Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0380af3e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0380af3e
编写于
9月 16, 2021
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
差异文件
Merge
https://github.com/PaddlePaddle/Paddle
into disable_iterable_dataset_unittest
上级
1727bf35
4b683887
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
609 addition
and
83 deletion
+609
-83
paddle/fluid/operators/group_norm_op.cc
paddle/fluid/operators/group_norm_op.cc
+6
-0
paddle/fluid/operators/group_norm_op.cu
paddle/fluid/operators/group_norm_op.cu
+3
-2
paddle/fluid/operators/group_norm_op.h
paddle/fluid/operators/group_norm_op.h
+4
-4
paddle/fluid/operators/index_select_op_npu.cc
paddle/fluid/operators/index_select_op_npu.cc
+107
-6
python/paddle/fluid/dataloader/dataloader_iter.py
python/paddle/fluid/dataloader/dataloader_iter.py
+109
-46
python/paddle/fluid/dataloader/fetcher.py
python/paddle/fluid/dataloader/fetcher.py
+25
-8
python/paddle/fluid/tests/unittests/npu/test_index_select_op_npu.py
...dle/fluid/tests/unittests/npu/test_index_select_op_npu.py
+23
-6
python/paddle/fluid/tests/unittests/test_dataloader_dataset.py
...n/paddle/fluid/tests/unittests/test_dataloader_dataset.py
+7
-8
python/paddle/fluid/tests/unittests/test_segment_ops.py
python/paddle/fluid/tests/unittests/test_segment_ops.py
+61
-1
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+13
-2
python/paddle/incubate/tensor/__init__.py
python/paddle/incubate/tensor/__init__.py
+25
-0
python/paddle/incubate/tensor/math.py
python/paddle/incubate/tensor/math.py
+225
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/operators/group_norm_op.cc
浏览文件 @
0380af3e
...
@@ -66,6 +66,12 @@ class GroupNormOp : public framework::OperatorWithKernel {
...
@@ -66,6 +66,12 @@ class GroupNormOp : public framework::OperatorWithKernel {
"The Attr(groups) of Op(group_norm) must be "
"The Attr(groups) of Op(group_norm) must be "
"greater than or equal to 1. But received: groups is [%s]."
,
"greater than or equal to 1. But received: groups is [%s]."
,
groups
));
groups
));
PADDLE_ENFORCE_EQ
(
channel_num
%
groups
,
0
,
platform
::
errors
::
InvalidArgument
(
"Expected number of channels in input to be divisible by "
"num_groups, but got input channel is %d and num_groups is %d"
,
channel_num
,
groups
));
if
(
ctx
->
HasInput
(
"Scale"
))
{
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
...
...
paddle/fluid/operators/group_norm_op.cu
浏览文件 @
0380af3e
...
@@ -144,7 +144,8 @@ class GroupNormKernel<platform::CUDADeviceContext, T>
...
@@ -144,7 +144,8 @@ class GroupNormKernel<platform::CUDADeviceContext, T>
const
int
C
=
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
const
int
W
=
const
int
W
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
:
x_dims
[
x_dims
.
size
()
-
2
]);
:
x_dims
[
x_dims
.
size
()
-
2
]);
...
@@ -314,7 +315,7 @@ class GroupNormGradKernel<platform::CUDADeviceContext, T>
...
@@ -314,7 +315,7 @@ class GroupNormGradKernel<platform::CUDADeviceContext, T>
const
int
C
=
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
const
int
W
=
const
int
W
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
:
x_dims
[
x_dims
.
size
()
-
2
]);
:
x_dims
[
x_dims
.
size
()
-
2
]);
...
...
paddle/fluid/operators/group_norm_op.h
浏览文件 @
0380af3e
...
@@ -52,7 +52,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
...
@@ -52,7 +52,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
const
int
C
=
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
@@ -100,7 +100,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
...
@@ -100,7 +100,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
int
imid
;
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
)
{
imid
+=
M
,
iter_x_data
+=
M
)
{
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
// loop to get high precision and performance
...
@@ -138,7 +138,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
...
