Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
02d68051
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
02d68051
编写于
11月 26, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add sparsed bias grad, test=develop
上级
42470f14
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
78 addition
and
29 deletion
+78
-29
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+22
-10
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+24
-7
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+18
-0
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+5
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-2
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+7
-10
未找到文件。
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
02d68051
...
@@ -107,8 +107,9 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -107,8 +107,9 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
"it should have shape like [N, L], L is the length of the Path"
)
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
.
AsDispensable
();
AddInput
(
"Bias"
,
AddInput
(
"Bias"
,
"(LoDTensor, optional), The bias is a tensor with shape"
"(LoDTensor, optional), The bias is a tensor with shape or "
"[1, num_classes - 1]."
);
"[non_leaf_num, 1]"
"[num_classes - 1, 1]."
);
AddOutput
(
AddOutput
(
"Out"
,
"Out"
,
"(LoDTensor, required) The output of hierarchical sigmoid operator."
"(LoDTensor, required) The output of hierarchical sigmoid operator."
...
@@ -148,11 +149,11 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
...
@@ -148,11 +149,11 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
"Output(W@Grad should not be null."
);
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad should not be null."
);
"Output(X@Grad should not be null."
);
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sparse"
))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
ctx
->
GetInputDim
(
"Bias"
));
}
}
if
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"is_sparse"
))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
ctx
->
GetInputDim
(
"W"
));
}
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
...
@@ -172,20 +173,31 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
...
@@ -172,20 +173,31 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
public:
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
out_W_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
out_Bias_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
block
->
Var
(
out_W_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_Bias_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
}
else
{
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
block
->
Var
(
out_W_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
VLOG
(
3
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_Bias_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
block
->
Var
(
out_
W_
var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
}
};
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
02d68051
...
@@ -124,13 +124,12 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -124,13 +124,12 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
*
w
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
);
auto
*
w
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PCode"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PCode"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
in_grad
=
auto
*
in_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
pre_out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PreOut"
);
auto
*
pre_out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PreOut"
);
auto
*
out_grad
=
auto
*
out_grad
=
...
@@ -174,12 +173,15 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -174,12 +173,15 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
// be consistent with the clipping in forward.
if
(
!
is_sparse
)
{
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
}
if
(
!
is_sparse
)
{
auto
*
w_grad
=
auto
*
w_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
@@ -199,6 +201,21 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -199,6 +201,21 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
bias_grad
->
SyncIndex
();
bias_grad
->
set_height
(
bias
->
dims
()[
0
]);
auto
*
bias_grad_value
=
bias_grad
->
mutable_value
();
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
real_rows
.
size
()),
bias
->
dims
()[
1
]};
bias_grad_value
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad_value
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
}
}
bit_code
->
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
bit_code
->
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
02d68051
...
@@ -48,6 +48,24 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::LoDTensor& tmat,
...
@@ -48,6 +48,24 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::LoDTensor& tmat,
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
LoDTensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
{
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
int64_t
row_index
=
vec
->
AutoGrownIndex
(
static_cast
<
int64_t
>
(
index
),
false
,
true
);
vec
->
mutable_value
()
->
data
<
T
>
()[
row_index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
LoDTensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
LoDTensor
&
tmat
,
framework
::
LoDTensor
*
sum
,
T
scale_sum
)
{
framework
::
LoDTensor
*
sum
,
T
scale_sum
)
{
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
02d68051
...
@@ -241,6 +241,11 @@ class MatrixBitCodeFunctor {
...
@@ -241,6 +241,11 @@ class MatrixBitCodeFunctor {
*/
*/
void
AddGrad
(
const
framework
::
LoDTensor
&
tmat
,
framework
::
LoDTensor
*
vec
);
void
AddGrad
(
const
framework
::
LoDTensor
&
tmat
,
framework
::
LoDTensor
*
vec
);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
LoDTensor
&
tmat
,
framework
::
SelectedRows
*
vec
);
/* For j < code_length
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
*/
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
02d68051
...
@@ -4639,14 +4639,14 @@ def hsigmoid(input,
...
@@ -4639,14 +4639,14 @@ def hsigmoid(input,
if
not
is_costum
:
if
not
is_costum
:
bias
=
helper
.
create_parameter
(
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
num_classes
-
1
],
shape
=
[
num_classes
-
1
,
1
],
is_bias
=
True
,
is_bias
=
True
,
dtype
=
input
.
dtype
)
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
inputs
[
'Bias'
]
=
bias
else
:
else
:
bias
=
helper
.
create_parameter
(
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
non_leaf_num
],
shape
=
[
non_leaf_num
,
1
],
is_bias
=
True
,
is_bias
=
True
,
dtype
=
input
.
dtype
)
dtype
=
input
.
dtype
)
inputs
[
'Bias'
]
=
bias
inputs
[
'Bias'
]
=
bias
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
02d68051
...
@@ -77,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
...
@@ -77,7 +77,7 @@ def hsigmoid(x, w, label, bias, num_classes):
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
...
@@ -115,7 +115,7 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
...
@@ -115,7 +115,7 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
pre_output
[
i
][
j
]
+=
bias
[
idx
][
0
]
for
i
in
range
(
batch_size
):
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
length
=
code_table
.
get_length
()
...
@@ -150,7 +150,7 @@ class TestHSigmoidOp(OpTest):
...
@@ -150,7 +150,7 @@ class TestHSigmoidOp(OpTest):
w
=
np
.
random
.
random
(
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
...
@@ -178,7 +178,7 @@ class TestHSigmoidOpSparse(OpTest):
...
@@ -178,7 +178,7 @@ class TestHSigmoidOpSparse(OpTest):
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'X'
:
x
,
...
@@ -193,7 +193,6 @@ class TestHSigmoidOpSparse(OpTest):
...
@@ -193,7 +193,6 @@ class TestHSigmoidOpSparse(OpTest):
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
self
.
check_output
()
...
@@ -208,7 +207,7 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
...
@@ -208,7 +207,7 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
emb
=
fluid
.
layers
.
embedding
(
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
input
=
input_word
,
is_sparse
=
Fal
se
,
is_sparse
=
is_spar
se
,
size
=
[
3
,
3
],
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
3
))))
scale
=
1
/
math
.
sqrt
(
3
))))
...
@@ -220,6 +219,7 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
...
@@ -220,6 +219,7 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
ptable
=
ptable
,
ptable
=
ptable
,
pcode
=
pcode
,
pcode
=
pcode
,
is_costum
=
True
,
is_costum
=
True
,
bias_attr
=
True
,
is_sparse
=
is_sparse
)
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
...
@@ -240,7 +240,6 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
...
@@ -240,7 +240,6 @@ class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
main_program
=
fluid
.
default_main_program
()
# print("main program: {program}".format{program=str(main_program)})
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
...
@@ -279,7 +278,7 @@ class TestHSigmoidOpWithCostumTree(OpTest):
...
@@ -279,7 +278,7 @@ class TestHSigmoidOpWithCostumTree(OpTest):
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
bias
=
np
.
random
.
random
((
num_classes
-
1
,
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'X'
:
x
,
...
@@ -294,11 +293,9 @@ class TestHSigmoidOpWithCostumTree(OpTest):
...
@@ -294,11 +293,9 @@ class TestHSigmoidOpWithCostumTree(OpTest):
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
self
.
check_output
()
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
print
(
"checking outputGrad in CostumTree"
)
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录