Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
025053b4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
025053b4
编写于
11月 24, 2021
作者:
Z
zhaoyingli
提交者:
GitHub
11月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Adapt auto search (#37490)
* adapt auto search * adapt auto search * fix matmulv2 compatible * del debug
上级
5ff1ff5a
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
502 addition
and
118 deletion
+502
-118
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
python/paddle/distributed/auto_parallel/completion.py
python/paddle/distributed/auto_parallel/completion.py
+27
-28
python/paddle/distributed/auto_parallel/dist_context.py
python/paddle/distributed/auto_parallel/dist_context.py
+22
-0
python/paddle/distributed/auto_parallel/dist_op.py
python/paddle/distributed/auto_parallel/dist_op.py
+11
-0
python/paddle/distributed/auto_parallel/dist_tensor.py
python/paddle/distributed/auto_parallel/dist_tensor.py
+11
-0
python/paddle/distributed/auto_parallel/operators/common.py
python/paddle/distributed/auto_parallel/operators/common.py
+24
-34
python/paddle/distributed/auto_parallel/operators/dist_embedding.py
...dle/distributed/auto_parallel/operators/dist_embedding.py
+54
-11
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
...paddle/distributed/auto_parallel/operators/dist_matmul.py
+245
-35
python/paddle/distributed/auto_parallel/parallelizer.py
python/paddle/distributed/auto_parallel/parallelizer.py
+29
-10
python/paddle/distributed/auto_parallel/utils.py
python/paddle/distributed/auto_parallel/utils.py
+55
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+23
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
025053b4
...
...
@@ -273,6 +273,7 @@ message DistributedStrategy {
optional
bool
fuse_grad_merge
=
34
[
default
=
false
];
optional
bool
semi_auto
=
35
[
default
=
false
];
optional
bool
adam_d2sum
=
36
[
default
=
true
];
optional
bool
auto_search
=
37
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
python/paddle/distributed/auto_parallel/completion.py
浏览文件 @
025053b4
...
...
@@ -715,6 +715,27 @@ def complete_backward_annotation(auto_parallel_main_prog, dist_context=None):
grad_op_dist_attr
.
process_mesh
=
forward_op_process_mesh
# var
for
input_name
in
grad_op
.
input_arg_names
:
input_var
=
vars
[
input_name
]
ref_dims_mapping
=
None
if
"@GRAD"
in
input_name
:
forward_name
=
_get_forward_varname_from_grad_varname
(
input_name
)
ref_dims_mapping
=
forward_op_dist_attr
.
get_output_dims_mapping
(
forward_name
)
else
:
if
forward_op_dist_attr
.
get_input_dims_mapping
(
input_name
):
ref_dims_mapping
=
forward_op_dist_attr
.
get_input_dims_mapping
(
input_name
)
else
:
ref_dims_mapping
=
forward_op_dist_attr
.
get_output_dims_mapping
(
input_name
)
assert
ref_dims_mapping
is
not
None
,
"[{}] 's dims mapping is NONE"
.
format
(
input_var
.
name
)
grad_op_dist_attr
.
set_input_dims_mapping
(
input_name
,
ref_dims_mapping
)
for
output_name
in
grad_op
.
desc
.
output_names
():
assert
len
(
grad_op
.
desc
.
output
(
output_name
))
in
[
0
,
1
]
if
_is_grad_var_name
(
output_name
):
...
...
@@ -726,41 +747,25 @@ def complete_backward_annotation(auto_parallel_main_prog, dist_context=None):
]
input_name
=
"X"
assert
input_name
in
forward_op
.
desc
.
input_names
(
),
"var [{}] in op [{}]'s output but coul
f
not find [{}] in its forward op"
.
format
(
),
"var [{}] in op [{}]'s output but coul
d
not find [{}] in its forward op"
.
format
(
output_name
,
grad_op
.
type
,
input_name
)
if
len
(
grad_op
.
desc
.
output
(
output_name
))
==
1
:
assert
len
(
forward_op
.
desc
.
input
(
input_name
))
==
1
input_var
=
vars
[
forward_op
.
desc
.
input
(
input_name
)[
0
]]
input_var_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
input_var_dist_attr
is
not
None
,
"[{}] has not dist attribute"
.
format
(
input_var
.
name
)
ref_dims_mapping
=
input_var_dist_attr
.
dims_mapping
# tensor dist attr
output_var
=
vars
[
grad_op
.
desc
.
output
(
output_name
)[
0
]]
forward_name
=
_get_forward_varname_from_grad_varname
(
output_var
.
name
)
ref_dims_mapping
=
forward_op_dist_attr
.
