Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
032c3a07
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
032c3a07
编写于
10月 23, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/jit/gru
test=develop
上级
159be8cc
6b4056bb
变更
34
展开全部
显示空白变更内容
内联
并排
Showing
34 changed file
with
388 addition
and
343 deletion
+388
-343
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-3
paddle/fluid/framework/ir/graph_helper_test.cc
paddle/fluid/framework/ir/graph_helper_test.cc
+3
-3
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+1
-1
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+5
-11
paddle/fluid/framework/program_desc_test.cc
paddle/fluid/framework/program_desc_test.cc
+1
-1
paddle/fluid/framework/reader_test.cc
paddle/fluid/framework/reader_test.cc
+1
-1
paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc
paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc
+1
-1
paddle/fluid/inference/tests/api/tester_helper.h
paddle/fluid/inference/tests/api/tester_helper.h
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+6
-6
paddle/fluid/operators/array_to_lod_tensor_op.cc
paddle/fluid/operators/array_to_lod_tensor_op.cc
+1
-1
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+8
-20
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+1
-1
paddle/fluid/operators/lod_tensor_to_array_op.cc
paddle/fluid/operators/lod_tensor_to_array_op.cc
+2
-2
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+6
-6
paddle/fluid/operators/math/concat_and_split.cc
paddle/fluid/operators/math/concat_and_split.cc
+3
-3
paddle/fluid/operators/math/concat_and_split.cu
paddle/fluid/operators/math/concat_and_split.cu
+15
-15
paddle/fluid/operators/math/concat_and_split.h
paddle/fluid/operators/math/concat_and_split.h
+1
-1
paddle/fluid/operators/math/concat_test.cc
paddle/fluid/operators/math/concat_test.cc
+1
-1
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
+1
-1
paddle/fluid/operators/sequence_concat_op.h
paddle/fluid/operators/sequence_concat_op.h
+2
-2
paddle/fluid/operators/split_op.cc
paddle/fluid/operators/split_op.cc
+5
-6
paddle/fluid/operators/split_op.h
paddle/fluid/operators/split_op.h
+15
-10
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+23
-1
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+12
-3
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+17
-16
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+38
-27
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+1
-1
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+5
-3
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+186
-168
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+17
-14
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+2
-2
python/paddle/fluid/tests/CMakeLists.txt
python/paddle/fluid/tests/CMakeLists.txt
+1
-5
python/paddle/fluid/tests/unittests/test_slice_var.py
python/paddle/fluid/tests/unittests/test_slice_var.py
+0
-1
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
032c3a07
...
@@ -42,12 +42,10 @@ if(WITH_MKLDNN)
...
@@ -42,12 +42,10 @@ if(WITH_MKLDNN)
pass_library
(
mkldnn_placement_pass base
)
pass_library
(
mkldnn_placement_pass base
)
pass_library
(
conv_bias_mkldnn_fuse_pass inference
)
pass_library
(
conv_bias_mkldnn_fuse_pass inference
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
pass_library
(
conv_elementwise_add_mkldnn_fuse_pass inference
)
endif
()
endif
()
cc_library
(
fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector
)
cc_library
(
fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector
)
if
(
WITH_MKLDNN
)
pass_library
(
conv_elementwise_add_mkldnn_fuse_pass inference
)
endif
()
set
(
GLOB_PASS_LIB
${
PASS_LIBRARY
}
CACHE INTERNAL
"Global PASS library"
)
set
(
GLOB_PASS_LIB
${
PASS_LIBRARY
}
CACHE INTERNAL
"Global PASS library"
)
...
...
paddle/fluid/framework/ir/graph_helper_test.cc
浏览文件 @
032c3a07
...
@@ -200,15 +200,15 @@ TEST(GraphHelperTest, GraphNum) {
...
@@ -200,15 +200,15 @@ TEST(GraphHelperTest, GraphNum) {
Graph
g
(
prog
);
Graph
g
(
prog
);
BuildZeroGraph
(
&
g
);
BuildZeroGraph
(
&
g
);
ASSERT_EQ
(
GraphNum
(
g
),
0
);
ASSERT_EQ
(
GraphNum
(
g
),
0
UL
);
Graph
g2
(
prog
);
Graph
g2
(
prog
);
BuildOneGraph
(
&
g2
);
BuildOneGraph
(
&
g2
);
ASSERT_EQ
(
GraphNum
(
g2
),
1
);
ASSERT_EQ
(
GraphNum
(
g2
),
1
UL
);
Graph
g3
(
prog
);
Graph
g3
(
prog
);
BuildTwoGraphs
(
&
g3
);
BuildTwoGraphs
(
&
g3
);
ASSERT_EQ
(
GraphNum
(
g3
),
2
);
ASSERT_EQ
(
GraphNum
(
g3
),
2
UL
);
}
}
}
// namespace ir
}
// namespace ir
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
032c3a07
...
@@ -124,7 +124,7 @@ TEST(GraphTest, Basic) {
...
@@ -124,7 +124,7 @@ TEST(GraphTest, Basic) {
ASSERT_EQ
(
n
->
outputs
.
size
(),
0UL
);
ASSERT_EQ
(
n
->
outputs
.
size
(),
0UL
);
}
}
}
}
ASSERT_EQ
(
nodes
.
size
(),
5
);
ASSERT_EQ
(
nodes
.
size
(),
5
UL
);
}
}
TEST
(
GraphTest
,
WriteAfterRead
)
{
TEST
(
GraphTest
,
WriteAfterRead
)
{
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
032c3a07
...
@@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
...
@@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const {
}
}
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
void
OpDesc
::
InferVarType
(
BlockDesc
*
block
)
const
{
// There are a few places that var type can be set.
// When VarDesc is created, default set to LOD_TENSOR.
// When output variable is created, default is defaut set to LOD_TENSOR.
// We limit here to be the only place that operator defines its customized
// var type inference. Hence, we don't do any "default" setting here.
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
auto
&
info
=
OpInfoMap
::
Instance
().
Get
(
this
->
Type
());
if
(
info
.
infer_var_type_
)
{
if
(
info
.
infer_var_type_
)
{
info
.
infer_var_type_
(
*
this
,
block
);
info
.
infer_var_type_
(
*
this
,
block
);
}
else
{
// all output type is LoDTensor by default
VLOG
(
10
)
<<
this
->
Type
()
<<
" has not registered InferVarType. Set output variables to "
"LOD_TENSOR"
;
for
(
auto
&
out_pair
:
this
->
outputs_
)
{
for
(
auto
&
out_var_name
:
out_pair
.
second
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
}
}
}
...
...
paddle/fluid/framework/program_desc_test.cc
浏览文件 @
032c3a07
...
@@ -103,7 +103,7 @@ TEST(ProgramDesc, copy_ctor) {
...
@@ -103,7 +103,7 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_EQ
(
1
,
op
->
GetBlockAttrId
(
"sub_block"
));
ASSERT_EQ
(
1
,
op
->
GetBlockAttrId
(
"sub_block"
));
found_sub_block
=
true
;
found_sub_block
=
true
;
ASSERT_EQ
(
2
,
op
->
GetBlocksAttrIds
(
"sub_blocks"
).
size
());
ASSERT_EQ
(
2
UL
,
op
->
GetBlocksAttrIds
(
"sub_blocks"
).
size
());
found_sub_blocks
=
true
;
found_sub_blocks
=
true
;
}
}
}
}
...
