提交 03f4beb8 编写于 作者: Q qiaolongfei

add doc for ErrorClipByValue GradientClipByValue and GradientClipByGlobalNorm

上级 e3578ab1
...@@ -24,8 +24,6 @@ __all__ = [ ...@@ -24,8 +24,6 @@ __all__ = [
'GradientClipByValue', 'GradientClipByValue',
'GradientClipByNorm', 'GradientClipByNorm',
'GradientClipByGlobalNorm', 'GradientClipByGlobalNorm',
'append_gradient_clip_ops',
'error_clip_callback',
] ]
...@@ -38,6 +36,25 @@ class BaseErrorClipAttr(object): ...@@ -38,6 +36,25 @@ class BaseErrorClipAttr(object):
class ErrorClipByValue(BaseErrorClipAttr): class ErrorClipByValue(BaseErrorClipAttr):
"""
Clips tensor values to the range [min, max].
Given a tensor t, this operation clips its value to min and max inplace.
- Any values less than min are set to min.
- Any values greater than max are set to max.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, \
will be set to -max by framework.
Examples:
.. code-block:: python
var = fluid.framework.Variable(..., error_clip=ErrorClipByValue(max=5.0), ...)
"""
def __init__(self, max, min=None): def __init__(self, max, min=None):
max = float(max) max = float(max)
if min is None: if min is None:
...@@ -99,6 +116,31 @@ class NullGradientClipAttr(BaseGradientClipAttr): ...@@ -99,6 +116,31 @@ class NullGradientClipAttr(BaseGradientClipAttr):
class GradientClipByValue(BaseGradientClipAttr): class GradientClipByValue(BaseGradientClipAttr):
"""
Clips gradient values to the range [min, max].
Given a tensor t, this operation clips its value to min and max inplace.
- Any values less than min are set to min.
- Any values greater than max are set to max.
Args:
max (float): The maximum value to clip by.
min (float, optional): The minimum value to clip by. if not set by user, \
will be set to -max by framework.
Examples:
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
trainable=True,
clip=GradientClipByValue(-1.0, 1.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
"""
def __init__(self, max, min=None): def __init__(self, max, min=None):
max = float(max) max = float(max)
if min is None: if min is None:
...@@ -120,6 +162,37 @@ class GradientClipByValue(BaseGradientClipAttr): ...@@ -120,6 +162,37 @@ class GradientClipByValue(BaseGradientClipAttr):
class GradientClipByNorm(BaseGradientClipAttr): class GradientClipByNorm(BaseGradientClipAttr):
"""
Clips tensor values to a maximum L2-norm.
This operator limits the L2 norm of the input :math:`X` within :math:`max\_norm`.
If the L2 norm of :math:`X` is less than or equal to :math:`max\_norm`, :math:`Out`
will be the same as :math:`X`. If the L2 norm of :math:`X` is greater than
:math:`max\_norm`, :math:`X` will be linearly scaled to make the L2 norm of
:math:`Out` equal to :math:`max\_norm`, as shown in the following formula:
.. math::
Out = \\frac{max\_norm * X}{norm(X)},
where :math:`norm(X)` represents the L2 norm of :math:`X`.
Args:
clip_norm (float): The maximum norm value
Examples:
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
trainable=True,
clip=GradientClipByNorm(clip_norm=2.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
"""
def __init__(self, clip_norm): def __init__(self, clip_norm):
self.clip_norm = clip_norm self.clip_norm = clip_norm
...@@ -184,13 +257,14 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): ...@@ -184,13 +257,14 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
def set_gradient_clip(clip, param_list=None, program=None): def set_gradient_clip(clip, param_list=None, program=None):
""" """
To specify parameters that require gradient clip. To specify parameters that require gradient clip.
Args: Args:
clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr, clip(BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
which describes the type and detailed attributes of required gradient clip. which describes the type and detailed attributes of required gradient clip.
param_list(list, None by default): Parameters that require gradient clip. param_list(list(Variable)): Parameters that require gradient clip.
It can be a list of parameter or a list of parameter's name. It can be a list of parameter or a list of parameter's name.
When it's None, all parameters in the program will be included. When it's None, all parameters in the program will be included.
program(Program, None by default): The program where parameters are. program(Program): The program where parameters are.
Will be the default main program when assigned with None. Will be the default main program when assigned with None.
""" """
if not isinstance(clip, BaseGradientClipAttr): if not isinstance(clip, BaseGradientClipAttr):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册