@@ -138,7 +138,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
int
imid
;
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
*
C
)
{
imid
+=
M
,
iter_x_data
+=
M
*
C
)
{
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
// loop to get high precision and performance
...
@@ -236,7 +236,7 @@ class GroupNormGradKernel : public framework::OpKernel<T> {
...
@@ -236,7 +236,7 @@ class GroupNormGradKernel : public framework::OpKernel<T> {
const
int
C
=
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
...
...
paddle/fluid/operators/index_select_op_npu.cc
浏览文件 @
0380af3e
...
@@ -21,12 +21,12 @@ namespace operators {
...
@@ -21,12 +21,12 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSelectNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
IndexSelectNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
auto
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
auto
stream
=
...
@@ -43,7 +43,104 @@ class IndexSelectNPUKernel : public framework::OpKernel<T> {
...
@@ -43,7 +43,104 @@ class IndexSelectNPUKernel : public framework::OpKernel<T> {
}
}
};
};
// todo: add class 'IndexSelectGradNPUKernel' here.
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSelectGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
x_dims
=
x_grad
->
dims
();
auto
out_dims
=
out_grad
->
dims
();
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
{
dim
+=
out_dims
.
size
();
}
Tensor
casted_index
;
if
(
index
->
type
()
!=
framework
::
proto
::
VarType
::
INT32
)
{
casted_index
.
mutable_data
<
int32_t
>
(
index
->
dims
(),
ctx
.
GetPlace
());
const
auto
&
cast_runner
=
NpuOpRunner
(
"Cast"
,
{
*
index
},
{
casted_index
},
{{
"dst_type"
,
ACL_INT32
}});
cast_runner
.
Run
(
stream
);
}
else
{
casted_index
.
ShareDataWith
(
*
index
);
}
if
(
dim
==
0
)
{
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
zeros_runner
=
NpuOpRunner
(
"ZerosLike"
,
{
*
x_grad
},
{
*
x_grad
});
zeros_runner
.
Run
(
stream
);
NpuOpRunner
runner
;
runner
.
SetType
(
"UnsortedSegmentSum"
)
.
AddInput
(
*
out_grad
)
.
AddInput
(
casted_index
)
.
AddInput
(
std
::
vector
<
int64_t
>
{
x_dims
[
dim
]})
.
AddOutput
(
*
x_grad
);
runner
.
Run
(
stream
);
}
else
{
Tensor
transed_out_grad
;
std
::
vector
<
int
>
in_trans_perm
;
in_trans_perm
.
push_back
(
dim
);
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
++
i
)
{
if
(
i
==
dim
)
continue
;
in_trans_perm
.
push_back
(
i
);
}
framework
::
DDim
transed_out_dims
(
out_dims
);
for
(
size_t
i
=
0
;
i
<
in_trans_perm
.
size
();
++
i
)
{
transed_out_dims
[
i
]
=
out_dims
[
in_trans_perm
[
i
]];
}
transed_out_grad
.
mutable_data
<
T
>
(
transed_out_dims
,
ctx
.
GetPlace
());
framework
::
NPUAttributeMap
in_trans_attr
=
{{
"perm"
,
in_trans_perm
}};
const
auto
&
in_trans_runner
=
NpuOpRunner
(
"TransposeD"
,
{
*
out_grad
},
{
transed_out_grad
},
in_trans_attr
);
in_trans_runner
.
Run
(
stream
);
Tensor
sum_out
;
framework
::
DDim
sum_dims
(
x_dims
);
sum_dims
[
0
]
=
x_dims
[
dim
];
auto
idx
=
1
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
if
(
i
==
dim
)
continue
;
sum_dims
[
idx
++
]
=
x_dims
[
i
];
}
sum_out
.
mutable_data
<
T
>
(
sum_dims
,
ctx
.
GetPlace
());
const
auto
&
zeros_runner
=
NpuOpRunner
(
"ZerosLike"
,
{
sum_out
},
{
sum_out
});
zeros_runner
.
Run
(
stream
);
NpuOpRunner
runner
;
runner
.
SetType
(
"UnsortedSegmentSum"
)
.
AddInput
(
transed_out_grad
)
.
AddInput
(
casted_index
)
.