...
paddle/fluid/framework/reader_test.cc
浏览文件 @
032c3a07
...
@@ -40,7 +40,7 @@ TEST(READER, decorate_chain) {
...
@@ -40,7 +40,7 @@ TEST(READER, decorate_chain) {
auto
endpoints
=
root
->
GetEndPoints
();
auto
endpoints
=
root
->
GetEndPoints
();
ASSERT_EQ
(
endpoints
.
size
(),
2U
);
ASSERT_EQ
(
endpoints
.
size
(),
2U
);
ASSERT_NE
(
endpoints
.
count
(
end_point1
.
get
()),
0UL
);
ASSERT_NE
(
endpoints
.
count
(
end_point1
.
get
()),
0UL
);
ASSERT_NE
(
endpoints
.
count
(
end_point2
.
get
()),
0
);
ASSERT_NE
(
endpoints
.
count
(
end_point2
.
get
()),
0
UL
);
}
}
{
{
...
...
paddle/fluid/inference/tests/api/analyzer_resnet50_tester.cc
浏览文件 @
032c3a07
...
@@ -71,7 +71,7 @@ void profile(bool use_mkldnn = false) {
...
@@ -71,7 +71,7 @@ void profile(bool use_mkldnn = false) {
}
}
TEST
(
Analyzer_resnet50
,
profile
)
{
profile
();
}
TEST
(
Analyzer_resnet50
,
profile
)
{
profile
();
}
#if
n
def PADDLE_WITH_MKLDNN
#ifdef PADDLE_WITH_MKLDNN
TEST
(
Analyzer_resnet50
,
profile_mkldnn
)
{
profile
(
true
/* use_mkldnn */
);
}
TEST
(
Analyzer_resnet50
,
profile_mkldnn
)
{
profile
(
true
/* use_mkldnn */
);
}
#endif
#endif
...
...
paddle/fluid/inference/tests/api/tester_helper.h
浏览文件 @
032c3a07
...
@@ -50,7 +50,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
...
@@ -50,7 +50,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
auto
&
ref_out
=
ref_outputs
[
i
];
auto
&
ref_out
=
ref_outputs
[
i
];
size_t
size
=
VecReduceToInt
(
out
.
shape
);
size_t
size
=
VecReduceToInt
(
out
.
shape
);
size_t
ref_size
=
VecReduceToInt
(
ref_out
.
shape
);
size_t
ref_size
=
VecReduceToInt
(
ref_out
.
shape
);
EXPECT_GT
(
size
,
0
);
EXPECT_GT
(
size
,
0
UL
);
EXPECT_EQ
(
size
,
ref_size
);
EXPECT_EQ
(
size
,
ref_size
);
EXPECT_EQ
(
out
.
dtype
,
ref_out
.
dtype
);
EXPECT_EQ
(
out
.
dtype
,
ref_out
.
dtype
);
switch
(
out
.
dtype
)
{
switch
(
out
.
dtype
)
{
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
032c3a07
...
@@ -284,10 +284,10 @@ op_library(max_sequence_len_op DEPS lod_rank_table)
...
@@ -284,10 +284,10 @@ op_library(max_sequence_len_op DEPS lod_rank_table)
op_library
(
sequence_conv_op DEPS context_project
)
op_library
(
sequence_conv_op DEPS context_project
)
op_library
(
sequence_pool_op DEPS sequence_pooling
)
op_library
(
sequence_pool_op DEPS sequence_pooling
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
op_library
(
lstm_op DEPS sequence2batch lstm_compute
)
op_library
(
lstm_op DEPS sequence2batch lstm_compute
)
op_library
(
hierarchical_sigmoid_op DEPS matrix_bit_code
)
op_library
(
hierarchical_sigmoid_op DEPS matrix_bit_code
)
op_library
(
lstmp_op DEPS sequence2batch lstm_compute
)
op_library
(
lstmp_op DEPS sequence2batch lstm_compute
)
op_library
(
gru_op DEPS sequence2batch gru_compute
)
op_library
(
gru_op DEPS sequence2batch gru_compute
)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
op_library
(
recurrent_op DEPS executor
)
op_library
(
recurrent_op DEPS executor
)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
...
@@ -316,7 +316,7 @@ op_library(save_op DEPS lod_tensor)
...
@@ -316,7 +316,7 @@ op_library(save_op DEPS lod_tensor)
op_library
(
load_op DEPS lod_tensor
)
op_library
(
load_op DEPS lod_tensor
)
op_library
(
save_combine_op DEPS lod_tensor
)
op_library
(
save_combine_op DEPS lod_tensor
)
op_library
(
load_combine_op DEPS lod_tensor
)
op_library
(
load_combine_op DEPS lod_tensor
)
op_library
(
concat_op DEPS concat
)
op_library
(
concat_op DEPS concat
_and_split
)
list
(
REMOVE_ITEM GENERAL_OPS
${
DEPS_OPS
}
)
list
(
REMOVE_ITEM GENERAL_OPS
${
DEPS_OPS
}
)
...
@@ -348,6 +348,6 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory)
...
@@ -348,6 +348,6 @@ cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
cc_test
(
save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
nv_test
(
nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context
)
nv_test
(
nccl_op_test SRCS nccl_op_test.cu.cc DEPS nccl_op gpu_info device_context
)
endif
()
endif
()
nv_test
(
dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor
)
nv_test
(
dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor
)
paddle/fluid/operators/array_to_lod_tensor_op.cc
浏览文件 @
032c3a07
...
@@ -11,7 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
...
@@ -11,7 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <paddle/fluid/operators/math/concat.h>
#include <paddle/fluid/operators/math/concat
_and_split
.h>
#include <numeric>
#include <numeric>
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_rank_table.h"
...
...
paddle/fluid/operators/concat_op.h
浏览文件 @
032c3a07
...
@@ -17,7 +17,7 @@ limitations under the License. */
...
@@ -17,7 +17,7 @@ limitations under the License. */
#include <utility>
#include <utility>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -89,28 +89,16 @@ class ConcatGradKernel : public framework::OpKernel<T> {
...
@@ -89,28 +89,16 @@ class ConcatGradKernel : public framework::OpKernel<T> {
outputs
.
push_back
(
nullptr
);
outputs
.
push_back
(
nullptr
);
}
}
}
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// Sometimes direct copies will be faster, this maybe need deeply analysis.
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
outs
.
size
()
<
10
)
{
if
(
axis
==
0
&&
outs
.
size
()
<
10
)
{
size_t
input_offset
=
0
;
std
::
vector
<
const
framework
::
Tensor
*>
ref_shape
;
const
auto
in_stride
=
framework
::
stride_numel
(
out_grad
->
dims
());
ref_shape
.
insert
(
ref_shape
.
begin
(),
ins
.
begin
(),
ins
.
end
());
StridedMemcpyWithAxis0
<
T
>
(
dev_ctx
,
*
out_grad
,
ref_shape
,
&
outputs
);
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
++
i
)
{
auto
out_stride
=
framework
::
stride_numel
(
ins
[
i
]
->
dims
());
auto
*
out
=
outputs
[
i
];
if
(
out
!=
nullptr
)
{
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
out_grad
->
data
<
T
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
}
input_offset
+=
out_stride
[
axis
];
}
}
else
{
}
else
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SplitFunctor
<
DeviceContext
,
T
>
split_functor
;
paddle
::
operators
::
math
::
ConcatGradFunctor
<
DeviceContext
,
T
>
split_functor
(
dev_ctx
,
*
out_grad
,
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
),
concat_grad_functor
;
concat_grad_functor
(
dev_ctx
,
*
out_grad
,
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
),
static_cast
<
int
>
(
axis
),
&
outputs
);
static_cast
<
int
>
(
axis
),
&
outputs
);
}
}
}
}
...
