Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
01222f52
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01222f52
编写于
1月 19, 2022
作者:
W
wuhuachaocoding
提交者:
GitHub
1月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] Fix out of memory bug (#39009)
上级
e43b6f65
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
131 addition
and
5 deletion
+131
-5
python/paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
...paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
+5
-0
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+119
-0
python/paddle/optimizer/optimizer.py
python/paddle/optimizer/optimizer.py
+7
-5
未找到文件。
python/paddle/fluid/tests/unittests/fleet_meta_optimizer_base.py
浏览文件 @
01222f52
...
@@ -135,6 +135,11 @@ class TestFleetMetaOptimizer(unittest.TestCase):
...
@@ -135,6 +135,11 @@ class TestFleetMetaOptimizer(unittest.TestCase):
learning_rate
=
0.01
,
learning_rate
=
0.01
,
regularization
=
regularization
,
regularization
=
regularization
,
grad_clip
=
grad_clip
)
grad_clip
=
grad_clip
)
elif
name
==
'adamw'
:
optimizer
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
0.01
,
weight_decay
=
0.01
,
grad_clip
=
grad_clip
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
01222f52
...
@@ -771,6 +771,125 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
...
@@ -771,6 +771,125 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_mp_pp_amp_gclip_for_optimizer
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
self
.
set_strategy
(
strategy
,
'amp'
)
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"sharding_degree"
:
1
,
"mp_degree"
:
2
,
"pp_degree"
:
2
,
"dp_degree"
:
1
,
}
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
clip
=
paddle
.
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
1.0
)
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
,
grad_clip
=
clip
,
name
=
"adamw"
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
])
self
.
assertEqual
(
main_prog_op_types
,
[
'partial_recv'
,
'partial_allgather'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'softmax'
,
'cast'
,
'cross_entropy2'
,
'mean'
,
'elementwise_mul'
,
'fill_constant'
,
'elementwise_mul_grad'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'cast'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'c_sync_calc_stream'
,
'partial_send'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'c_sync_comm_stream'
,
'check_finite_and_unscale'
,
'cast'
,
'c_allreduce_max'
,
'c_allreduce_max'
,
'cast'
,
'update_loss_scaling'
,
'memcpy'
,
'fill_constant'
,
'c_allreduce_sum'
,
'c_allreduce_sum'
,
'sqrt'
,
'fill_constant'
,
'elementwise_max'
,
'elementwise_div'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'adamw'
,
'adamw'
,
'adamw'
,
'adamw'
,
'adamw'
,
'adamw'
,
'adamw'
,
'adamw'
])
# pp + mp, partial send recv
self
.
assertIn
(
'partial_recv'
,
main_prog_op_types
)
self
.
assertIn
(
'partial_allgather'
,
main_prog_op_types
)
self
.
assertIn
(
'partial_send'
,
main_prog_op_types
)
# amp check_finite_and_unscale, allreduce(mp)->allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_max'
),
2
)
# global gradient clip, allreduce(mp)->allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_sum'
),
2
)
# should has ring id for pp
created_ring_ids
=
[
op
.
desc
.
attr
(
"ring_id"
)
for
op
in
startup_prog_ops
if
op
.
type
==
"c_comm_init"
]
self
.
assertIn
(
self
.
mp_ring_id
,
created_ring_ids
)
self
.
assertIn
(
self
.
pp_pair_ring_id
,
created_ring_ids
)
# check correctness of pp group
sharding_group_waiting_port
=
None
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_0"
:
mp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
mp_group_waiting_ports
,
[
'127.0.0.1:36003'
])
# check correctness of sharding group
sharding_group_waiting_port
=
None
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_1"
:
pp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_pp_dp_amp_fp16allreduce
(
self
):
def
test_hybrid_with_pp_dp_amp_fp16allreduce
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
)
...
...
python/paddle/optimizer/optimizer.py
浏览文件 @
01222f52
...
@@ -722,6 +722,13 @@ class Optimizer(object):
...
@@ -722,6 +722,13 @@ class Optimizer(object):
self
.
_append_optimize_multi_tensor_op
(
self
.
_append_optimize_multi_tensor_op
(
target_block
,
parameters_and_grads
)
target_block
,
parameters_and_grads
)
else
:
else
:
if
not
framework
.
in_dygraph_mode
():
params_grads_device_map
=
parameters_and_grads
[
'params'
]
if
isinstance
(
parameters_and_grads
,
dict
)
else
parameters_and_grads
self
.
_update_param_device_map
(
params_grads_device_map
,
target_block
)
if
isinstance
(
parameters_and_grads
,
list
):
if
isinstance
(
parameters_and_grads
,
list
):
self
.
_create_accumulators
(
target_block
,
[
self
.
_create_accumulators
(
target_block
,
[
p
[
0
]
for
p
in
parameters_and_grads
if
not
p
[
0
].
stop_gradient
p
[
0
]
for
p
in
parameters_and_grads
if
not
p
[
0
].
stop_gradient
...
@@ -757,11 +764,6 @@ class Optimizer(object):
...
@@ -757,11 +764,6 @@ class Optimizer(object):
self
.
_append_optimize_op
(
target_block
,
self
.
_append_optimize_op
(
target_block
,
param_grad_dict
)
param_grad_dict
)
else
:
else
:
params_grads_device_map
=
parameters_and_grads
[
'params'
]
if
isinstance
(
parameters_and_grads
,
dict
)
else
parameters_and_grads
self
.
_update_param_device_map
(
params_grads_device_map
,
target_block
)
for
param_and_grad
in
parameters_and_grads
:
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
1
]
is
None
:
if
param_and_grad
[
1
]
is
None
:
continue
continue
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录