Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
00e08ce0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00e08ce0
编写于
8月 17, 2020
作者:
W
wawltor
提交者:
GitHub
8月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add the sigmoid, Sigmoid for the api 2.0 (#26171)
Update the sigmoid, Sigmoid layer for the api2.0
上级
f8ca7201
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
157 addition
and
169 deletion
+157
-169
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+1
-0
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+17
-5
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+3
-70
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
+107
-0
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+2
-62
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+27
-32
未找到文件。
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
00e08ce0
...
@@ -274,6 +274,7 @@ def generate_activation_fn(op_type):
...
@@ -274,6 +274,7 @@ def generate_activation_fn(op_type):
return
output
return
output
func
.
__name__
=
op_type
func
.
__name__
=
op_type
func
.
__module__
=
"paddle.fluid.layers"
func
.
__doc__
=
_generate_doc_string_
(
func
.
__doc__
=
_generate_doc_string_
(
op_proto
,
op_proto
,
additional_args_lines
=
[
additional_args_lines
=
[
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
00e08ce0
...
@@ -23,10 +23,15 @@ from paddle.utils import deprecated
...
@@ -23,10 +23,15 @@ from paddle.utils import deprecated
__activations_noattr__
=
[
__activations_noattr__
=
[
'sigmoid'
,
'sigmoid'
,
'logsigmoid'
,
'logsigmoid'
,
'tanh_shrink'
,
'softplus'
,
'softsign'
,
]
__unary_func__
=
[
'exp'
,
'exp'
,
'tanh'
,
'tanh'
,
'atan'
,
'atan'
,
'tanh_shrink'
,
'sqrt'
,
'sqrt'
,
'rsqrt'
,
'rsqrt'
,
'abs'
,
'abs'
,
...
@@ -34,15 +39,13 @@ __activations_noattr__ = [
...
@@ -34,15 +39,13 @@ __activations_noattr__ = [
'floor'
,
'floor'
,
'cos'
,
'cos'
,
'acos'
,
'acos'
,
'asin'
,
'sin'
,
'sin'
,
'sinh'
,
'sinh'
,
'asin'
,
'cosh'
,
'cosh'
,
'round'
,
'round'
,
'reciprocal'
,
'reciprocal'
,
'square'
,
'square'
,
'softplus'
,
'softsign'
,
]
]
__all__
=
[]
__all__
=
[]
...
@@ -58,9 +61,18 @@ globals()['_scale'] = generate_layer_fn('scale')
...
@@ -58,9 +61,18 @@ globals()['_scale'] = generate_layer_fn('scale')
globals
()[
'_elementwise_div'
]
=
generate_layer_fn
(
'elementwise_div'
)
globals
()[
'_elementwise_div'
]
=
generate_layer_fn
(
'elementwise_div'
)
__all__
+=
__activations_noattr__
__all__
+=
__activations_noattr__
__all__
+=
__unary_func__
for
_OP
in
set
(
__activations_noattr__
):
for
_OP
in
set
(
__activations_noattr__
):
globals
()[
_OP
]
=
generate_activation_fn
(
_OP
)
func
=
generate_activation_fn
(
_OP
)
func
=
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.nn.functional.%s"
%
(
_OP
))(
func
)
globals
()[
_OP
]
=
func
for
_OP
in
set
(
__unary_func__
):
func
=
generate_activation_fn
(
_OP
)
func
=
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.%s"
%
(
_OP
))(
func
)
globals
()[
_OP
]
=
func
add_sample_code
(
globals
()[
"sigmoid"
],
r
"""
add_sample_code
(
globals
()[
"sigmoid"
],
r
"""
Examples:
Examples:
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
00e08ce0
...
@@ -1440,9 +1440,9 @@ class TestNNReluAPI(unittest.TestCase):
...
@@ -1440,9 +1440,9 @@ class TestNNReluAPI(unittest.TestCase):
y_t
[
y_t
>
0
]
=
1
y_t
[
y_t
>
0
]
=
1
return
y_t
*
dy
return
y_t
*
dy
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
()
,
inplace
=
False
):
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
()):
main_program
=
Program
()
main_program
=
Program
()
myrelu
=
nn
.
ReLU
(
inplace
)
myrelu
=
nn
.