get_input_dims_mapping
(
forward_name
)
output_var_dist_attr
=
TensorDistributedAttribute
()
output_var_dist_attr
.
dims_mapping
=
ref_dims_mapping
output_var_dist_attr
.
process_mesh
=
forward_op_process_mesh
dist_context
.
set_tensor_dist_attr_for_program
(
output_var
,
output_var_dist_attr
)
# op dist attr
grad_op_dist_attr
.
set_output_dims_mapping
(
output_var
.
name
,
ref_dims_mapping
)
for
input_name
in
grad_op
.
input_arg_names
:
input_var
=
vars
[
input_name
]
input_var_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
input_var_dist_attr
is
not
None
,
"[{}] has not dist attribute"
.
format
(
input_var
.
name
)
ref_dims_mapping
=
input_var_dist_attr
.
dims_mapping
assert
ref_dims_mapping
is
not
None
,
"[{}] 's dims mapping is NONE"
.
format
(
input_var
.
name
)
grad_op_dist_attr
.
set_input_dims_mapping
(
input_name
,
ref_dims_mapping
)
dist_context
.
set_op_dist_attr_for_program
(
grad_op
,
grad_op_dist_attr
)
...
...
@@ -828,13 +833,7 @@ def complete_update_annotation(auto_parallel_main_prog, dist_context):
param_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
param
)
grad_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
grad_var
)
assert
param_dist_attr
is
not
None
assert
grad_dist_attr
is
not
None
assert
param_dist_attr
.
dims_mapping
==
grad_dist_attr
.
dims_mapping
ref_process_mesh
=
dist_context
.
get_tensor_dist_attr_for_program
(
param
).
process_mesh
assert
ref_process_mesh
is
not
None
...
...
python/paddle/distributed/auto_parallel/dist_context.py
浏览文件 @
025053b4
...
...
@@ -335,6 +335,17 @@ class DistributedContext:
dist_op
.
serial_op
.
type
,
dist_tensor
.
dist_attr
)
return
True
def
__deepcopy__
(
self
,
memo
):
cls
=
self
.
__class__
result
=
cls
.
__new__
(
cls
)
memo
[
id
(
self
)]
=
result
for
k
,
v
in
self
.
__dict__
.
items
():
if
k
==
"_serial_program"
or
k
==
"_serial_graph"
:
setattr
(
result
,
k
,
v
)
else
:
setattr
(
result
,
k
,
copy
.
deepcopy
(
v
,
memo
))
return
result
class
DistributedOperatorContext
:
"""
...
...
@@ -352,6 +363,17 @@ class DistributedOperatorContext:
self
.
gradopidx2opidx
=
{}
self
.
already_init_sync_vars
=
set
()
def
__deepcopy__
(
self
,
memo
):
cls
=
self
.
__class__
result
=
cls
.
__new__
(
cls
)
memo
[
id
(
self
)]
=
result
for
k
,
v
in
self
.
__dict__
.
items
():
if
k
==
"_dst_main_program"
or
k
==
"_dst_startup_program"
or
k
==
"_cur_src_op"
:
setattr
(
result
,
k
,
v
)
else
:
setattr
(
result
,
k
,
copy
.
deepcopy
(
v
,
memo
))
return
result
def
set_dst_main_program
(
self
,
prog
):
self
.
_dst_main_program
=
prog
...
...
python/paddle/distributed/auto_parallel/dist_op.py
浏览文件 @
025053b4
...
...
@@ -219,6 +219,17 @@ class DistributedOperator:
return
str
def
__deepcopy__
(
self
,
memo
):
cls
=
self
.
__class__
result
=
cls
.
__new__
(
cls
)
memo
[
id
(
self
)]
=
result
for
k
,
v
in
self
.
__dict__
.
items
():
if
k
==
"_serial_op"
or
k
==
"_serial_inputs"
or
k
==
"_serial_outputs"
:
setattr
(
result
,
k
,
v
)
else
:
setattr
(
result
,
k
,
copy
.
deepcopy
(
v
,
memo
))
return
result
class
DistributedModule
:
def
__init__
(
self
,
serial_module
,
dist_attr
=
None
):
...
...
python/paddle/distributed/auto_parallel/dist_tensor.py
浏览文件 @
025053b4
...
...
@@ -66,6 +66,17 @@ class DistributedTensor:
return
False
return
True
def
__deepcopy__
(
self
,
memo
):
cls
=
self
.
__class__
result
=
cls
.
__new__
(
cls
)
memo
[
id
(
self
)]
=
result
for
k
,
v
in
self
.