AddInput
(
std
::
vector
<
int64_t
>
{
x_dims
[
dim
]})
.
AddOutput
(
sum_out
);
runner
.
Run
(
stream
);
std
::
vector
<
int
>
out_trans_perm
;
for
(
int
i
=
1
;
i
<
1
+
dim
;
++
i
)
{
out_trans_perm
.
push_back
(
i
);
}
out_trans_perm
.
push_back
(
0
);
for
(
int
i
=
1
+
dim
;
i
<
x_dims
.
size
();
++
i
)
{
out_trans_perm
.
push_back
(
i
);
}
framework
::
NPUAttributeMap
out_trans_attr
=
{{
"perm"
,
out_trans_perm
}};
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
out_trans_runner
=
NpuOpRunner
(
"TransposeD"
,
{
sum_out
},
{
*
x_grad
},
out_trans_attr
);
out_trans_runner
.
Run
(
stream
);
}
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
@@ -54,4 +151,8 @@ REGISTER_OP_NPU_KERNEL(
...
@@ -54,4 +151,8 @@ REGISTER_OP_NPU_KERNEL(
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
);
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
);
// todo: register npu index_select_grad kernel here.
REGISTER_OP_NPU_KERNEL
(
index_select_grad
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
);
python/paddle/fluid/dataloader/dataloader_iter.py
浏览文件 @
0380af3e
...
@@ -43,6 +43,36 @@ from .flat import _flatten_batch, _restore_batch
...
@@ -43,6 +43,36 @@ from .flat import _flatten_batch, _restore_batch
__all__
=
[
'get_worker_info'
]
__all__
=
[
'get_worker_info'
]
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader
=
None
def
_clear_loader
():
global
_loader
if
_loader
is
not
None
:
try
:
_loader
.
__del__
()
del
_loader
except
:
pass
CleanupFuncRegistrar
.
register
(
_clear_loader
)
class
_DataLoaderIterBase
(
object
):
class
_DataLoaderIterBase
(
object
):
"""
"""
...
@@ -100,6 +130,16 @@ class _DataLoaderIterBase(object):
...
@@ -100,6 +130,16 @@ class _DataLoaderIterBase(object):
def
__len__
(
self
):
def
__len__
(
self
):
return
len
(
self
.
_batch_sampler
)
return
len
(
self
.
_batch_sampler
)
def
_exit_thread_expectedly
(
self
):
self
.
_thread_done_event
.
set
()
if
self
.
_blocking_queue
:
self
.
_blocking_queue
.
close
()
def
_exit_thread_unexpectedly
(
self
):
self
.
_thread_done_event
.
set
()
if
self
.
_blocking_queue
:
self
.
_blocking_queue
.
kill
()
class
_DataLoaderIterSingleProcess
(
_DataLoaderIterBase
):
class
_DataLoaderIterSingleProcess
(
_DataLoaderIterBase
):
"""
"""
...
@@ -125,9 +165,13 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
...
@@ -125,9 +165,13 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
# NOTE: len(self._places) batch data compose as an output
# NOTE: len(self._places) batch data compose as an output
# iteration, set blocking_queue can cache 2 iteration datas
# iteration, set blocking_queue can cache 2 iteration datas
# at most here
# at most here
self
.
_blocking_queue_capacity
=
2
*
len
(
self
.
_places
)
self
.
_blocking_queue_capacity
=
1
*
len
(
self
.
_places
)
self
.
_init_thread
()
self
.
_init_thread
()
self
.
_shutdown
=
False
global
_loader
_loader
=
self
def
_init_thread
(
self
):
def
_init_thread
(
self
):
self
.
_var_names
=
[
v
.
name
for
v
in
self
.
_feed_list
]
self
.
_var_names
=
[
v
.
name
for
v
in
self
.
_feed_list
]
...
@@ -151,7 +195,6 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
...
@@ -151,7 +195,6 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
self
.
_thread
.
start
()
self
.
_thread
.
start
()
def
_thread_loop
(
self
,
legacy_expected_place
):
def
_thread_loop
(
self
,
legacy_expected_place
):
try
:
#NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
#NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
# and it will call platform::SetDeviceId() in c++ internally.
# and it will call platform::SetDeviceId() in c++ internally.
# If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
# If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
...