ReLU
()
with
fluid
.
program_guard
(
main_program
):
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
x
.
stop_gradient
=
False
...
@@ -1465,8 +1465,7 @@ class TestNNReluAPI(unittest.TestCase):
...
@@ -1465,8 +1465,7 @@ class TestNNReluAPI(unittest.TestCase):
if
core
.
is_compiled_with_cuda
():
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
place
in
places
:
for
inplace
in
[
True
,
False
]:
self
.
check_api
(
place
)
self
.
check_api
(
place
,
inplace
)
class
TestNNFunctionalReluAPI
(
unittest
.
TestCase
):
class
TestNNFunctionalReluAPI
(
unittest
.
TestCase
):
...
@@ -1491,71 +1490,5 @@ class TestNNFunctionalReluAPI(unittest.TestCase):
...
@@ -1491,71 +1490,5 @@ class TestNNFunctionalReluAPI(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
class
TestNNSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
ref_backward
(
self
,
y
,
dy
):
return
dy
*
y
*
(
1
-
y
)
def
check_api
(
self
,
place
=
fluid
.
CPUPlace
(),
inplace
=
False
):
main_program
=
Program
()
mysigmoid
=
nn
.
Sigmoid
(
inplace
)
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
y
=
mysigmoid
(
x
)
fluid
.
backward
.
append_backward
(
fluid
.
layers
.
mean
(
y
))
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
,
y
.
grad_name
,
x
.
grad_name
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
np
.
allclose
(
out
[
2
],
self
.
ref_backward
(
self
.
y
,
out
[
1
])))
with
fluid
.
dygraph
.
guard
(
place
):
x
=
fluid
.
dygraph
.
to_variable
(
self
.
x
)
y
=
mysigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
for
inplace
in
[
True
,
False
]:
self
.
check_api
(
place
,
inplace
)
class
TestNNFunctionalSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
test_check_api
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
F
.
sigmoid
(
x
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nn_sigmoid_op.py
0 → 100644
浏览文件 @
00e08ce0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
scipy.special
import
expit
,
erf
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn
as
nn
import
paddle.nn.functional
as
functional
class
TestNNSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
ref_backward
(
self
,
y
,
dy
):
return
dy
*
y
*
(
1
-
y
)
def
check_static_api
(
self
,
place
):
paddle
.
enable_static
()
main_program
=
paddle
.
static
.
Program
()
mysigmoid
=
nn
.
Sigmoid
(
name
=
"api_sigmoid"
)
with
paddle
.
static
.
program_guard
(
main_program
):
x
=
paddle
.
nn
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
x
.
stop_gradient
=
False
y
=
mysigmoid
(
x
)
fluid
.
backward
.
append_backward
(
paddle
.
mean
(
y
))
exe
=
paddle
.
static
.
Executor
(
place
)
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
self
.
assertTrue
(
y
.
name
.
startswith
(
"api_sigmoid"
))
def
check_dynamic_api
(
self
,
place
):
paddle
.
disable_static
(
place
)
x
=
paddle
.
to_variable
(
self
.
x
)
mysigmoid
=
nn
.
Sigmoid
()
y
=
mysigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_dynamic_api
(
place
)
self
.
check_static_api
(
place
)
class
TestNNFunctionalSigmoidAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
init_data
()
def
init_data
(
self
):
self
.
x_shape
=
[
10
,
15
]
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
x_shape
).
astype
(
np
.
float32
)
self
.
y
=
self
.
ref_forward
(
self
.
x
)
def
ref_forward
(
self
,
x
):
return
1
/
(
1
+
np
.
exp
(
-
x
))
def
check_static_api
(
self
,
place
):
paddle
.
enable_static
()
main_program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main_program
):
x
=
paddle
.
nn
.
data
(
name
=
'x'
,
shape
=
self
.
x_shape
)
y
=
functional
.
sigmoid
(
x
,
name
=
"api_sigmoid"
)
exe
=
paddle
.
static
.
Executor
(
fluid
.
CPUPlace
())
out
=
exe
.
run
(
main_program
,
feed
=
{
'x'
:
self
.
x
},
fetch_list
=
[
y
])
self
.
assertTrue
(
np
.
allclose
(
out
[
0
],
self
.
y
))
def
check_dynamic_api
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_variable
(
self
.
x
)
y
=
functional
.
sigmoid
(
x
)
self
.
assertTrue
(
np
.
allclose
(
y
.
numpy
(),
self
.
y
))
def
test_check_api
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_static_api
(
place
)
self
.
check_dynamic_api
()
python/paddle/nn/functional/activation.py
浏览文件 @
00e08ce0
...