...
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
032c3a07
...
@@ -16,7 +16,7 @@ limitations under the License. */
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
paddle
{
...
...
paddle/fluid/operators/lod_tensor_to_array_op.cc
浏览文件 @
032c3a07
...
@@ -17,7 +17,7 @@ limitations under the License. */
...
@@ -17,7 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/port.h"
...
@@ -79,7 +79,7 @@ struct LoDTensorToArrayFunctor : public boost::static_visitor<void> {
...
@@ -79,7 +79,7 @@ struct LoDTensorToArrayFunctor : public boost::static_visitor<void> {
template
<
typename
DeviceContext
>
template
<
typename
DeviceContext
>
template
<
typename
T
>
template
<
typename
T
>
void
LoDTensorToArrayFunctorImpl
<
DeviceContext
>::
apply
()
{
void
LoDTensorToArrayFunctorImpl
<
DeviceContext
>::
apply
()
{
math
::
ConcatGrad
Functor
<
DeviceContext
,
T
>
func
;
math
::
Split
Functor
<
DeviceContext
,
T
>
func
;
func
(
*
dev_ctx_
,
prev_functor_
->
input_
,
prev_functor_
->
ref_inputs_
,
0
,
func
(
*
dev_ctx_
,
prev_functor_
->
input_
,
prev_functor_
->
ref_inputs_
,
0
,
&
prev_functor_
->
outputs_
);
&
prev_functor_
->
outputs_
);
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
032c3a07
if
(
NOT WIN32
)
if
(
NOT WIN32
)
add_subdirectory
(
detail
)
add_subdirectory
(
detail
)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
function
(
math_library TARGET
)
function
(
math_library TARGET
)
...
@@ -35,7 +35,7 @@ function(math_library TARGET)
...
@@ -35,7 +35,7 @@ function(math_library TARGET)
endfunction
()
endfunction
()
# please add new math_library in alphabetical order
# please add new math_library in alphabetical order
math_library
(
concat
)
math_library
(
concat
_and_split
)
math_library
(
context_project DEPS im2col math_function
)
math_library
(
context_project DEPS im2col math_function
)
math_library
(
cross_entropy
)
math_library
(
cross_entropy
)
math_library
(
cos_sim_functor
)
math_library
(
cos_sim_functor
)
...
@@ -43,8 +43,8 @@ math_library(depthwise_conv)
...
@@ -43,8 +43,8 @@ math_library(depthwise_conv)
math_library
(
im2col
)
math_library
(
im2col
)
if
(
NOT WIN32
)
# windows do not support avx functions yet.
if
(
NOT WIN32
)
# windows do not support avx functions yet.
math_library
(
gru_compute DEPS activation_functions math_function
)
math_library
(
gru_compute DEPS activation_functions math_function
)
math_library
(
lstm_compute DEPS activation_functions
)
math_library
(
lstm_compute DEPS activation_functions
)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
cc_library
(
blas SRCS blas.cc DEPS cblas framework_proto device_context
)
cc_library
(
blas SRCS blas.cc DEPS cblas framework_proto device_context
)
...
@@ -58,7 +58,7 @@ math_library(sequence_pooling DEPS math_function)
...
@@ -58,7 +58,7 @@ math_library(sequence_pooling DEPS math_function)
math_library
(
sequence_scale
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
math_library
(
softmax DEPS math_function
)
if
(
NOT WIN32
)
if
(
NOT WIN32
)
math_library
(
matrix_bit_code
)
math_library
(
matrix_bit_code
)
endif
(
NOT WIN32
)
endif
(
NOT WIN32
)
math_library
(
unpooling
)
math_library
(
unpooling
)
math_library
(
vol2col
)
math_library
(
vol2col
)
...
@@ -72,7 +72,7 @@ if(WITH_GPU)
...
@@ -72,7 +72,7 @@ if(WITH_GPU)
nv_test
(
math_function_gpu_test SRCS math_function_test.cu DEPS math_function
)
nv_test
(
math_function_gpu_test SRCS math_function_test.cu DEPS math_function
)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
endif
()
endif
()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat
_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc
...
...
paddle/fluid/operators/math/concat.cc
→
paddle/fluid/operators/math/concat
_and_split
.cc
浏览文件 @
032c3a07
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
#include <vector>
#include <vector>
namespace
paddle
{
namespace
paddle
{
...
@@ -67,7 +67,7 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
...
@@ -67,7 +67,7 @@ class ConcatFunctor<platform::CPUDeviceContext, T> {
* each dimension must be the same, except the axis dimension.
* each dimension must be the same, except the axis dimension.
*/
*/
template
<
typename
T
>
template
<
typename
T
>
class
ConcatGrad
Functor
<
platform
::
CPUDeviceContext
,
T
>
{
class
Split
Functor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
...
@@ -111,7 +111,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -111,7 +111,7 @@ class ConcatGradFunctor<platform::CPUDeviceContext, T> {
};
};
#define DEFINE_FUNCTOR(type) \
#define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CPUDeviceContext, type>; \
template class ConcatFunctor<platform::CPUDeviceContext, type>; \
template class
ConcatGrad
Functor<platform::CPUDeviceContext, type>;
template class
Split
Functor<platform::CPUDeviceContext, type>;
FOR_ALL_TYPES
(
DEFINE_FUNCTOR
);
FOR_ALL_TYPES
(
DEFINE_FUNCTOR
);
...
...
paddle/fluid/operators/math/concat.cu
→
paddle/fluid/operators/math/concat
_and_split
.cu
浏览文件 @
032c3a07
...
@@ -15,7 +15,7 @@ limitations under the License. */
...
@@ -15,7 +15,7 @@ limitations under the License. */
#include <algorithm>
#include <algorithm>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/float16.h"
...
@@ -24,7 +24,7 @@ namespace operators {
...
@@ -24,7 +24,7 @@ namespace operators {
namespace
math
{
namespace
math
{
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcat
(
T
**
inputs
,
const
int
*
input_cols
,
int
col_size
,
__global__
void
ConcatKernel
(
T
**
inputs
,
const
int
*
input_cols
,
int
col_size
,
const
int
output_rows
,
const
int
output_cols
,
const
int
output_rows
,
const
int
output_cols
,
T
*
output
)
{
T
*
output
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -50,7 +50,7 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
...
@@ -50,7 +50,7 @@ __global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcat
(
T
**
inputs_data
,
const
int
fixed_in_col
,
__global__
void
ConcatKernel
(
T
**
inputs_data
,
const
int
fixed_in_col
,
const
int
out_rows
,
const
int
out_cols
,
const
int
out_rows
,
const
int
out_cols
,
T
*
output_data
)
{
T
*
output_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -67,7 +67,7 @@ __global__ void KernelConcat(T** inputs_data, const int fixed_in_col,
...
@@ -67,7 +67,7 @@ __global__ void KernelConcat(T** inputs_data, const int fixed_in_col,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcatGrad
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
const
int
in_col
,
const
int
*
out_cols
,
const
int
in_col
,
const
int
*
out_cols
,
int
out_cols_size
,
T
**
outputs_data
)
{
int
out_cols_size
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -94,7 +94,7 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
...