@@ -159,14 +202,28 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
...
@@ -159,14 +202,28 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
# APIs in this thread.
# APIs in this thread.
_set_expected_place
(
legacy_expected_place
)
_set_expected_place
(
legacy_expected_place
)
for
indices
in
self
.
_sampler_iter
:
while
not
self
.
_thread_done_event
.
is_set
():
try
:
indices
=
next
(
self
.
_sampler_iter
)
# read data from dataset in mini-batch
# read data from dataset in mini-batch
batch
=
self
.
_dataset_fetcher
.
fetch
(
indices
)
# with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
# read data from dataset in mini-batch
batch
=
self
.
_dataset_fetcher
.
fetch
(
indices
,
self
.
_thread_done_event
)
except
StopIteration
:
self
.
_exit_thread_expectedly
()
return
if
batch
is
None
or
self
.
_thread_done_event
.
is_set
():
break
# flat batch and record structure infos
# flat batch and record structure infos
batch
,
structure
=
_flatten_batch
(
batch
)
batch
,
structure
=
_flatten_batch
(
batch
)
self
.
_structure_infos
.
append
(
structure
)
self
.
_structure_infos
.
append
(
structure
)
if
self
.
_thread_done_event
.
is_set
():
break
try
:
# pack as LoDTensorArray
# pack as LoDTensorArray
array
=
core
.
LoDTensorArray
()
array
=
core
.
LoDTensorArray
()
for
slot
in
batch
:
for
slot
in
batch
:
...
@@ -179,22 +236,19 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
...
@@ -179,22 +236,19 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
array
.
append
(
slot
)
array
.
append
(
slot
)
if
not
self
.
_blocking_queue
.
push
(
array
):
if
self
.
_thread_done_event
.
is_set
():
break
break
if
self
.
_thread_done_event
.
is_set
():
try
:
break
self
.
_blocking_queue
.
push
(
array
)
except
:
self
.
_exit_thread_expectedly
()
self
.
_blocking_queue
.
close
()
except
:
self
.
_shutdown_thread
()
self
.
_exit_thread_unexpectedly
()
except
StopIteration
:
self
.
_blocking_queue
.
close
()
except
Exception
:
self
.
_blocking_queue
.
kill
()
self
.
_shutdown_thread
()
logging
.
warning
(
"DataLoader reader thread raised an exception."
)
six
.
reraise
(
*
sys
.
exc_info
())
six
.
reraise
(
*
sys
.
exc_info
())
self
.
_exit_thread_expectedly
()
def
__next__
(
self
):
def
__next__
(
self
):
try
:
try
:
if
in_dygraph_mode
():
if
in_dygraph_mode
():
...
@@ -221,28 +275,46 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
...
@@ -221,28 +275,46 @@ class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
return
data
return
data
except
StopIteration
:
except
StopIteration
:
self
.
_reader
.
shutdown
()
self
.
_reader
.
shutdown
()
self
.
_try_shutdown_all
()
six
.
reraise
(
*
sys
.
exc_info
())
six
.
reraise
(
*
sys
.
exc_info
())
def
_shutdown_thread
(
self
):
def
_shutdown_thread
(
self
):
if
self
.
_thread
:
if
self
.
_thread
:
self
.
_thread_done_event
.
set
()
self
.
_thread_done_event
.
set
()
# NOTE: we wait for _thread exit for 3 seconds, if
# thread not exit normally, force kill it
for
_
in
range
(
3
):
if
self
.
_thread
.
is_alive
():
time
.
sleep
(
1
)
else
:
break
else
:
if
self
.
_thread
is
not
threading
.
current_thread
():
if
self
.
_thread
is
not
threading
.
current_thread
():
self
.
_thread
.
join
()
self
.
_thread
.
join
()
self
.
_thread
=
None
self
.
_thread
=
None
# python2 compatibility
# python2 compatibility
def
next
(
self
):
def
next
(
self
):
return
self
.
__next__
()
return
self
.
__next__
()
def
__del__
(
self
):
def
_try_shutdown_all
(
self
):
# _blocking_queue in keep order mode holds sub-threads
if
not
self
.
