
op_node
->
Name
()))
{
CollectFakeQuantizeOps
(
graph
,
op_node
,
&
nodes2rm
);
}
else
if
(
fake_dequantize_types
.
count
(
op_node
->
Name
()))
{
CollectFakeDequantizeOps
(
graph
,
op_node
,
&
nodes2rm
);
}
else
if
(
fake_quantize_dequantize_types
.
count
(
op_node
->
Name
()))
{
CollectFakeDequantizeOps
(
graph
,
op_node
,
&
nodes2rm
);
}
}
GraphSafeRemoveNodes
(
graph
,
nodes2rm
);
}
void
QuantDequantMkldnnPass
::
TransposeWeight
(
Tensor
*
input
)
const
{
const
auto
in_dims
=
input
->
dims
();
std
::
vector
<
int
>
out_dim_v
;
std
::
vector
<
int
>
axis
;
for
(
int
i
=
in_dims
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
axis
.
push_back
(
i
);
out_dim_v
.
push_back
(
in_dims
[
i
]);
}
const
auto
out_dims
=
phi
::
make_ddim
(
out_dim_v
);
const
int
rank
=
axis
.
size
();
auto
in_stride
=
phi
::
stride
(
in_dims
);
auto
out_stride
=
phi
::
stride
(
out_dims
);
const
int
count
=
input
->
numel
();
Tensor
trans_tensor
;
trans_tensor
.
Resize
(
out_dims
);
float
*
trans_data
=
trans_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
float
*
in_data
=
input
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
out_idx
=
0
;
out_idx
<
count
;
++
out_idx
)
{
int64_t
in_idx
=
0
;
int64_t
tmp_idx
=
out_idx
;
for
(
int
i
=
0
;
i
<
rank
;
++
i
)
{
const
int64_t
coordinate
=
tmp_idx
/
out_stride
[
i
];
tmp_idx
-=
coordinate
*
out_stride
[
i
];
in_idx
+=
coordinate
*
in_stride
[
axis
[
i
]];
}
trans_data
[
out_idx
]
=
in_data
[
in_idx
];
}
input
->
Resize
(
out_dims
);
for
(
int
i
=
0
;
i
<
input
->
numel
();
i
++
)
{
in_data
[
i
]
=
trans_data
[
i
];
}
}
bool
QuantDequantMkldnnPass
::
IsInt8Weight
(
Node
*
op_node
,
Scope
*
scope
,
const
std
::
string
&
weight_name
)
const
{
auto
*
op_desc
=
op_node
->
Op
();
auto
var_name
=
op_desc
->
Input
(
weight_name
)[
0
];
auto
*
var
=
scope
->
FindVar
(
var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"The input persistable [%s] var of [%s] op is not found."
,
var_name
,
op_desc
->
Type
()));
auto
*
weight_tensor
=
var
->
GetMutable
<
LoDTensor
>
();
auto
*
weight_data
=
weight_tensor
->
data
<
float
>
();
bool
is_int8
=
true
;
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
if
(
weight_data
[
i
]
-
static_cast
<
int
>
(
weight_data
[
i
])
!=
0
)
{
is_int8
=
false
;
break
;
}
}
return
is_int8
;
}
void
QuantDequantMkldnnPass
::
DequantizeOpWeights
(
Node
*
op_node
,
Scope
*
scope
,
const
std
::
string
&
weight_name
,
const
std
::
string
&
output_name
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>&
weight_thresholds
)
const
{
auto
*
op_desc
=
op_node
->
Op
();
std
::
string
weight_var_name
=
op_desc
->
Input
(
weight_name
)[
0
];
std
::
string
output_var_name
=
op_desc
->
Output
(
output_name
)[
0
];
std
::
vector
<
float
>
scales
;
auto
iter
=
weight_thresholds
.
find
(
output_var_name
);
if
(
iter
!=
weight_thresholds
.
end
())
{
scales
=
iter
->
second
;
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Could not find threshold information for [%s] var, please check if "
"the model is correct."
,
output_var_name
));
}
auto
*
var
=
scope
->
FindVar
(
weight_var_name
);
PADDLE_ENFORCE_NOT_NULL
(
var
,
platform
::
errors
::
NotFound
(
"The input persistable [%s] var of [%s] op is not found."