@@ -94,7 +94,7 @@ __global__ void KernelConcatGrad(const T* input_data, const int in_row,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
KernelConcatGrad
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
const
int
in_col
,
const
int
fixed_out_col
,
const
int
in_col
,
const
int
fixed_out_col
,
T
**
outputs_data
)
{
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
...
@@ -170,11 +170,11 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -170,11 +170,11 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
if
(
sameShape
)
{
if
(
sameShape
)
{
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
ConcatKernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
dev_ins_data
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
());
dev_ins_data
,
in_col
,
out_row
,
out_col
,
output
->
data
<
T
>
());
}
else
{
}
else
{
const
int
*
dev_ins_col_data
=
inputs_col
.
CUDAData
(
context
.
GetPlace
());
const
int
*
dev_ins_col_data
=
inputs_col
.
CUDAData
(
context
.
GetPlace
());
KernelConcat
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
ConcatKernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
.
size
()),
dev_ins_data
,
dev_ins_col_data
,
static_cast
<
int
>
(
inputs_col
.
size
()),
out_row
,
out_col
,
output
->
data
<
T
>
());
out_row
,
out_col
,
output
->
data
<
T
>
());
}
}
...
@@ -189,7 +189,7 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
...
@@ -189,7 +189,7 @@ class ConcatFunctor<platform::CUDADeviceContext, T> {
* each dimension must be the same, except the axis dimension.
* each dimension must be the same, except the axis dimension.
*/
*/
template
<
typename
T
>
template
<
typename
T
>
class
ConcatGrad
Functor
<
platform
::
CUDADeviceContext
,
T
>
{
class
Split
Functor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
framework
::
Tensor
&
input
,
...
@@ -248,11 +248,11 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -248,11 +248,11 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
if
(
sameShape
)
{
if
(
sameShape
)
{
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
SplitKernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
out0_col
,
dev_out_gpu_data
);
input
.
data
<
T
>
(),
in_row
,
in_col
,
out0_col
,
dev_out_gpu_data
);
}
else
{
}
else
{
const
int
*
dev_outs_col_data
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
const
int
*
dev_outs_col_data
=
outputs_cols
.
CUDAData
(
context
.
GetPlace
());
KernelConcatGrad
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
SplitKernel
<<<
grid_size
,
block_size
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
dev_outs_col_data
,
input
.
data
<
T
>
(),
in_row
,
in_col
,
dev_outs_col_data
,
static_cast
<
int
>
(
outputs_cols
.
size
()),
dev_out_gpu_data
);
static_cast
<
int
>
(
outputs_cols
.
size
()),
dev_out_gpu_data
);
}
}
...
@@ -264,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
...
@@ -264,7 +264,7 @@ class ConcatGradFunctor<platform::CUDADeviceContext, T> {
#define DEFINE_FUNCTOR(type) \
#define DEFINE_FUNCTOR(type) \
template class ConcatFunctor<platform::CUDADeviceContext, type>; \
template class ConcatFunctor<platform::CUDADeviceContext, type>; \
template class
ConcatGrad
Functor<platform::CUDADeviceContext, type>
template class
Split
Functor<platform::CUDADeviceContext, type>
FOR_ALL_TYPES
(
DEFINE_FUNCTOR
);
FOR_ALL_TYPES
(
DEFINE_FUNCTOR
);
...
...
paddle/fluid/operators/math/concat.h
→
paddle/fluid/operators/math/concat
_and_split
.h
浏览文件 @
032c3a07
...
@@ -54,7 +54,7 @@ class ConcatFunctor {
...
@@ -54,7 +54,7 @@ class ConcatFunctor {
* Output[1] = [[5,6]]
* Output[1] = [[5,6]]
*/
*/
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
ConcatGrad
Functor
{
class
Split
Functor
{
public:
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
ref_inputs
,
...
...
paddle/fluid/operators/math/concat_test.cc
浏览文件 @
032c3a07
...
@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/operators/math/concat.h"
#include <gtest/gtest.h>
#include <gtest/gtest.h>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
template
<
typename
DeviceContext
,
typename
Place
>
template
<
typename
DeviceContext
,
typename
Place
>
void
testConcat
()
{
void
testConcat
()
{
...
...
paddle/fluid/operators/reader/reader_blocking_queue_test.cc
浏览文件 @
032c3a07
...
@@ -237,7 +237,7 @@ TEST(BlockingQueue, speed_test_mode) {
...
@@ -237,7 +237,7 @@ TEST(BlockingQueue, speed_test_mode) {
}
}
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
queue_size
;
++
i
)
{
q2
.
Receive
(
&
b
);
q2
.
Receive
(
&
b
);
EXPECT_EQ
(
b
,
0
);
EXPECT_EQ
(
b
,
0
UL
);
}
}
EXPECT_EQ
(
q2
.
Size
(),
queue_size
);
EXPECT_EQ
(
q2
.
Size
(),
queue_size
);
}
}
paddle/fluid/operators/sequence_concat_op.h
浏览文件 @
032c3a07
...
@@ -17,7 +17,7 @@
...
@@ -17,7 +17,7 @@
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat
_and_split
.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -106,7 +106,7 @@ class SeqConcatGradKernel : public framework::OpKernel<T> {
...
@@ -106,7 +106,7 @@ class SeqConcatGradKernel : public framework::OpKernel<T> {
}
}
}
}
math
::
ConcatGrad
Functor
<
DeviceContext
,
T
>
functor
;
math
::
Split
Functor
<
DeviceContext
,
T
>
functor
;
std
::
vector
<
const
framework
::
Tensor
*>
sliced_x_ptr
;
std
::
vector
<
const
framework
::
Tensor
*>
sliced_x_ptr
;
std
::
vector
<
framework
::
Tensor
*>
sliced_dx_ptr
;
std
::
vector
<
framework
::
Tensor
*>
sliced_dx_ptr
;
for
(
auto
&
x
:
sliced_x
)
{
for
(
auto
&
x
:
sliced_x
)
{
...
...
paddle/fluid/operators/split_op.cc
浏览文件 @
032c3a07
...
@@ -111,11 +111,10 @@ Example:
...
@@ -111,11 +111,10 @@ Example:
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
USE_CPU_ONLY_OP
(
concat
);
REGISTER_OPERATOR
(
split
,
ops
::
SplitOp
,
ops
::
SplitOpMaker
,
ops
::
SplitGradMaker
);
REGISTER_OPERATOR
(
split
,
ops
::
SplitOp
,
ops
::
SplitOpMaker
,
ops
::
SplitGradMaker
);
REGISTER_OP_CPU_KERNEL
(
split
,
REGISTER_OP_CPU_KERNEL
(
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
split
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
);
ops
::
SplitOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
);
paddle/fluid/operators/split_op.h
浏览文件 @
032c3a07
...
@@ -17,6 +17,7 @@ limitations under the License. */
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <chrono> // NOLINT
#include <chrono> // NOLINT
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -28,18 +29,22 @@ class SplitOpKernel : public framework::OpKernel<T> {
...
@@ -28,18 +29,22 @@ class SplitOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
int64_t
axis
=
static_cast
<
int64_t
>
(
ctx
.
Attr
<
int
>
(
"axis"
));
auto
place
=
ctx
.
GetPlace
();
auto
place
=
ctx
.