@@ -29,6 +29,7 @@ from ...fluid.layers import softplus #DEFINE_ALIAS
...
@@ -29,6 +29,7 @@ from ...fluid.layers import softplus #DEFINE_ALIAS
from
...fluid.layers
import
softshrink
#DEFINE_ALIAS
from
...fluid.layers
import
softshrink
#DEFINE_ALIAS
from
...fluid.layers
import
softsign
#DEFINE_ALIAS
from
...fluid.layers
import
softsign
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
tanh_shrink
#DEFINE_ALIAS
from
...fluid.layers
import
tanh_shrink
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
from
...fluid.layers
import
thresholded_relu
#DEFINE_ALIAS
...
@@ -48,12 +49,12 @@ __all__ = [
...
@@ -48,12 +49,12 @@ __all__ = [
'relu'
,
'relu'
,
'relu6'
,
'relu6'
,
'selu'
,
'selu'
,
'sigmoid'
,
'soft_relu'
,
'soft_relu'
,
'softmax'
,
'softmax'
,
'softplus'
,
'softplus'
,
'softshrink'
,
'softshrink'
,
'softsign'
,
'softsign'
,
'sigmoid'
,
'swish'
,
'swish'
,
'tanh_shrink'
,
'tanh_shrink'
,
'thresholded_relu'
,
'thresholded_relu'
,
...
@@ -296,67 +297,6 @@ def relu(input, inplace=False, name=None):
...
@@ -296,67 +297,6 @@ def relu(input, inplace=False, name=None):
return
outs
return
outs
def
sigmoid
(
input
,
inplace
=
False
,
name
=
None
):
"""
:alias_main: paddle.nn.functional.sigmoid
:alias: paddle.nn.functional.sigmoid,paddle.nn.functional.activation.sigmoid
Sigmoid Activation.
.. math:
output =
\f
rac{1}{1 + e^{-input}}
Parameters:
input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
inplace (bool, optional): If inplace is True, the input and output are the same variable.
Otherwise, the input and output of are different variables. Default: False. Note that if x is
more than one OPs' input, inplace must be False.
name (str, optional): The default value is None. Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name` .
Returns:
Output of sigmoid operator, a Tensor with shape same as input
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn.functional as functional
import numpy as np
# In the static graph mode
input = fluid.data(name="input", shape=[None, 4])
output = functional.sigmoid(input)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
output_data = exe.run(feed={"input": input_data},
fetch_list=[output])
print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
# In the dynamic graph mode
with fluid.dygraph.guard():
input = fluid.dygraph.to_variable(input_data)
output = functional.sigmoid(input)
print(output) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
"""
if
in_dygraph_mode
():
if
inplace
:
warnings
.
warn
(
"Inplace on sigmoid is not allowed and will be discarded in dygraph mode currently."
)
return
core
.
ops
.
sigmoid
(
input
)
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'sigmoid'
)
helper
=
LayerHelper
(
"sigmoid"
,
**
locals
())
outputs
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
helper
.
append_op
(
type
=
'sigmoid'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
outputs
})
return
outputs
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
def
softmax
(
x
,
axis
=-
1
,
name
=
None
):
"""
"""
This operator implements the softmax layer. The calculation process is as follows:
This operator implements the softmax layer. The calculation process is as follows:
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
00e08ce0
...
@@ -28,7 +28,7 @@ __all__ = [
...
@@ -28,7 +28,7 @@ __all__ = [
from
...fluid.dygraph
import
layers
from
...fluid.dygraph
import
layers
from
...fluid
import
core
from
...fluid
import
core
from
...fluid.framework
import
in_dygraph_mode
from
...fluid.framework
import
in_dygraph_mode
from
..
import
functional
from
..
import
functional
as
F
class
Hardshrink
(
layers
.
Layer
):
class
Hardshrink
(
layers
.
Layer
):
...
@@ -75,7 +75,7 @@ class Hardshrink(layers.Layer):
...
@@ -75,7 +75,7 @@ class Hardshrink(layers.Layer):
self
.