__dict__
.
items
():
if
k
==
"_serial_tensor"
:
setattr
(
result
,
k
,
v
)
else
:
setattr
(
result
,
k
,
copy
.
deepcopy
(
v
,
memo
))
return
result
def
__str__
(
self
):
str
=
"{{tensor name: {}, tensor id: {}"
.
format
(
self
.
serial_tensor
.
desc
.
name
(),
self
.
serial_tensor
.
desc
.
id
())
...
...
python/paddle/distributed/auto_parallel/operators/common.py
浏览文件 @
025053b4
...
...
@@ -111,37 +111,27 @@ def find_best_compatible_distributed_operator_impl(name, dist_op, fwd=True):
return
best_compatible_impl
,
idx
def
copy_distributed_attr_for_var
(
dist_context
,
dst_var
,
src_var
):
"""
copy src var's dist_attr to dst var
"""
dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
src_var
)
dist_context
.
set_tensor_dist_attr_for_program
(
dst_var
,
dist_attr
)
def
copy_distributed_attr_for_dist_op
(
dist_context
,
dist_op
,
dst_block
,
src_op_dist_attr
):
"""
copy src op's dist_attr to dst dist op
"""
from
..dist_attribute
import
OperatorDistributedAttribute
# need check dist op attr and its inputs and outputs
op_dist_attr
=
OperatorDistributedAttribute
()
op_dist_attr
.
process_mesh
=
src_op_dist_attr
.
process_mesh
op_dist_attr
.
impl_idx
=
src_op_dist_attr
.
impl_idx
for
input_varname
in
dist_op
.
desc
.
input_arg_names
():
input_var
=
dst_block
.
var
(
input_varname
)
tensor_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
input_var
)
op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
for
output_varname
in
dist_op
.
desc
.
output_arg_names
():
output_var
=
dst_block
.
var
(
output_varname
)
tensor_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
output_var
)
op_dist_attr
.
set_output_dist_attr
(
output_varname
,
tensor_dist_attr
)
dist_context
.
set_op_dist_attr_for_program
(
dist_op
,
op_dist_attr
)
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
dist_op
)
def
infer_shape
(
block
,
src_var
,
src_var_dist_attr
,
op_input_dist_attr
):
var_shape
=
block
.
var
(
src_var
.
name
).
shape
var_topoloy
=
src_var_dist_attr
.
process_mesh
.
topology
var_dims_mapping
=
src_var_dist_attr
.
dims_mapping
complete_shape
=
[]
for
idx
,
shape
in
enumerate
(
var_shape
):
if
var_dims_mapping
[
idx
]
==
-
1
:
complete_shape
.
append
(
shape
)
else
:
new_shape
=
shape
*
var_topoloy
[
var_dims_mapping
[
idx
]]
complete_shape
.
append
(
new_shape
)
exact_shape
=
[]
input_topology
=
op_input_dist_attr
.
process_mesh
.
topology
input_dims_mapping
=
op_input_dist_attr
.
dims_mapping
for
idx
,
shape
in
enumerate
(
complete_shape
):
if
input_dims_mapping
[
idx
]
==
-
1
:
exact_shape
.
append
(
shape
)
else
:
new_shape
=
shape
//
input_topology
[
input_dims_mapping
[
idx
]]
exact_shape
.
append
(
new_shape
)
return
exact_shape
python/paddle/distributed/auto_parallel/operators/dist_embedding.py
浏览文件 @
025053b4
...
...
@@ -12,12 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License
from
.common
import
infer_shape
from
.common
import
DistributedOperatorImplContainer
from
.common
import
DistributedOperatorImpl
from
.common
import
register_distributed_operator_impl_container
from
.common
import
register_distributed_operator_impl
from
.common
import
copy_distributed_attr_for_var
from
.common
import
copy_distributed_attr_for_dist_op
from
..utils
import
is_dim_shard
from
..utils
import
is_dim_replicate
from
..utils
import
is_valid_list_index
...
...
@@ -172,6 +171,14 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
check_variable_and_dtype
(
Ids_var
,
'input'
,
[
'int32'
,
'int64'
],
'c_embedding'
)
# infer new var shape with op dist attr
out_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
Out_var
)
assert
out_tensor_dist_attr
is
not
None
out_var_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
out_var_dist_attr
is
not
None
ref_shape
=
infer_shape
(
main_block
,
Out_var
,
out_tensor_dist_attr
,
out_var_dist_attr
)
intermediate_var_0
=
main_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
(
[
"c_embedding"
,
'tmp'
])),
...
...
@@ -180,9 +187,9 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
Out_var
.
stop_gradient
)
# copy Out_var's dist_attr to intermediate_var_0's dist_attr
copy_distributed_attr_for_var
(
ctx
,
intermediate_var_0
,
Out_va
r
)
# set intermediate_var_0's dist_attr with Out_var's dist_attr
ctx
.
set_tensor_dist_attr_for_program
(
intermediate_var_0
,
out_var_dist_att
r
)
check_variable_and_dtype
(
Out_var
,
'tensor'
,
...