,
weight_var_name
,
op_desc
->
Type
()));
auto
*
weight_tensor
=
var
->
GetMutable
<
LoDTensor
>
();
const
auto
weight_dims
=
weight_tensor
->
dims
();
const
int
size
=
scales
.
size
();
if
(
size
==
1
||
size
==
weight_dims
[
0
])
{
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
weight_data
[
i
]
/=
127
;
}
TransposeWeight
(
weight_tensor
);
if
(
size
==
1
)
{
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
weight_data
[
i
]
*=
scales
[
0
];
}
}
else
{
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
weight_data
[
i
]
*=
scales
[
i
%
size
];
}
}
TransposeWeight
(
weight_tensor
);
}
else
if
(
weight_dims
.
size
()
>
1
&&
size
==
weight_dims
[
1
])
{
auto
*
weight_data
=
weight_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
weight_tensor
->
numel
();
i
++
)
{
weight_data
[
i
]
/=
127
;
}
int
step_n
=
1
;
for
(
int
i
=
1
;
i
<
weight_dims
.
size
();
i
++
)
{
step_n
*=
weight_dims
[
i
];
}
int
step_c
=
step_n
/
size
;
for
(
int
i
=
0
;
i
<
weight_dims
[
0
];
i
++
)
{
int
begin_n
=
i
*
step_n
;
for
(
int
j
=
begin_n
;
j
<
begin_n
+
step_n
;
j
++
)
{
for
(
int
k
=
0
;
k
<
size
;
k
++
)
{
int
begin_c
=
k
*
step_c
;
for
(
int
m
=
begin_c
;
m
<
begin_c
+
step_c
;
m
++
)
{
weight_data
[
m
]
*=
scales
[
k
];
}
}
}
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The size of weight scales vector (%d) does not "
"match the dimensions (%d) of the weights tensor %s."
,
size
,
weight_tensor
->
dims
().
size
(),
weight_var_name
));
}
weight_tensor
->
Resize
(
weight_dims
);
}
void
QuantDequantMkldnnPass
::
DequantizeWeights
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>&
weight_thresholds
)
const
{
VLOG
(
3
)
<<
"dequantize weight for ops which has weight"
;
if
(
weight_thresholds
.
empty
())
{
VLOG
(
3
)
<<
"No need to dequantize weights because weight_thresholds is empty."
;
return
;
}
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
op_node
->
Name
()
==
"conv2d"
||
op_node
->
Name
()
==
"depthwise_conv2d"
)
{
if
(
IsInt8Weight
(
op_node
,
scope
,
"Filter"
))
{
DequantizeOpWeights
(
op_node
,
scope
,
"Filter"
,
"Output"
,
weight_thresholds
);
}
}
else
if
(
op_node
->
Name
()
==
"mul"
||
op_node
->
Name
()
==
"matmul"
||
op_node
->
Name
()
==
"matmul_v2"
)
{
if
(
IsInt8Weight
(
op_node
,
scope
,
"Y"
))
{
DequantizeOpWeights
(
op_node
,
scope
,
"Y"
,
"Out"
,
weight_thresholds
);
}
}
}
}
void
QuantDequantMkldnnPass
::
UpdateActivations
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"update conv2d or depthwise_conv2d fused activation"
;
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
!
op_node
->
IsOp
())
continue
;
if
(
op_node
->
Name
()
==
"conv2d"
||
op_node
->
Name
()
==
"depthwise_conv2d"
)
{
auto
*
op_desc
=
op_node
->
Op
();
if
(
!
op_desc
->
HasAttr
(
"fuse_activation"
))
{
std
::
string
activation
;
if
(
op_desc
->
GetAttrIfExists
<
bool
>
(
"fuse_relu"
))
{
activation
=
"relu"
;
}
else
if
(
op_desc
->
GetAttrIfExists
<
bool
>
(
"fuse_brelu"
))
{
activation
=
"relu6"
;
float
alpha
=
6.0
;
if
(
op_desc
->
HasAttr
(
"fuse_brelu_threshold"
))
{
alpha
=
BOOST_GET_CONST
(
float
,
op_desc
->
GetAttr
(
"fuse_brelu_threshold"
));
}
op_node
->
Op
()
->
SetAttr
(
"fuse_alpha"
,
alpha
);
}
op_node
->
Op
()
->
SetAttr
(
"fuse_activation"
,
activation
);
}
}
}
}
void
QuantDequantMkldnnPass
::
RemoveCtrlVars
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"remove control flow variable"
;
std
::
unordered_set
<
const
Node
*>
nodes2rm
=
{};
for
(
auto
*
op_node
:
ir
::
TopologyVarientSort
(
*
graph
,
static_cast
<
ir
::
SortKind
>
(
0
)))
{
if
(
op_node
->
IsCtrlVar
())
{
nodes2rm
.
insert
(
op_node
);
}
}
GraphSafeRemoveNodes
(
graph
,
nodes2rm
);
}
void
QuantDequantMkldnnPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Convert paddle slim quantized model to mkldnn quantized model."