_name
=
name
self
.
_name
=
name
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
functional
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
HSigmoid
(
layers
.
Layer
):
class
HSigmoid
(
layers
.
Layer
):
...
@@ -202,7 +202,7 @@ class HSigmoid(layers.Layer):
...
@@ -202,7 +202,7 @@ class HSigmoid(layers.Layer):
[
C
,
1
],
attr
=
self
.
_bias_attr
,
is_bias
=
True
,
dtype
=
self
.
_dtype
)
[
C
,
1
],
attr
=
self
.
_bias_attr
,
is_bias
=
True
,
dtype
=
self
.
_dtype
)
def
forward
(
self
,
input
,
label
,
path_table
=
None
,
path_code
=
None
):
def
forward
(
self
,
input
,
label
,
path_table
=
None
,
path_code
=
None
):
out
=
functional
.
hsigmoid
(
out
=
F
.
hsigmoid
(
input
,
input
,
label
,
label
,
self
.
weight
,
self
.
weight
,
...
@@ -253,7 +253,7 @@ class ReLU(layers.Layer):
...
@@ -253,7 +253,7 @@ class ReLU(layers.Layer):
self
.
_inplace
=
inplace
self
.
_inplace
=
inplace
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
return
functional
.
relu
(
input
,
self
.
_inplace
)
return
F
.
relu
(
input
,
self
.
_inplace
)
class
LeakyReLU
(
layers
.
Layer
):
class
LeakyReLU
(
layers
.
Layer
):
...
@@ -293,52 +293,47 @@ class LeakyReLU(layers.Layer):
...
@@ -293,52 +293,47 @@ class LeakyReLU(layers.Layer):
self
.
_name
=
name
self
.
_name
=
name
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
functional
.
leaky_relu
(
x
,
self
.
_alpha
,
self
.
_name
)
return
F
.
leaky_relu
(
x
,
self
.
_alpha
,
self
.
_name
)
class
Sigmoid
(
layers
.
Layer
):
class
Sigmoid
(
layers
.
Layer
):
"""
"""
:alias_main: paddle.nn.Sigmoid
this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
:alias: paddle.nn.Sigmoid,paddle.nn.layer.Sigmoid,paddle.nn.layer.activation.Sigmoid
Sigmoid Activation.
.. math::
.. math:
output =
\
f
rac{1}{1 + e^{-input
}}
output =
\
\
frac{1}{1 + e^{-x
}}
Parameters:
Parameters:
inplace (bool, optional): If inplace is True, the input and output
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
are the same variable. Otherwise, the input and output
are different variables. Default False. Note that if x is
Shape:
more than one OPs' input, inplace must be False
.
x: N-D tensor, available dtype is float16, float32, float64
.
Returns:
Returns:
None
A callable object of Sigmoid.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
import paddle.nn as nn
import numpy as np
import numpy as np
input = fluid.data(name="input", shape=[None, 4])
import paddle
output = nn.Sigmoid()(input)
place = fluid.CPUPlace()
paddle.disable_static()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
output_data = exe.run(feed={"input": input_data},
m = paddle.nn.Sigmoid()
fetch_list=[output])
x = paddle.to_variable(input_data)
print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
output = m(x)
print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
"""
"""
def
__init__
(
self
,
inplace
=
Fals
e
):
def
__init__
(
self
,
name
=
Non
e
):
super
(
Sigmoid
,
self
).
__init__
()
super
(
Sigmoid
,
self
).
__init__
()
self
.
_inplace
=
inplac
e
self
.
name
=
nam
e
def
forward
(
self
,
input
):
def
forward
(
self
,
x
):
return
functional
.
sigmoid
(
input
,
self
.
_inplac
e
)
return
F
.
sigmoid
(
x
,
self
.
nam
e
)
class
LogSoftmax
(
layers
.
Layer
):
class
LogSoftmax
(
layers
.
Layer
):
...
@@ -394,4 +389,4 @@ class LogSoftmax(layers.Layer):
...
@@ -394,4 +389,4 @@ class LogSoftmax(layers.Layer):
self
.
_axis
=
axis
self
.
_axis
=
axis
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
return
functional
.
log_softmax
(
input
,
self
.
_axis
)
return
F
.
log_softmax
(
input
,
self
.
_axis
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录