...
@@ -195,6 +202,8 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
'W'
:
[
Weight_var
]},
outputs
=
{
'Out'
:
[
intermediate_var_0
]},
attrs
=
{
"start_index"
:
relative_idx
})
if
intermediate_var_0
.
shape
!=
ref_shape
:
intermediate_var_0
.
desc
.
set_shape
(
ref_shape
)
# use_model_parallel
c_allreduce_sum_op
=
main_block
.
append_op
(
...
...
@@ -206,12 +215,46 @@ class DistributedEmbeddingImpl(DistributedOperatorImpl):
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
,
})
# copy serial op's dist_attr to dist op's dist_attr
copy_distributed_attr_for_dist_op
(
ctx
,
c_embedding_op
,
main_block
,
op_dist_attr
)
copy_distributed_attr_for_dist_op
(
ctx
,
c_allreduce_sum_op
,
main_block
,
op_dist_attr
)
if
Out_var
.
shape
!=
ref_shape
:
Out_var
.
desc
.
set_shape
(
ref_shape
)
# set dist op's dist_attr with serial op's dist_attr
# matmulv2
embedding_op_dist_attr
=
OperatorDistributedAttribute
()
embedding_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
embedding_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_embedding_op
.
desc
.
input_arg_names
():
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
embedding_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
output_varname
=
c_embedding_op
.
desc
.
output_arg_names
()[
0
]
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
embedding_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
c_embedding_op
,
embedding_op_dist_attr
)
# allreduce
allreduce_op_dist_attr
=
OperatorDistributedAttribute
()
allreduce_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
for
output_varname
in
c_allreduce_sum_op
.
desc
.
output_arg_names
():
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
output_varname
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
allreduce_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
c_allreduce_sum_op
,
allreduce_op_dist_attr
)
# param initialization sync
assert
Weight_var
.
name
not
in
dist_op_context
.
already_init_sync_vars
...
...
python/paddle/distributed/auto_parallel/operators/dist_matmul.py
浏览文件 @
025053b4
...
...
@@ -12,12 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License
from
.common
import
infer_shape
from
.common
import
DistributedOperatorImplContainer
from
.common
import
DistributedOperatorImpl
from
.common
import
register_distributed_operator_impl_container
from
.common
import
register_distributed_operator_impl
from
.common
import
copy_distributed_attr_for_var
from
.common
import
copy_distributed_attr_for_dist_op
from
..utils
import
is_dim_shard
from
..utils
import
is_dim_replicate
from
..utils
import
is_valid_list_index
...
...
@@ -356,6 +355,21 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
parallel_axis
,
rank_id
)
group
=
new_process_group
(
group_ranks
)
# infer new var shape with op dist attr
x_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
X_var
)
assert
x_tensor_dist_attr
is
not
None
identity_var_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
X_var
.
name
)
assert
identity_var_dist_attr
is
not
None
ref_shape_x
=
infer_shape
(
main_block
,
X_var
,
x_tensor_dist_attr
,
identity_var_dist_attr
)
# infer out var shape with op dist attr
out_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
Out_var
)
assert
out_tensor_dist_attr
is
not
None
out_var_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
out_var_dist_attr
is
not
None
ref_shape_out
=
infer_shape
(
main_block
,
Out_var
,
out_tensor_dist_attr
,
out_var_dist_attr
)
intermediate_var_0
=
main_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
(
[
"c_identity"
,
'tmp'
])),
...
...
@@ -364,8 +378,9 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
X_var
.
stop_gradient
)
# copy X_var's dist_attr to intermediate_var_0's dist_attr
copy_distributed_attr_for_var
(
ctx
,
intermediate_var_0
,
X_var
)
# set intermediate_var_0's dist_attr with X_var's dist_attr
ctx
.
set_tensor_dist_attr_for_program
(
intermediate_var_0
,
identity_var_dist_attr
)
check_variable_and_dtype
(
X_var
,
'tensor'
,
...
...
@@ -380,6 +395,8 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
,
})
if
intermediate_var_0
.
shape
!=
ref_shape_x
:
intermediate_var_0
.
desc
.
set_shape
(
ref_shape_x
)
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
...
...