GetPlace
();
size_t
input_offset
=
0
;
std
::
vector
<
const
framework
::
Tensor
*>
shape_refer
;
for
(
auto
&
out
:
outs
)
{
for
(
size_t
j
=
0
;
j
<
outs
.
size
();
++
j
)
{
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
outs
[
j
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
shape_refer
.
emplace_back
(
outs
[
j
]);
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
}
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
input_offset
+=
out_stride
[
axis
];
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
outs
.
size
()
<
10
)
{
StridedMemcpyWithAxis0
<
T
>
(
dev_ctx
,
*
in
,
shape_refer
,
&
outs
);
}
else
{
math
::
SplitFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
dev_ctx
,
*
in
,
shape_refer
,
axis
,
&
outs
);
}
}
}
}
};
};
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
032c3a07
...
@@ -13,8 +13,9 @@ See the License for the specific language governing permissions and
...
@@ -13,8 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/detail/strided_memcpy.h"
#include "paddle/fluid/operators/detail/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -98,5 +99,26 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
...
@@ -98,5 +99,26 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
}
}
}
}
template
<
typename
T
>
inline
void
StridedMemcpyWithAxis0
(
const
platform
::
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
const
framework
::
Tensor
*>&
shape_refer
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
const
framework
::
DDim
in_stride
=
stride_numel
(
input
.
dims
());
const
int
axis
=
0
;
size_t
input_offset
=
0
;
for
(
size_t
i
=
0
;
i
<
outputs
->
size
();
++
i
)
{
auto
out_stride
=
stride_numel
(
shape_refer
[
i
]
->
dims
());
auto
out
=
outputs
->
at
(
i
);
if
(
out
!=
nullptr
)
{
StridedNumelCopyWithAxis
<
T
>
(
dev_ctx
,
axis
,
out
->
data
<
T
>
(),
out_stride
,
input
.
data
<
T
>
()
+
input_offset
,
in_stride
,
out_stride
[
axis
]);
}
input_offset
+=
out_stride
[
axis
];
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
python/paddle/fluid/layer_helper.py
浏览文件 @
032c3a07
...
@@ -324,10 +324,19 @@ class LayerHelper(object):
...
@@ -324,10 +324,19 @@ class LayerHelper(object):
raise
ValueError
(
"no Parameter name %s found"
%
name
)
raise
ValueError
(
"no Parameter name %s found"
%
name
)
return
param
return
param
def
create_tmp_variable
(
self
,
dtype
,
stop_gradient
=
False
):
def
create_variable_for_type_inference
(
self
,
dtype
,
stop_gradient
=
False
):
"""Create a temporary variable that should be type inferred layer.
Note:
The default type will be set to LOD_TENSOR. However, when
the var is used as operator output, its type will be updated
based on operator's `VarTypeInference` implementation in
infer_var_type.
"""
return
self
.
main_program
.
current_block
().
create_var
(
return
self
.
main_program
.
current_block
().
create_var
(
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
'tmp'
])),
name
=
unique_name
.
generate
(
"."
.
join
([
self
.
name
,
'tmp'
])),
dtype
=
dtype
,
dtype
=
dtype
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
persistable
=
False
,
stop_gradient
=
stop_gradient
)
stop_gradient
=
stop_gradient
)
...
@@ -388,7 +397,7 @@ class LayerHelper(object):
...
@@ -388,7 +397,7 @@ class LayerHelper(object):
b
=
self
.
create_parameter
(
b
=
self
.
create_parameter
(
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
attr
=
bias_attr
,
shape
=
size
,
dtype
=
input_var
.
dtype
,
is_bias
=
True
)
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
self
.
append_op
(
type
=
'elementwise_add'
,
type
=
'elementwise_add'
,
inputs
=
{
'X'
:
[
input_var
],
inputs
=
{
'X'
:
[
input_var
],
...
@@ -414,7 +423,7 @@ class LayerHelper(object):
...
@@ -414,7 +423,7 @@ class LayerHelper(object):
tmp
=
input_var
tmp
=
input_var
# NOTE(dzhwinter): some activation support inplace compution.
# NOTE(dzhwinter): some activation support inplace compution.
if
not
core
.
IsInplace
(
act_type
):
if
not
core
.
IsInplace
(
act_type
):
tmp
=
self
.
create_
tmp_variabl
e
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_
variable_for_type_inferenc
e
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
self
.
append_op
(
type
=
act_type
,
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
inputs
=
{
"X"
:
[
input_var
]},
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
032c3a07
...
@@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0):
...
@@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0):
"""
"""
helper
=
LayerHelper
(
'split_lod_tensor'
,
**
locals
())
helper
=
LayerHelper
(
'split_lod_tensor'
,
**
locals
())
out_true
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_true
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out_false
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'split_lod_tensor'
,
type
=
'split_lod_tensor'
,
inputs
=
{
inputs
=
{
...
@@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
...
@@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0):
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
"""
"""
helper
=
LayerHelper
(
'merge_lod_tensor'
,
**
locals
())
helper
=
LayerHelper
(
'merge_lod_tensor'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
in_true
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
in_true
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'merge_lod_tensor'
,
type
=
'merge_lod_tensor'
,
inputs
=
{
'X'
:
x
,
inputs
=
{
'X'
:
x
,
...
@@ -524,7 +524,7 @@ class StaticRNN(object):
...
@@ -524,7 +524,7 @@ class StaticRNN(object):
if
not
isinstance
(
o
,
Variable
):
if
not
isinstance
(
o
,
Variable
):
raise
TypeError
(
"step output takes a Variable"
)
raise
TypeError
(
"step output takes a Variable"
)
tmp_o
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
o
.
dtype
)
tmp_o
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
o
.
dtype
)
self
.
helper
.
append_op
(
self
.
helper
.
append_op
(
type
=
'rnn_memory_helper'
,
type
=
'rnn_memory_helper'
,
inputs
=
{
'X'
:
[
o
]},
inputs
=
{
'X'
:
[
o
]},
...
@@ -606,7 +606,8 @@ class StaticRNN(object):
...
@@ -606,7 +606,8 @@ class StaticRNN(object):
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
pre_memories
.
append
(
mem
.
pre_mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
mem_var
=
rnn_block
.
var
(
mem
.
mem
.
name
)
assert
isinstance
(
mem_var
,
Variable
)
assert
isinstance
(
mem_var
,
Variable
)
new_mem
=
self
.
helper
.
create_tmp_variable
(
dtype
=
mem_var
.
dtype
)
new_mem
=
self
.
helper
.
create_variable_for_type_inference
(
dtype
=
mem_var
.
dtype
)
rnn_block
.
append_op
(
rnn_block
.
append_op
(
type
=
'rnn_memory_helper'
,
type
=
'rnn_memory_helper'
,
...
@@ -813,7 +814,7 @@ def max_sequence_len(rank_table):
...
@@ -813,7 +814,7 @@ def max_sequence_len(rank_table):
${out_comment}.
${out_comment}.
"""
"""
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
helper
=
LayerHelper
(
"max_seqence_len"
,
**
locals
())
res
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
res
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"max_sequence_len"
,
type
=
"max_sequence_len"
,
inputs
=
{
"RankTable"
:
rank_table
},
inputs
=
{
"RankTable"
:
rank_table
},
...
@@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table):
...
@@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table):
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
"""
"""
helper
=
LayerHelper
(
"array_to_lod_tensor"
,
**
locals
())
helper
=
LayerHelper
(
"array_to_lod_tensor"
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"array_to_lod_tensor"
,
type
=
"array_to_lod_tensor"
,
inputs
=
{
'X'
:
x
,
inputs
=
{
'X'
:
x
,
...