_shutdown
:
# need to release thread resources on unexpected exit
try
:
# # _blocking_queue in keep order mode holds sub-threads
# # need to release thread resources on unexpected exit
if
self
.
_blocking_queue
:
if
self
.
_blocking_queue
:
self
.
_blocking_queue
.
close
()
self
.
_blocking_queue
.
close
()
self
.
_blocking_queue
=
None
# NOTE: blocking queue should be closed firstly for
# NOTE: blocking queue should be closed firstly for
# blocking queue read may hang and _thread_done_event
# blocking queue read may hang and _thread_done_event
# cannot be checked
# cannot be checked
self
.
_shutdown_thread
()
self
.
_shutdown_thread
()
finally
:
self
.
_shutdown
=
True
def
__del__
(
self
):
self
.
_try_shutdown_all
()
class
_DataLoaderIterMultiProcess
(
_DataLoaderIterBase
):
class
_DataLoaderIterMultiProcess
(
_DataLoaderIterBase
):
...
@@ -421,15 +493,6 @@ class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
...
@@ -421,15 +493,6 @@ class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
core
.
_erase_process_pids
(
id
(
self
))
core
.
_erase_process_pids
(
id
(
self
))
self
.
_shutdown
=
True
self
.
_shutdown
=
True
def
_exit_thread_expectedly
(
self
):
self
.
_thread_done_event
.
set
()
self
.
_blocking_queue
.
close
()
def
_exit_thread_unexpectedly
(
self
):
self
.
_thread_done_event
.
set
()
self
.
_blocking_queue
.
kill
()
logging
.
error
(
"DataLoader reader thread raised an exception!"
)
def
_thread_loop
(
self
,
legacy_expected_place
):
def
_thread_loop
(
self
,
legacy_expected_place
):
#NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
#NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
# and it will call platform::SetDeviceId() in c++ internally.
# and it will call platform::SetDeviceId() in c++ internally.
...
...
python/paddle/fluid/dataloader/fetcher.py
浏览文件 @
0380af3e
...
@@ -26,7 +26,16 @@ class _DatasetFetcher(object):
...
@@ -26,7 +26,16 @@ class _DatasetFetcher(object):
self
.
collate_fn
=
collate_fn
self
.
collate_fn
=
collate_fn
self
.
drop_last
=
drop_last
self
.
drop_last
=
drop_last
def
fetch
(
self
,
batch_indices
):
# NOTE: fetch function here perform the whole pipeline of dataset
# reading and data trasforms of a batch in each calling, this
# may take a long time inside, if DataLoader is exit outside,
# fetch need to perceive exit situation, so we pass done_event
# here for fetch to check exit status
# NOTE: if DataLoadet exit by `break`, performing GPU tensor operations,
# e.g. to_tensor may cause SIGSEGV in thread, so we pass the
# done_event argument to check DataLoader exit status between
# ecah sample processing in the batch
def
fetch
(
self
,
batch_indices
,
done_event
=
None
):
raise
NotImplementedError
(
"'fetch' not implement for class {}"
.
format
(
raise
NotImplementedError
(
"'fetch' not implement for class {}"
.
format
(
self
.
__class__
.
__name__
))
self
.
__class__
.
__name__
))
...
@@ -69,15 +78,18 @@ class _IterableDatasetFetcher(_DatasetFetcher):
...
@@ -69,15 +78,18 @@ class _IterableDatasetFetcher(_DatasetFetcher):
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
self
.
dataset_iter
=
iter
(
dataset
)
self
.
dataset_iter
=
iter
(
dataset
)
def
fetch
(
self
,
batch_indices
):
def
fetch
(
self
,
batch_indices
,
done_event
=
None
):
if
self
.
auto_collate_batch
:
if
self
.
auto_collate_batch
:
data
=
[]
data
=
[]
for
_
in
batch_indices
:
for
_
in
batch_indices
:
if
done_event
is
None
or
not
done_event
.
is_set
():
try
:
try
:
data
.
append
(
next
(
self
.
dataset_iter
))
data
.
append
(
next
(
self
.
dataset_iter
))
except
StopIteration
:
except
StopIteration
:
break
break
else
:
return
None
if
len
(
data
)
==
0
or
(
self
.
drop_last
and
if
len
(
data
)
==
0
or
(
self
.
drop_last
and
len
(
data
)
<
len
(
batch_indices
)):
len
(
data
)
<
len
(
batch_indices
)):
...