@@ -393,12 +410,56 @@ class DistributedMatmulImpl0(DistributedOperatorImpl):
inputs
=
{
'X'
:
[
intermediate_var_0
],
'Y'
:
[
Weight_var
]}
matmul_op
=
main_block
.
append_op
(
type
=
'matmul'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
Out_var
},
attrs
=
attrs
)
# copy serial op's dist_attr to dist op's dist_attr
copy_distributed_attr_for_dist_op
(
ctx
,
c_identity_op
,
main_block
,
op_dist_attr
)
copy_distributed_attr_for_dist_op
(
ctx
,
matmul_op
,
main_block
,
op_dist_attr
)
if
Out_var
.
shape
!=
ref_shape_out
:
Out_var
.
desc
.
set_shape
(
ref_shape_out
)
# set dist op's dist_attr with serial op's dist_attr
# c_identity
identity_op_dist_attr
=
OperatorDistributedAttribute
()
identity_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
identity_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
# input
input_varname
=
c_identity_op
.
desc
.
input_arg_names
()[
0
]
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
identity_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
# output
output_varname
=
c_identity_op
.
desc
.
output_arg_names
()[
0
]
identity_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
input_dist_attr
)
# set op dist attr
ctx
.
set_op_dist_attr_for_program
(
c_identity_op
,
identity_op_dist_attr
)
# matmul
matmul_op_dist_attr
=
OperatorDistributedAttribute
()
matmul_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
matmul_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
# input
for
input_varname
in
matmul_op
.
desc
.
input_arg_names
():
if
input_varname
in
src_op
.
desc
.
input_arg_names
():
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmul_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
else
:
input_var
=
main_block
.
var
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
matmul_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
# output
output_varname
=
matmul_op
.
desc
.
output_arg_names
()[
0
]
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
output_varname
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmul_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
# set op dist attr
ctx
.
set_op_dist_attr_for_program
(
matmul_op
,
matmul_op_dist_attr
)
# init param sync
if
Weight_var
.
is_parameter
:
...
...
@@ -518,6 +579,15 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
'alpha'
:
1
,
}
inputs
=
{
'X'
:
X_var
,
'Y'
:
Weight_var
}
# infer out var shape with op dist attr
out_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
Out_var
)
assert
out_tensor_dist_attr
is
not
None
out_var_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
out_var_dist_attr
is
not
None
ref_shape
=
infer_shape
(
main_block
,
Out_var
,
out_tensor_dist_attr
,
out_var_dist_attr
)
intermediate_var_0
=
main_block
.
create_var
(
shape
=
Out_var
.
shape
,
dtype
=
Out_var
.
dtype
,
...
...
@@ -526,14 +596,17 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
Out_var
.
desc
.
need_check_feed
())
# copy Out_var's dist_attr to intermediate_var_0's dist_attr
copy_distributed_attr_for_var
(
ctx
,
intermediate_var_0
,
Out_var
)
# set intermediate_var_0's dist_attr with Out_var's dist_attr
ctx
.
set_tensor_dist_attr_for_program
(
intermediate_var_0
,
out_var_dist_attr
)
matmul_op
=
main_block
.
append_op
(
type
=
'matmul'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
intermediate_var_0
},
attrs
=
attrs
)
if
intermediate_var_0
.
shape
!=
ref_shape
:
intermediate_var_0
.
desc
.
set_shape
(
ref_shape
)
c_allreduce_sum_op
=
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
...
...
@@ -544,12 +617,46 @@ class DistributedMatmulImpl1(DistributedOperatorImpl):
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
# copy serial op's dist_attr to dist op's dist_attr
copy_distributed_attr_for_dist_op
(
ctx
,
matmul_op
,
main_block
,
op_dist_attr
)
copy_distributed_attr_for_dist_op
(
ctx
,
c_allreduce_sum_op
,
main_block
,
op_dist_attr
)
if
Out_var
.
shape
!=
ref_shape
:
Out_var
.
desc
.
set_shape
(
ref_shape
)
# set dist op's dist_attr with serial op's dist_attr
# matmul
matmul_op_dist_attr
=
OperatorDistributedAttribute
()
matmul_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
matmul_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
matmul_op
.
desc
.
input_arg_names
():
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmul_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
output_varname
=
matmul_op
.
desc
.
output_arg_names
()[
0
]
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmul_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
matmul_op
,
matmul_op_dist_attr
)
# allreduce
allreduce_op_dist_attr
=
OperatorDistributedAttribute
()
allreduce_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
for
output_varname
in
c_allreduce_sum_op
.
desc
.
output_arg_names
():
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
output_varname
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
allreduce_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
c_allreduce_sum_op
,
allreduce_op_dist_attr
)
# init param sync
if
Weight_var
.
is_parameter
:
...
...