@@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True):
...
@@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True):
"""
"""
helper
=
LayerHelper
(
"increment"
,
**
locals
())
helper
=
LayerHelper
(
"increment"
,
**
locals
())
if
not
in_place
:
if
not
in_place
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
else
:
out
=
x
out
=
x
helper
.
append_op
(
helper
.
append_op
(
...
@@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored):
...
@@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
helper
=
LayerHelper
(
"less_than"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
attrs
=
dict
()
attrs
=
dict
()
...
@@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored):
...
@@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"equal"
,
**
locals
())
helper
=
LayerHelper
(
"equal"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
helper
.
append_op
(
helper
.
append_op
(
...
@@ -1098,7 +1099,7 @@ def array_read(array, i):
...
@@ -1098,7 +1099,7 @@ def array_read(array, i):
array
,
array
,
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
Variable
)
or
array
.
type
!=
core
.
VarDesc
.
VarType
.
LOD_TENSOR_ARRAY
:
raise
TypeError
(
"array should be tensor array vairable"
)
raise
TypeError
(
"array should be tensor array vairable"
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
array
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
array
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'read_from_array'
,
type
=
'read_from_array'
,
inputs
=
{
'X'
:
[
array
],
inputs
=
{
'X'
:
[
array
],
...
@@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table):
...
@@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table):
usage.
usage.
"""
"""
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
helper
=
LayerHelper
(
'shrink_memory'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'shrink_rnn_memory'
,
type
=
'shrink_rnn_memory'
,
inputs
=
{
'X'
:
[
x
],
inputs
=
{
'X'
:
[
x
],
...
@@ -1170,7 +1171,7 @@ def array_length(array):
...
@@ -1170,7 +1171,7 @@ def array_length(array):
"""
"""
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
helper
=
LayerHelper
(
'array_length'
,
**
locals
())
tmp
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int64'
)
tmp
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int64'
)
tmp
.
stop_gradient
=
True
tmp
.
stop_gradient
=
True
helper
.
append_op
(
helper
.
append_op
(
type
=
'lod_array_length'
,
inputs
=
{
'X'
:
[
array
]},
outputs
=
{
'Out'
:
[
tmp
]})
type
=
'lod_array_length'
,
inputs
=
{
'X'
:
[
array
]},
outputs
=
{
'Out'
:
[
tmp
]})
...
@@ -1590,7 +1591,7 @@ class DynamicRNN(object):
...
@@ -1590,7 +1591,7 @@ class DynamicRNN(object):
self
.
mem_dict
=
dict
()
self
.
mem_dict
=
dict
()
self
.
output_array
=
[]
self
.
output_array
=
[]
self
.
outputs
=
[]
self
.
outputs
=
[]
self
.
cond
=
self
.
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
self
.
cond
=
self
.
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
self
.
cond
.
stop_gradient
=
False
self
.
cond
.
stop_gradient
=
False
self
.
while_op
=
While
(
self
.
cond
)
self
.
while_op
=
While
(
self
.
cond
)
self
.
input_array
=
[]
self
.
input_array
=
[]
...
@@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
...
@@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table):
helper
.
is_instance
(
'x'
,
Variable
)
helper
.
is_instance
(
'x'
,
Variable
)
helper
.
is_instance
(
'rank_table'
,
Variable
)
helper
.
is_instance
(
'rank_table'
,
Variable
)
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'reorder_lod_tensor_by_rank'
,
type
=
'reorder_lod_tensor_by_rank'
,
inputs
=
{
'X'
:
[
x
],
inputs
=
{
'X'
:
[
x
],
...
@@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored):
...
@@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored):
"""
"""
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
helper
=
LayerHelper
(
"is_empty"
,
**
locals
())
if
cond
is
None
:
if
cond
is
None
:
cond
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'bool'
)
cond
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'bool'
)
cond
.
stop_gradient
=
True
cond
.
stop_gradient
=
True
elif
not
isinstance
(
cond
,
Variable
):
elif
not
isinstance
(
cond
,
Variable
):
raise
TypeError
(
"cond takes a variable"
)
raise
TypeError
(
"cond takes a variable"
)
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
032c3a07
...
@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
...
@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
# Assign target label to anchors
# Assign target label to anchors
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
loc_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
score_index
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_label
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_bbox
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
target_bbox
=
helper
.
create_variable_for_type_inference
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"rpn_target_assign"
,
type
=
"rpn_target_assign"
,
inputs
=
{
inputs
=
{
...
@@ -282,7 +283,8 @@ def detection_output(loc,
...
@@ -282,7 +283,8 @@ def detection_output(loc,
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
.
stop_gradient
=
True
scores
.
stop_gradient
=
True
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
nmsed_outs
=
helper
.
create_variable_for_type_inference
(
dtype
=
decoded_box
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"multiclass_nms"
,
type
=
"multiclass_nms"
,
inputs
=
{
'Scores'
:
scores
,
inputs
=
{
'Scores'
:
scores
,
...
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
...
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
"""
"""
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
helper
=
LayerHelper
(
"iou_similarity"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
else
:
else
:
out
=
helper
.
create_variable
(
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
...
@@ -351,7 +353,8 @@ def box_coder(prior_box,
...
@@ -351,7 +353,8 @@ def box_coder(prior_box,
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
helper
=
LayerHelper
(
"box_coder"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
output_box
=
helper
.
create_tmp_variable
(
dtype
=
prior_box
.
dtype
)
output_box
=
helper
.
create_variable_for_type_inference
(
dtype
=
prior_box
.
dtype
)
else
:
else
:
output_box
=
helper
.
create_variable
(
output_box
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
name
=
name
,
dtype
=
prior_box
.
dtype
,
persistable
=
False
)
...
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
...
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
"""
"""
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
helper
=
LayerHelper
(
"polygon_box_transform"
,
**
locals
())
if
name
is
None
:
if
name
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
else
:
else
:
output
=
helper
.
create_variable
(
output
=
helper
.
create_variable
(
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
name
=
name
,
dtype
=
prior_box
.
input
,
persistable
=
False
)
...
@@ -450,7 +453,7 @@ def detection_map(detect_res,
...
@@ -450,7 +453,7 @@ def detection_map(detect_res,
helper
=
LayerHelper
(
"detection_map"
,
**
locals
())
helper
=
LayerHelper
(
"detection_map"
,
**
locals
())
def
__create_var
(
type
):
def
__create_var
(
type
):
return
helper
.
create_
tmp_variabl
e
(
dtype
=
type
)
return
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
type
)
map_out
=
__create_var
(
'float32'
)
map_out
=
__create_var
(
'float32'
)
accum_pos_count_out
=
out_states
[
0
]
if
out_states
else
__create_var
(
'int32'
)
accum_pos_count_out
=
out_states
[
0
]
if
out_states
else
__create_var
(
'int32'
)
...
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
...
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
"""
"""
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
match_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_tmp_variable
(
dtype
=
dist_matrix
.
dtype
)
match_distance
=
helper
.
create_variable_for_type_inference
(
dtype
=
dist_matrix
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'bipartite_match'
,
type
=
'bipartite_match'
,
inputs
=
{
'DistMat'
:
dist_matrix
},
inputs
=
{
'DistMat'
:
dist_matrix
},
...