@@ -101,9 +113,14 @@ class _MapDatasetFetcher(_DatasetFetcher):
...
@@ -101,9 +113,14 @@ class _MapDatasetFetcher(_DatasetFetcher):
super
(
_MapDatasetFetcher
,
self
).
__init__
(
dataset
,
auto_collate_batch
,
super
(
_MapDatasetFetcher
,
self
).
__init__
(
dataset
,
auto_collate_batch
,
collate_fn
,
drop_last
)
collate_fn
,
drop_last
)
def
fetch
(
self
,
batch_indices
):
def
fetch
(
self
,
batch_indices
,
done_event
=
None
):
if
self
.
auto_collate_batch
:
if
self
.
auto_collate_batch
:
data
=
[
self
.
dataset
[
idx
]
for
idx
in
batch_indices
]
data
=
[]
for
idx
in
batch_indices
:
if
done_event
is
None
or
not
done_event
.
is_set
():
data
.
append
(
self
.
dataset
[
idx
])
else
:
return
None
global
_WARNING_TO_LOG
global
_WARNING_TO_LOG
if
not
isinstance
(
data
[
0
],
(
Sequence
,
Mapping
))
\
if
not
isinstance
(
data
[
0
],
(
Sequence
,
Mapping
))
\
...
...
python/paddle/fluid/tests/unittests/npu/test_index_select_op_npu.py
浏览文件 @
0380af3e
...
@@ -35,7 +35,10 @@ class TestNPUIndexSelect(OpTest):
...
@@ -35,7 +35,10 @@ class TestNPUIndexSelect(OpTest):
x_np
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
x_np
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
index_np
=
np
.
random
.
randint
(
index_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
x_shape
[
self
.
dim
],
size
=
self
.
index_size
)
low
=
0
,
high
=
self
.
x_shape
[
self
.
dim
],
size
=
self
.
index_size
,
dtype
=
self
.
index_type
)
# compute real output as baseline.
# compute real output as baseline.
outer_loop
=
np
.
prod
(
self
.
x_shape
[:
self
.
dim
])
outer_loop
=
np
.
prod
(
self
.
x_shape
[:
self
.
dim
])
...
@@ -56,18 +59,14 @@ class TestNPUIndexSelect(OpTest):
...
@@ -56,18 +59,14 @@ class TestNPUIndexSelect(OpTest):
self
.
attrs
=
{
'dim'
:
self
.
dim
}
self
.
attrs
=
{
'dim'
:
self
.
dim
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
out
}
# todo: comment second line when index_select grad npu op is ready.
def
set_npu
(
self
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
self
.
check_output_with_place
(
self
.
place
)
# todo: replace first line with second line when index_select grad npu op is ready.
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
pass
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
#self.check_grad_with_place(self.place, ['X'], 'Out')
def
config
(
self
):
def
config
(
self
):
self
.
x_shape
=
(
100
,
4
,
5
)
self
.
x_shape
=
(
100
,
4
,
5
)
...
@@ -86,6 +85,24 @@ class TestNPUIndexSelectCase2(TestNPUIndexSelect):
...
@@ -86,6 +85,24 @@ class TestNPUIndexSelectCase2(TestNPUIndexSelect):
self
.
index_size
=
10
self
.
index_size
=
10
class
TestNPUIndexSelectCase3
(
TestNPUIndexSelect
):
def
config
(
self
):
self
.
dim
=
0
self
.
x_type
=
np
.
float32
self
.
index_type
=
np
.
int32
self
.
x_shape
=
(
10
,
10
,
4
,
10
)
self
.
index_size
=
10
class
TestNPUIndexSelectCase4
(
TestNPUIndexSelect
):
def
config
(
self
):
self
.
dim
=
-
1
self
.
x_type
=
np
.
float32
self
.
index_type
=
np
.
int32
self
.
x_shape
=
(
10
,
10
,
4
,
10
)
self
.
index_size
=
10
class
TestNPUIndexSelectAPI
(
unittest
.