@@ -729,6 +836,21 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
parallel_axis
,
rank_id
)
group
=
new_process_group
(
group_ranks
)
# infer new var shape with op dist attr
x_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
X_var
)
assert
x_tensor_dist_attr
is
not
None
identity_var_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
X_var
.
name
)
assert
identity_var_dist_attr
is
not
None
ref_shape_x
=
infer_shape
(
main_block
,
X_var
,
x_tensor_dist_attr
,
identity_var_dist_attr
)
# infer out var shape with op dist attr
out_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
Out_var
)
assert
out_tensor_dist_attr
is
not
None
out_var_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
out_var_dist_attr
is
not
None
ref_shape_out
=
infer_shape
(
main_block
,
Out_var
,
out_tensor_dist_attr
,
out_var_dist_attr
)
intermediate_var_0
=
main_block
.
create_var
(
name
=
unique_name
.
generate_with_ignorable_key
(
"."
.
join
(
[
"c_identity"
,
'tmp'
])),
...
...
@@ -737,13 +859,13 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
X_var
.
stop_gradient
)
# copy X_var's dist_attr to intermediate_var_0's dist_attr
copy_distributed_attr_for_var
(
ctx
,
intermediate_var_0
,
X_var
)
# set intermediate_var_0's dist_attr with X_var's dist_attr
ctx
.
set_tensor_dist_attr_for_program
(
intermediate_var_0
,
identity_var_dist_attr
)
check_variable_and_dtype
(
X_var
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'_c_identity'
)
c_identity_op
=
main_block
.
append_op
(
type
=
'c_identity'
,
inputs
=
{
'X'
:
[
X_var
]},
...
...
@@ -753,6 +875,8 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
,
})
if
intermediate_var_0
.
shape
!=
ref_shape_x
:
intermediate_var_0
.
desc
.
set_shape
(
ref_shape_x
)
check_variable_and_dtype
(
intermediate_var_0
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'linear'
)
...
...
@@ -765,12 +889,52 @@ class DistributedMatmulV2Impl0(DistributedOperatorImpl):
inputs
=
inputs
,
outputs
=
{
'Out'
:
Out_var
},
attrs
=
attrs
)
# copy serial op's dist_attr to dist op's dist_attr
copy_distributed_attr_for_dist_op
(
ctx
,
c_identity_op
,
main_block
,
op_dist_attr
)
copy_distributed_attr_for_dist_op
(
ctx
,
matmul_v2_op
,
main_block
,
op_dist_attr
)
if
Out_var
.
shape
!=
ref_shape_out
:
Out_var
.
desc
.
set_shape
(
ref_shape_out
)
# set dist op's dist_attr with serial op's dist_attr
# c_identity
identity_op_dist_attr
=
OperatorDistributedAttribute
()
identity_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
identity_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
# input
input_varname
=
c_identity_op
.
desc
.
input_arg_names
()[
0
]
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
identity_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
# output
output_varname
=
c_identity_op
.
desc
.
output_arg_names
()[
0
]
identity_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
input_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
c_identity_op
,
identity_op_dist_attr
)
# matmulv2
matmulv2_op_dist_attr
=
OperatorDistributedAttribute
()
matmulv2_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
matmulv2_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
matmul_v2_op
.
desc
.
input_arg_names
():
if
input_varname
in
src_op
.
desc
.
input_arg_names
():
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmulv2_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
else
:
input_var
=
main_block
.
var
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
matmulv2_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
for
output_varname
in
matmul_v2_op
.
desc
.
output_arg_names
():
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
output_varname
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmulv2_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
matmul_v2_op
,
matmulv2_op_dist_attr
)
# init param sync
if
Weight_var
.
is_parameter
:
...
...
@@ -886,6 +1050,15 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
'linear'
)
attrs
=
{
'trans_x'
:
False
,
'trans_y'
:
False
}
inputs
=
{
'X'
:
X_var
,
'Y'
:
Weight_var
}
# infer out var shape with op dist attr
out_tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
Out_var
)
assert
out_tensor_dist_attr
is
not
None
out_var_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
out_var_dist_attr
is
not
None
ref_shape
=
infer_shape
(
main_block
,
Out_var
,
out_tensor_dist_attr
,
out_var_dist_attr
)
intermediate_var_0
=
main_block
.
create_var
(
shape
=
Out_var
.
shape
,
dtype
=
Out_var
.
dtype
,
...
...
@@ -894,14 +1067,17 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
persistable
=
False
,
is_data
=
False
,
need_check_feed
=
Out_var
.
desc
.
need_check_feed
())
# copy Out_var's dist_attr to intermediate_var_0's dist_attr
copy_distributed_attr_for_var
(
ctx
,
intermediate_var_0
,
Out_var
)
# set intermediate_var_0's dist_attr with Out_var's dist_attr
ctx
.
set_tensor_dist_attr_for_program
(
intermediate_var_0
,
out_var_dist_attr
)
matmul_v2_op
=
main_block
.
append_op
(
type
=
'matmul_v2'
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
intermediate_var_0
},
attrs
=
attrs
)
if
intermediate_var_0
.
shape
!=
ref_shape
:
intermediate_var_0
.
desc
.
set_shape
(
ref_shape
)
c_allreduce_sum_op
=
main_block
.
append_op
(
type
=
'c_allreduce_sum'
,
...