@@ -644,8 +648,8 @@ def target_assign(input,
...
@@ -644,8 +648,8 @@ def target_assign(input,
gt, matched_indices, mismatch_value=0)
gt, matched_indices, mismatch_value=0)
"""
"""
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
out_weight
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'float32'
)
out_weight
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'float32'
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'target_assign'
,
type
=
'target_assign'
,
inputs
=
{
inputs
=
{
...
@@ -816,9 +820,10 @@ def ssd_loss(location,
...
@@ -816,9 +820,10 @@ def ssd_loss(location,
conf_loss
=
nn
.
reshape
(
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
conf_loss
.
stop_gradient
=
True
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_
tmp_variabl
e
(
dtype
=
'int32'
)
neg_indices
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
dtype
=
matched_indices
.
dtype
updated_matched_indices
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
updated_matched_indices
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'mine_hard_examples'
,
type
=
'mine_hard_examples'
,
inputs
=
{
inputs
=
{
...
@@ -998,8 +1003,8 @@ def prior_box(input,
...
@@ -998,8 +1003,8 @@ def prior_box(input,
max_sizes
=
[
max_sizes
]
max_sizes
=
[
max_sizes
]
attrs
[
'max_sizes'
]
=
max_sizes
attrs
[
'max_sizes'
]
=
max_sizes
box
=
helper
.
create_
tmp_variabl
e
(
dtype
)
box
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"prior_box"
,
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
inputs
=
{
"Input"
:
input
,
...
@@ -1337,8 +1342,8 @@ def anchor_generator(input,
...
@@ -1337,8 +1342,8 @@ def anchor_generator(input,
'offset'
:
offset
'offset'
:
offset
}
}
anchor
=
helper
.
create_
tmp_variabl
e
(
dtype
)
anchor
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
var
=
helper
.
create_
tmp_variabl
e
(
dtype
)
var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"anchor_generator"
,
type
=
"anchor_generator"
,
inputs
=
{
"Input"
:
input
},
inputs
=
{
"Input"
:
input
},
...
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
...
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
"""
"""
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_
tmp_variabl
e
(
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"roi_perspective_transform"
,
type
=
"roi_perspective_transform"
,
inputs
=
{
"X"
:
input
,
inputs
=
{
"X"
:
input
,
...
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
...
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
helper
=
LayerHelper
(
'generate_proposal_labels'
,
**
locals
())
helper
=
LayerHelper
(
'generate_proposal_labels'
,
**
locals
())
rois
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
rois
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
labels_int32
=
helper
.
create_tmp_variable
(
dtype
=
gt_classes
.
dtype
)
labels_int32
=
helper
.
create_variable_for_type_inference
(
bbox_targets
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
dtype
=
gt_classes
.
dtype
)
bbox_inside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
bbox_targets
=
helper
.
create_variable_for_type_inference
(
bbox_outside_weights
=
helper
.
create_tmp_variable
(
dtype
=
rpn_rois
.
dtype
)
dtype
=
rpn_rois
.
dtype
)
bbox_inside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
bbox_outside_weights
=
helper
.
create_variable_for_type_inference
(
dtype
=
rpn_rois
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"generate_proposal_labels"
,
type
=
"generate_proposal_labels"
,
...
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
...
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
"""
"""
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
helper
=
LayerHelper
(
'generate_proposals'
,
**
locals
())
rpn_rois
=
helper
.
create_tmp_variable
(
dtype
=
bbox_deltas
.
dtype
)
rpn_rois
=
helper
.
create_variable_for_type_inference
(
rpn_roi_probs
=
helper
.
create_tmp_variable
(
dtype
=
scores
.
dtype
)
dtype
=
bbox_deltas
.
dtype
)
rpn_roi_probs
=
helper
.
create_variable_for_type_inference
(
dtype
=
scores
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"generate_proposals"
,
type
=
"generate_proposals"
,
inputs
=
{
inputs
=
{
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
032c3a07
...
@@ -954,7 +954,7 @@ def read_file(reader):
...
@@ -954,7 +954,7 @@ def read_file(reader):
"""
"""
helper
=
LayerHelper
(
'read_file'
)
helper
=
LayerHelper
(
'read_file'
)
out
=
[
out
=
[
helper
.
create_
tmp_variabl
e
(
helper
.
create_
variable_for_type_inferenc
e
(
stop_gradient
=
True
,
dtype
=
'float32'
)
stop_gradient
=
True
,
dtype
=
'float32'
)
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
for
_
in
range
(
len
(
reader
.
desc
.
shapes
()))
]
]
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
032c3a07
...
@@ -202,10 +202,12 @@ def generate_layer_fn(op_type):
...
@@ -202,10 +202,12 @@ def generate_layer_fn(op_type):
out_var
=
out
[
0
]
if
(
isinstance
(
out
,
list
)
or
out_var
=
out
[
0
]
if
(
isinstance
(
out
,
list
)
or
isinstance
(
out
,
tuple
))
else
out
isinstance
(
out
,
tuple
))
else
out
else
:
else
:
out_var
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out_var
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
outputs
[
o_name
]
=
[
out_var
]
outputs
[
o_name
]
=
[
out_var
]
for
name
in
intermediate_output_names
:
for
name
in
intermediate_output_names
:
outputs
[
name
]
=
[
helper
.
create_tmp_variable
(
dtype
=
dtype
)]
outputs
[
name
]
=
[
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
]
helper
.
append_op
(
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
kwargs
)
return
helper
.
append_activation
(
out_var
)
return
helper
.
append_activation
(
out_var
)
...
@@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type):
...
@@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type):
def
func
(
x
,
name
=
None
):
def
func
(
x
,
name
=
None
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
helper
=
LayerHelper
(
op_type
,
**
locals
())
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
output
})
return
output
return
output
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
032c3a07
...
@@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None):
...
@@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None):
"""
"""
helper
=
LayerHelper
(
"accuracy"
,
**
locals
())
helper
=
LayerHelper
(
"accuracy"
,
**
locals
())
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
acc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float32"
)
acc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float32"
)
if
correct
is
None
:
if
correct
is
None
:
correct
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
correct
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
if
total
is
None
:
if
total
is
None
:
total
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"int64"
)
total
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"int64"
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"accuracy"
,
type
=
"accuracy"
,
inputs
=
{
inputs
=
{
...
@@ -124,8 +124,8 @@ def auc(input,
...
@@ -124,8 +124,8 @@ def auc(input,
auc_out=fluid.layers.auc(input=prediction, label=label)
auc_out=fluid.layers.auc(input=prediction, label=label)
"""
"""
helper
=
LayerHelper
(
"auc"
,
**
locals
())
helper
=
LayerHelper
(
"auc"
,
**
locals
())
auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
# for batch auc
# for batch auc
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
032c3a07
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/tensor.py
浏览文件 @
032c3a07
...
@@ -152,7 +152,7 @@ def cast(x, dtype):
...
@@ -152,7 +152,7 @@ def cast(x, dtype):
result = fluid.layers.cast(x=data, dtype='float64')
result = fluid.layers.cast(x=data, dtype='float64')
"""
"""
helper
=
LayerHelper
(
'cast'
,
**
locals
())
helper
=
LayerHelper
(
'cast'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'cast'
,
type
=
'cast'
,
inputs
=
{
'X'
:
[
x
]},
inputs
=
{
'X'
:
[
x
]},
...
@@ -184,7 +184,7 @@ def concat(input, axis=0, name=None):
...