TestCase
):
class
TestNPUIndexSelectAPI
(
unittest
.
TestCase
):
def
input_data
(
self
):
def
input_data
(
self
):
self
.
data_x
=
np
.
array
([[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
self
.
data_x
=
np
.
array
([[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
...
...
python/paddle/fluid/tests/unittests/test_dataloader_dataset.py
浏览文件 @
0380af3e
...
@@ -43,14 +43,18 @@ class TestDatasetAbstract(unittest.TestCase):
...
@@ -43,14 +43,18 @@ class TestDatasetAbstract(unittest.TestCase):
class
TestDatasetWithDiffOutputPlace
(
unittest
.
TestCase
):
class
TestDatasetWithDiffOutputPlace
(
unittest
.
TestCase
):
def
get_dataloader
(
self
,
num_workers
):
def
get_dataloader
(
self
,
num_workers
):
dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
dataset
=
paddle
.
vision
.
datasets
.
MNIST
(
mode
=
'test'
,
transform
=
transforms
.
ToTensor
())
mode
=
'test'
,
transform
=
transforms
.
Compose
([
transforms
.
CenterCrop
(
20
),
transforms
.
RandomResizedCrop
(
14
),
transforms
.
Normalize
(),
transforms
.
ToTensor
()
]))
loader
=
paddle
.
io
.
DataLoader
(
loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
32
,
num_workers
=
num_workers
,
shuffle
=
True
)
dataset
,
batch_size
=
32
,
num_workers
=
num_workers
,
shuffle
=
True
)
return
loader
return
loader
def
run_check_on_cpu
(
self
):
def
run_check_on_cpu
(
self
):
paddle
.
set_device
(
'cpu'
)
paddle
.
set_device
(
'cpu'
)
loader
=
self
.
get_dataloader
(
0
)
loader
=
self
.
get_dataloader
(
1
)
for
image
,
label
in
loader
:
for
image
,
label
in
loader
:
self
.
assertTrue
(
image
.
place
.
is_cpu_place
())
self
.
assertTrue
(
image
.
place
.
is_cpu_place
())
self
.
assertTrue
(
label
.
place
.
is_cpu_place
())
self
.
assertTrue
(
label
.
place
.
is_cpu_place
())
...
@@ -66,12 +70,7 @@ class TestDatasetWithDiffOutputPlace(unittest.TestCase):
...
@@ -66,12 +70,7 @@ class TestDatasetWithDiffOutputPlace(unittest.TestCase):
for
image
,
label
in
loader
:
for
image
,
label
in
loader
:
self
.
assertTrue
(
image
.
place
.
is_gpu_place
())
self
.
assertTrue
(
image
.
place
.
is_gpu_place
())
self
.
assertTrue
(
label
.
place
.
is_cuda_pinned_place
())
self
.
assertTrue
(
label
.
place
.
is_cuda_pinned_place
())
# FIXME(dkp): when input tensor is in GPU place and
break
# iteration break in the median, it seems the GPU
# tensor put into blocking_queue cannot be safely
# released and may cause ABRT/SEGV, this should
# be fixed
# break
def
test_multi_process
(
self
):
def
test_multi_process
(
self
):
# DataLoader with multi-process mode is not supported on MacOs and Windows currently
# DataLoader with multi-process mode is not supported on MacOs and Windows currently
...
...
python/paddle/fluid/tests/unittests/test_segment_ops.py
浏览文件 @
0380af3e
...
@@ -15,8 +15,11 @@
...
@@ -15,8 +15,11 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
sys
import
sys
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
from
op_test
import
OpTest
...
@@ -198,5 +201,62 @@ class TestSegmentMean2(TestSegmentMean):
...
@@ -198,5 +201,62 @@ class TestSegmentMean2(TestSegmentMean):
self
.
attrs
=
{
'pooltype'
:
"MEAN"
}
self
.
attrs
=
{
'pooltype'
:
"MEAN"
}
class
API_SegmentOpsTest
(
unittest
.