;
const
std
::
string
pattern_name
=
"quant_dequant_mkldnn_pass"
;
FusePassBase
::
Init
(
pattern_name
,
graph
);
const
std
::
unordered_set
<
std
::
string
>
skip_ops
=
{
"conv2d"
,
"depthwise_conv2d"
,
"mul"
,
"matmul"
,
"matmul_v2"
};
const
std
::
unordered_set
<
std
::
string
>
fake_quantize_types
=
{
"fake_quantize_moving_average_abs_max"
,
"fake_quantize_range_abs_max"
};
const
std
::
unordered_set
<
std
::
string
>
fake_dequantize_types
=
{
"fake_dequantize_max_abs"
,
"fake_channel_wise_dequantize_max_abs"
};
const
std
::
unordered_set
<
std
::
string
>
fake_quantize_dequantize_types
=
{
"fake_quantize_dequantize_abs_max"
,
"fake_quantize_dequantize_moving_average_abs_max"
,
"fake_channel_wise_quantize_dequantize_abs_max"
};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
weight_thresholds
{};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
var_quant_scales
{};
auto
*
scope
=
param_scope
();
MarkSkipQuantizedOps
(
graph
,
skip_ops
);
MarkSkipQuantizedPool2d
(
graph
);
CollectInfoFromFake
(
graph
,
scope
,
fake_dequantize_types
,
&
weight_thresholds
);
CollectInputScalesFromFake
(
graph
,
scope
,
fake_quantize_types
,
&
var_quant_scales
);
CollectOutputScalesFromAttr
(
graph
,
&
var_quant_scales
);
RemoveFakeOps
(
graph
,
fake_quantize_types
,
fake_dequantize_types
,
fake_quantize_dequantize_types
);
DequantizeWeights
(
graph
,
scope
,
weight_thresholds
);
UpdateActivations
(
graph
);
RemoveCtrlVars
(
graph
);
// save var_quant_scales in the first op's attr
// for compute_propagate_scales_mkldnn_pass
SaveInfoInTheFirstOp
(
graph
,
"has_quant_info"
,
"var_quant_scales"
,
var_quant_scales
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
quant_dequant_mkldnn_pass
,
paddle
::
framework
::
ir
::
QuantDequantMkldnnPass
);
REGISTER_PASS_CAPABILITY
(
quant_dequant_mkldnn_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
LE
(
"conv2d"
,
1
)
.
EQ
(
"fc"
,
0
)
.
LE
(
"conv2d_transpose"
,
2
)
.
EQ
(
"fake_quantize_abs_max"
,
0
)
.
EQ
(
"fake_quantize_range_abs_max"
,
0
)
.
EQ
(
"fake_quantize_moving_average_abs_max"
,
0
)
.
LE
(
"fake_channel_wise_quantize_abs_max"
,
1
)
.
EQ
(
"fake_dequantize_max_abs"
,
0
));
paddle/fluid/framework/ir/mkldnn/quant_dequant_mkldnn_pass.h
0 → 100644
浏览文件 @
04f20b83
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
QuantDequantMkldnnPass
:
public
FusePassBase
{
public:
QuantDequantMkldnnPass
()
=
default
;
virtual
~
QuantDequantMkldnnPass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
void
MarkSkipQuantizedOps
(
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
skip_ops
)
const
;
void
MarkSkipQuantizedPool2d
(
ir
::
Graph
*
graph
)
const
;
void
CollectInfoFromFake
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
fake_dequantize_types
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
weight_thresholds
)
const
;
void
CollectInputScalesFromFake
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_types
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
var_quant_scales
)
const
;
void
CollectOutputScalesFromAttr
(
ir
::
Graph
*
graph
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>*
var_quant_scales
)
const
;
void
CollectFakeQuantizeOps
(
ir
::
Graph
*
graph
,
Node
*
op_node
,
std
::
unordered_set
<
const
Node
*>*
nodes2rm
)
const
;
void
CollectFakeDequantizeOps
(
ir
::
Graph
*
graph
,
Node
*
op_node
,
std
::
unordered_set
<
const
Node
*>*
nodes2rm
)
const
;
void
RemoveFakeOps
(
ir
::
Graph
*
graph
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_types
,
const
std
::
unordered_set
<
std
::
string
>&
fake_dequantize_types
,
const
std
::
unordered_set
<
std
::
string
>&
fake_quantize_dequantize_types
)
const
;
bool
IsInt8Weight
(
Node
*
op_node
,
Scope
*
scope
,
const
std
::
string
&
weight_name
)
const
;
void
TransposeWeight
(
Tensor
*
input
)
const
;
void
DequantizeOpWeights
(
Node
*
op_node
,
Scope
*
scope
,
const
std
::
string
&
weight_name
,
const
std
::
string
&
output_name
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>&
weight_thresholds
)
const
;
void
DequantizeWeights
(
ir
::
Graph
*
graph
,
Scope
*
scope
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>&
weight_thresholds
)
const
;
void
UpdateActivations
(
ir
::
Graph
*
graph
)
const
;
void
RemoveCtrlVars
(
ir
::
Graph
*
graph
)
const
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录