@@ -184,7 +184,7 @@ def concat(input, axis=0, name=None):
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
"""
"""
helper
=
LayerHelper
(
'concat'
,
**
locals
())
helper
=
LayerHelper
(
'concat'
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
helper
.
append_op
(
type
=
'concat'
,
type
=
'concat'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -221,7 +221,8 @@ def sums(input, out=None):
...
@@ -221,7 +221,8 @@ def sums(input, out=None):
"""
"""
helper
=
LayerHelper
(
'sum'
,
**
locals
())
helper
=
LayerHelper
(
'sum'
,
**
locals
())
if
out
is
None
:
if
out
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
helper
.
append_op
(
type
=
'sum'
,
type
=
'sum'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -252,7 +253,7 @@ def assign(input, output=None):
...
@@ -252,7 +253,7 @@ def assign(input, output=None):
"""
"""
helper
=
LayerHelper
(
'assign'
,
**
locals
())
helper
=
LayerHelper
(
'assign'
,
**
locals
())
if
output
is
None
:
if
output
is
None
:
output
=
helper
.
create_
tmp_variabl
e
(
dtype
=
input
.
dtype
)
output
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
input
.
dtype
)
if
isinstance
(
input
,
Variable
):
if
isinstance
(
input
,
Variable
):
helper
.
append_op
(
helper
.
append_op
(
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
type
=
'assign'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
[
output
]})
...
@@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
...
@@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
if
out
is
None
:
if
out
is
None
:
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'fill_constant'
,
type
=
'fill_constant'
,
inputs
=
{},
inputs
=
{},
...
@@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input,
...
@@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input,
${out_comment}.
${out_comment}.
"""
"""
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
helper
=
LayerHelper
(
"fill_constant_batch_size_like"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
type
=
'fill_constant_batch_size_like'
,
inputs
=
{
'Input'
:
input
},
inputs
=
{
'Input'
:
input
},
...
@@ -396,7 +397,7 @@ def argmin(x, axis=0):
...
@@ -396,7 +397,7 @@ def argmin(x, axis=0):
out = fluid.layers.argmin(x=in, axis=-1)
out = fluid.layers.argmin(x=in, axis=-1)
"""
"""
helper
=
LayerHelper
(
"arg_min"
,
**
locals
())
helper
=
LayerHelper
(
"arg_min"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_min'
,
type
=
'arg_min'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
x
},
...
@@ -427,7 +428,7 @@ def argmax(x, axis=0):
...
@@ -427,7 +428,7 @@ def argmax(x, axis=0):
out = fluid.layers.argmax(x=in, axis=-1)
out = fluid.layers.argmax(x=in, axis=-1)
"""
"""
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
helper
=
LayerHelper
(
"arg_max"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
VarDesc
.
VarType
.
INT64
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
VarDesc
.
VarType
.
INT64
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'arg_max'
,
type
=
'arg_max'
,
inputs
=
{
'X'
:
x
},
inputs
=
{
'X'
:
x
},
...
@@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None):
...
@@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None):
out, indices = fluid.layers.argsort(input, axis=0)
out, indices = fluid.layers.argsort(input, axis=0)
"""
"""
helper
=
LayerHelper
(
"argsort"
,
**
locals
())
helper
=
LayerHelper
(
"argsort"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
out
=
helper
.
create_variable_for_type_inference
(
ids
=
helper
.
create_tmp_variable
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
dtype
=
input
.
dtype
,
stop_gradient
=
True
)
ids
=
helper
.
create_variable_for_type_inference
(
VarDesc
.
VarType
.
INT64
,
stop_gradient
=
True
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'argsort'
,
type
=
'argsort'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
input
},
...
@@ -562,7 +565,7 @@ def reverse(x, axis):
...
@@ -562,7 +565,7 @@ def reverse(x, axis):
if
isinstance
(
axis
,
int
):
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
axis
=
[
axis
]
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
'reverse'
,
type
=
'reverse'
,
inputs
=
{
'Input'
:
x
},
inputs
=
{
'Input'
:
x
},
...
@@ -654,7 +657,7 @@ def has_inf(x):
...
@@ -654,7 +657,7 @@ def has_inf(x):
Variable: The tensor variable storing the output, only a bool value.
Variable: The tensor variable storing the output, only a bool value.
"""
"""
helper
=
LayerHelper
(
"isinf"
,
**
locals
())
helper
=
LayerHelper
(
"isinf"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isinf"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isinf"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
...
@@ -670,7 +673,7 @@ def has_nan(x):
...
@@ -670,7 +673,7 @@ def has_nan(x):
Variable: The tensor variable storing the output, only a bool value.
Variable: The tensor variable storing the output, only a bool value.
"""
"""
helper
=
LayerHelper
(
"isnan"
,
**
locals
())
helper
=
LayerHelper
(
"isnan"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isnan"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isnan"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
...
@@ -687,6 +690,6 @@ def isfinite(x):
...
@@ -687,6 +690,6 @@ def isfinite(x):
Variable: The tensor variable storing the output, contains a bool value.
Variable: The tensor variable storing the output, contains a bool value.
"""
"""
helper
=
LayerHelper
(
"isfinite"
,
**
locals
())
helper
=
LayerHelper
(
"isfinite"
,
**
locals
())
out
=
helper
.
create_
tmp_variabl
e
(
dtype
=
x
.
dtype
)
out
=
helper
.
create_
variable_for_type_inferenc
e
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"isfinite"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
helper
.
append_op
(
type
=
"isfinite"
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
return
out
python/paddle/fluid/regularizer.py
浏览文件 @
032c3a07
...
@@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
...
@@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
decay
=
block
.
create_var
(
dtype
=
"float32"
,
dtype
=
"float32"
,
shape
=
param
.
shape
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
block
.
append_op
(
...
@@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
...
@@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
decay
=
block
.
create_var
(
decay
=
block
.
create_var
(
dtype
=
"float32"
,
dtype
=
"float32"
,
shape
=
param
.
shape
,
shape
=
param
.
shape
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
)
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
)
block
.
append_op
(
block
.
append_op
(
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
type
=
'extract_rows'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
idx
})
block
.
append_op
(
block
.
append_op
(
...
...
python/paddle/fluid/tests/CMakeLists.txt
浏览文件 @
032c3a07
if
(
NOT APPLE
)
set
(
PYTHON_TESTS_DIR
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/tests CACHE INTERNAL
"python tests directory"
)
set
(
PYTHON_TESTS_DIR
${
CMAKE_CURRENT_BINARY_DIR
}
CACHE PATH
"python tests directory"
)
else
()
set
(
PYTHON_TESTS_DIR
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/tests
)
endif
(
NOT APPLE
)
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
...
...
python/paddle/fluid/tests/unittests/test_slice_var.py
浏览文件 @
032c3a07
...
@@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase):
...
@@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase):
var
=
program
.
global_block
().
create_var
(
var
=
program
.
global_block
().
create_var
(
name
=
str
(
random
.
randint
(
10000
,
99999
)),
name
=
str
(
random
.
randint
(
10000
,
99999
)),
persistable
=
True
,
persistable
=
True
,
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape
=
shape
)
shape
=
shape
)
var_list
.
append
(
var
)
var_list
.
append
(
var
)
blocks
=
slice_variable
(
var_list
,
10
,
min_size
)
blocks
=
slice_variable
(
var_list
,
10
,
min_size
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录