TestCase
):
def
test_static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
3
,
3
],
dtype
=
"float32"
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
3
],
dtype
=
'int32'
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
data1
=
np
.
array
([[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
data2
=
np
.
array
([
0
,
0
,
1
],
dtype
=
"int32"
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
exe
.
run
(
feed
=
{
'x'
:
data1
,
'y'
:
data2
},
fetch_list
=
[
res_sum
,
res_mean
,
res_max
,
res_min
])
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
,
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
def
test_dygraph
(
self
):
device
=
paddle
.
CPUPlace
()
with
paddle
.
fluid
.
dygraph
.
guard
(
device
):
x
=
paddle
.
to_tensor
(
[[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
y
=
paddle
.
to_tensor
([
0
,
0
,
1
],
dtype
=
"int32"
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
[
res_sum
,
res_mean
,
res_max
,
res_min
]
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
.
numpy
(),
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/incubate/__init__.py
浏览文件 @
0380af3e
...
@@ -18,7 +18,18 @@ from .checkpoint import auto_checkpoint # noqa: F401
...
@@ -18,7 +18,18 @@ from .checkpoint import auto_checkpoint # noqa: F401
from
..fluid.layer_helper
import
LayerHelper
# noqa: F401
from
..fluid.layer_helper
import
LayerHelper
# noqa: F401
from
.operators
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.operators
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.operators
import
softmax_mask_fuse
# noqa: F401
from
.operators
import
softmax_mask_fuse
# noqa: F401
from
.tensor
import
segment_sum
from
.tensor
import
segment_mean
from
.tensor
import
segment_max
from
.tensor
import
segment_min
__all__
=
[
# noqa
__all__
=
[
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
,
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
]
python/paddle/incubate/tensor/__init__.py
0 → 100644
浏览文件 @
0380af3e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.math
import
segment_sum
from
.math
import
segment_mean
from
.math
import
segment_max
from
.math
import
segment_min
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
python/paddle/incubate/tensor/math.py
0 → 100644
浏览文件 @
0380af3e
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
import
paddle
from
paddle.fluid.layer_helper
import
LayerHelper
,
in_dygraph_mode
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle
import
_C_ops
def
segment_sum
(
data
,
segment_ids
,
name
=
None
):
"""
Segment Sum Operator.
This operator sums the elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
sum_{j} data_{j}$
where sum is over j such that `segment_ids[j] == i`.
Args:
data (Tensor): A tensor, available data type float32, float64.
segment_ids (Tensor): A 1-D tensor, which have the same size
with the first dimension of input data.
Available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_sum(data, segment_ids)
#Outputs: [[4., 4., 4.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"SUM"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_sum"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"SUM"
})
return
out
def
segment_mean
(
data
,
segment_ids
,
name
=
None
):
"""
Segment mean Operator.
Ihis operator calculate the mean value of input `data` which
with the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
frac{1}{n_i}
\\
sum_{j} data[j]$
where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
of all index 'segment_ids[j] == i'.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_mean(data, segment_ids)
#Outputs: [[2., 2., 2.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MEAN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_mean"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MEAN"
})
return
out
def
segment_min
(
data
,
segment_ids
,
name
=
None
):
"""
Segment min operator.
This operator calculate the minimum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where min is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_min(data, segment_ids)
#Outputs: [[1., 2., 1.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MIN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_min"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MIN"
})
return
out
def
segment_max
(
data
,
segment_ids
,
name
=
None
):
"""
Segment max operator.
This operator calculate the maximum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where max is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_max(data, segment_ids)
#Outputs: [[3., 2., 3.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MAX"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_max"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MAX"
})
return
out
python/setup.py.in
浏览文件 @
0380af3e
...
@@ -162,6 +162,7 @@ packages=['paddle',
...
@@ -162,6 +162,7 @@ packages=['paddle',
'paddle.incubate.optimizer',
'paddle.incubate.optimizer',
'paddle.incubate.checkpoint',
'paddle.incubate.checkpoint',
'paddle.incubate.operators',
'paddle.incubate.operators',
'paddle.incubate.tensor',
'paddle.distributed.fleet',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.elastic',
'paddle.distributed.fleet.elastic',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录