...
@@ -912,12 +1088,46 @@ class DistributedMatmulV2Impl1(DistributedOperatorImpl):
'use_calc_stream'
:
True
,
'use_model_parallel'
:
True
})
# copy serial op's dist_attr to dist op's dist_attr
copy_distributed_attr_for_dist_op
(
ctx
,
matmul_v2_op
,
main_block
,
op_dist_attr
)
copy_distributed_attr_for_dist_op
(
ctx
,
c_allreduce_sum_op
,
main_block
,
op_dist_attr
)
if
Out_var
.
shape
!=
ref_shape
:
Out_var
.
desc
.
set_shape
(
ref_shape
)
# set dist op's dist_attr with serial op's dist_attr
# matmulv2
matmulv2_op_dist_attr
=
OperatorDistributedAttribute
()
matmulv2_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
matmulv2_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
matmul_v2_op
.
desc
.
input_arg_names
():
input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
input_varname
)
assert
input_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmulv2_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
input_dist_attr
)
output_varname
=
matmul_v2_op
.
desc
.
output_arg_names
()[
0
]
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
Out_var
.
name
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
matmulv2_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
matmul_v2_op
,
matmulv2_op_dist_attr
)
# allreduce
allreduce_op_dist_attr
=
OperatorDistributedAttribute
()
allreduce_op_dist_attr
.
process_mesh
=
op_dist_attr
.
process_mesh
allreduce_op_dist_attr
.
impl_idx
=
op_dist_attr
.
impl_idx
for
input_varname
in
c_allreduce_sum_op
.
desc
.
input_arg_names
():
input_var
=
main_block
.
var
(
input_varname
)
tensor_dist_attr
=
ctx
.
get_tensor_dist_attr_for_program
(
input_var
)
assert
tensor_dist_attr
is
not
None
allreduce_op_dist_attr
.
set_input_dist_attr
(
input_varname
,
tensor_dist_attr
)
for
output_varname
in
c_allreduce_sum_op
.
desc
.
output_arg_names
():
output_dist_attr
=
op_dist_attr
.
get_output_dist_attr
(
output_varname
)
assert
output_dist_attr
is
not
None
,
"dist_attr is {}"
.
format
(
op_dist_attr
)
allreduce_op_dist_attr
.
set_output_dist_attr
(
output_varname
,
output_dist_attr
)
ctx
.
set_op_dist_attr_for_program
(
c_allreduce_sum_op
,
allreduce_op_dist_attr
)
# init param sync
if
Weight_var
.
is_parameter
:
...
...
python/paddle/distributed/auto_parallel/parallelizer.py
浏览文件 @
025053b4
...
...
@@ -12,7 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
paddle
from
paddle.distributed.utils
import
get_logger
from
paddle.distributed.fleet
import
cloud_utils
import
paddle.fluid.core
as
core
from
.dist_context
import
DistributedContext
...
...
@@ -22,7 +24,11 @@ from .completion import complete_annotation, complete_backward_annotation
from
.partitioner
import
Partitioner
from
.process_group
import
get_all_process_groups
from
.utils
import
make_data_unshard
from
.utils
import
set_grad_var_shape
from
.reshard
import
reshard
# from .auto_search import auto_search
_logger
=
get_logger
(
logging
.
INFO
)
class
AutoParallelizer
:
...
...
@@ -59,9 +65,19 @@ class AutoParallelizer:
assert
startup_program
is
not
None
main_program
=
loss
.
block
.
program
# Annotation completion
completed_main_program
=
complete_annotation
(
main_program
,
self
.
_dist_context
)
if
self
.
_dist_strategy
.
auto_search
:
# auto search
_logger
.
info
(
"Start search dist attr."
)
# self._dist_context, _ = auto_search(main_program, startup_program,
# loss, self._optimizer)
# completed_main_program = main_program
raise
NotImplementedError
(
"Auto search has not implemented"
)
else
:
# Annotation completion
_logger
.
info
(
"Start annotation dist attr."
)
completed_main_program
=
complete_annotation
(
main_program
,
self
.
_dist_context
)
# Logical partition
rank
=
paddle
.
distributed
.
get_rank
()
partitioner
=
Partitioner
(
self
.
_dist_strategy
,
self
.
_dist_context
,
rank
)
...
...
@@ -74,13 +90,8 @@ class AutoParallelizer:
self
.
_optimizer
,
dist_params_grads
,
partitioned_main_prog
,
partitioned_startup_prog
)
# Traverse different rank programs and traverse each op of them,
# instantiate communication by process_mapping.
all_process_groups
=
get_all_process_groups
()
for
process_group
in
all_process_groups
:
if
rank
not
in
process_group
.
_ranks
:
continue
process_group
.
instantiate
()
# set the grad var shape
set_grad_var_shape
(
partitioned_main_prog
,
self
.
_dist_context
)
# The last step: remove all distributed attributes to be compatiable
# with inference.
...
...
@@ -91,6 +102,14 @@ class AutoParallelizer:
reshard
(
partitioned_main_prog
,
partitioned_startup_prog
,
rank
,
self
.
_dist_context
)
# Traverse different rank programs and traverse each op of them,
# instantiate communication by process_mapping.
all_process_groups
=
get_all_process_groups
()
for
process_group
in
all_process_groups
:
if
rank
not
in
process_group
.
_ranks
:
continue
process_group
.
instantiate
()
# Copy distributed info to the default context
set_default_distributed_context
(
self
.
_dist_context
)
...
...
python/paddle/distributed/auto_parallel/utils.py
浏览文件 @
025053b4
...
...
@@ -981,3 +981,58 @@ def _get_split_indices(complete_shape, dims_mapping, process_shape,
complete_shape
))
split_indices_list
=
[
sorted
(
x
)
for
x
in
split_indices_list
]
return
split_indices_list
def
set_grad_var_shape
(
program
,
dist_context
):
from
.operators.common
import
infer_shape
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
block
=
program
.
global_block
()
vars
=
block
.
vars
for
op
in
block
.
ops
:
if
op
.
type
==
"sum"
:
continue
if
int
(
op
.
attr
(
'op_role'
))
==
int
(
OpRole
.
Backward
):
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
op
)
assert
op_dist_attr
is
not
None
for
var_name
in
op
.
output_arg_names
:
assert
"@GRAD"
in
var_name
forward_var_name
=
var_name
[:
var_name
.
find
(
"@GRAD"
)]
if
op
.
type
==
"c_allreduce_sum"
or
op
.
type
==
"c_identity"
or
op
.
type
==
"scale"
:
forward_var_name
=
op
.
input_arg_names
[
0
]
need_set_shape_list
=
[
"reshape2_grad"
,
"softmax_with_cross_entropy_grad"
,
"transpose2_grad"
,
"softmax_grad"
,
"cross_entropy_grad2"
,
"dropout_grad"
]
forward_list
=
[
"reshape2"
,
"softmax_with_cross_entropy"
,
"transpose2"
,
"softmax"
,
"cross_entropy2"
,
"dropout"
]
if
op
.
type
in
need_set_shape_list
:
for
forward_op
in
block
.
ops
:
assert
int
(
forward_op
.
attr
(
'op_role'
))
!=
int
(
OpRole
.
Backward
)
idx
=
need_set_shape_list
.
index
(
op
.
type
)
forward_op_name
=
forward_list
[
idx
]
if
forward_op
.
type
==
forward_op_name
and
forward_var_name
in
forward_op
.
input_arg_names
:
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
forward_op
)
break
forward_input_dist_attr
=
op_dist_attr
.
get_input_dist_attr
(
forward_var_name
)
assert
forward_input_dist_attr
is
not
None
,
f
"
{
forward_var_name
}
"
forward_var
=
vars
[
forward_var_name
]
forward_var_dist_attr
=
dist_context
.
get_tensor_dist_attr_for_program
(
forward_var
)
assert
forward_var_dist_attr
is
not
None
grad_var
=
vars
[
var_name
]
ref_shape
=
infer_shape
(
block
,
forward_var
,
forward_var_dist_attr
,
forward_input_dist_attr
)
if
list
(
grad_var
.
shape
)
!=
ref_shape
:
grad_var
.
desc
.
set_shape
(
ref_shape
)
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
025053b4
...
...
@@ -1631,6 +1631,29 @@ class DistributedStrategy(object):
else
:
print
(
"WARNING: semi-auto should have value of bool type"
)
@
property
def
auto_search
(
self
):
"""
Indicating whether we are using auto-search parallel function
For details, please reference the following code example
Default Value: False
Examples:
.. code-block:: python
import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.auto_search = True
"""
return
self
.
strategy
.
auto_search
@
auto_search
.
setter
def
auto_search
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
auto_search
=
flag
else
:
print
(
"WARNING: auto-search should have value of bool type"
)
@
property
def
cudnn_exhaustive_search
(
self
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录