Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
00b7c819
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
00b7c819
编写于
4月 19, 2023
作者:
Z
Zhang Zheng
提交者:
GitHub
4月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-Pick] Unique support float16&bfloat16 (#53023)
unique支持float16和bfloat16数据类型,并完善相关单测。
上级
bdf944b7
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
239 addition
and
35 deletion
+239
-35
paddle/phi/kernels/gpu/unique_kernel.cu
paddle/phi/kernels/gpu/unique_kernel.cu
+119
-21
python/paddle/fluid/tests/unittests/test_unique.py
python/paddle/fluid/tests/unittests/test_unique.py
+120
-14
未找到文件。
paddle/phi/kernels/gpu/unique_kernel.cu
浏览文件 @
00b7c819
...
...
@@ -100,12 +100,11 @@ struct BinaryNotEqual {
};
// The core logic of computing Unique for a flattend DenseTensor
template
<
typename
Context
,
typename
InT
,
typename
IndexT
,
typename
equal_T
,
typename
not_equal_T
>
static
void
UniqueFlattendCUDATensor
(
const
Context
&
context
,
template
<
typename
Context
,
typename
InT
,
typename
IndexT
>
static
typename
std
::
enable_if
<
!
std
::
is_same
<
InT
,
phi
::
dtype
::
float16
>::
value
&&
!
std
::
is_same
<
InT
,
phi
::
dtype
::
bfloat16
>::
value
>::
type
UniqueFlattendCUDATensor
(
const
Context
&
context
,
const
DenseTensor
&
in
,
DenseTensor
*
out
,
DenseTensor
*
indices
,
...
...
@@ -114,10 +113,10 @@ static void UniqueFlattendCUDATensor(const Context& context,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
,
equal_T
equal
,
not_equal_T
not_equal
,
int64_t
num_input
)
{
// 0. Prepration
auto
equal
=
thrust
::
equal_to
<
InT
>
();
auto
not_equal
=
thrust
::
not_equal_to
<
InT
>
();
DenseTensor
in_hat
;
phi
::
Copy
(
context
,
in
,
context
.
GetPlace
(),
false
,
&
in_hat
);
auto
*
in_data_hat
=
context
.
template
Alloc
<
InT
>(
&
in_hat
);
...
...
@@ -202,6 +201,97 @@ static void UniqueFlattendCUDATensor(const Context& context,
}
}
// The core logic of computing Unique for a flattend DenseTensor
template
<
typename
Context
,
typename
InT
,
typename
IndexT
>
static
typename
std
::
enable_if
<
std
::
is_same
<
InT
,
phi
::
dtype
::
float16
>::
value
||
std
::
is_same
<
InT
,
phi
::
dtype
::
bfloat16
>::
value
>::
type
UniqueFlattendCUDATensor
(
const
Context
&
context
,
const
DenseTensor
&
in
,
DenseTensor
*
out
,
DenseTensor
*
indices
,
DenseTensor
*
index
,
DenseTensor
*
counts
,
bool
return_index
,
bool
return_inverse
,
bool
return_counts
,
int64_t
num_input
)
{
// 1. Sort indices
DenseTensor
in_resize
;
in_resize
.
ShareDataWith
(
in
);
in_resize
.
Resize
(
phi
::
make_ddim
({
num_input
}));
const
InT
*
in_data
=
in_resize
.
data
<
InT
>
();
auto
equal
=
BinaryEqual
<
InT
>
(
1
,
in_data
);
auto
not_equal
=
BinaryNotEqual
<
InT
>
(
1
,
in_data
);
indices
->
Resize
(
phi
::
make_ddim
({
num_input
}));
auto
*
indices_data
=
context
.
template
Alloc
<
IndexT
>(
indices
);
thrust
::
sequence
(
thrust
::
device
,
indices_data
,
indices_data
+
num_input
);
thrust
::
sort
(
thrust
::
device
,
indices_data
,
indices_data
+
num_input
,
LessThan
<
InT
>
(
1
,
in_data
));
// 2. Calculate inverse indices: 'index'
if
(
return_inverse
)
{
index
->
Resize
(
phi
::
make_ddim
({
num_input
}));
auto
*
inverse_data
=
context
.
template
Alloc
<
IndexT
>(
index
);
DenseTensor
inv_loc
;
inv_loc
.
Resize
(
phi
::
make_ddim
({
num_input
}));
auto
inv_loc_data_ptr
=
context
.
template
Alloc
<
IndexT
>(
&
inv_loc
);
thrust
::
adjacent_difference
(
thrust
::
device
,
indices_data
,
indices_data
+
num_input
,
inv_loc_data_ptr
,
not_equal
);
thrust
::
device_ptr
<
IndexT
>
inv_loc_data_dev
(
inv_loc_data_ptr
);
inv_loc_data_dev
[
0
]
=
0
;
// without device_ptr, segmentation fault
thrust
::
inclusive_scan
(
thrust
::
device
,
inv_loc_data_ptr
,
inv_loc_data_ptr
+
num_input
,
inv_loc_data_ptr
);
thrust
::
scatter
(
thrust
::
device
,
inv_loc_data_ptr
,
inv_loc_data_ptr
+
num_input
,
indices_data
,
inverse_data
);
}
// 3. Calculate op result and sorted index: 'out' & 'indices'
DenseTensor
range
;
range
.
Resize
(
phi
::
make_ddim
({
num_input
+
1
}));
auto
*
range_data_ptr
=
context
.
template
Alloc
<
IndexT
>(
&
range
);
thrust
::
sequence
(
thrust
::
device
,
range_data_ptr
,
range_data_ptr
+
num_input
+
1
);
int
num_out
;
num_out
=
thrust
::
unique_by_key
(
thrust
::
device
,
indices_data
,
indices_data
+
num_input
,
range_data_ptr
,
equal
)
.
first
-
indices_data
;
indices
->
Resize
(
phi
::
make_ddim
({
num_out
}));
out
->
Resize
(
phi
::
make_ddim
({
num_out
}));
context
.
template
Alloc
<
InT
>(
out
);
phi
::
IndexSelectKernel
<
InT
,
Context
>
(
context
,
in_resize
,
*
indices
,
0
,
out
);
// 4. Calculate 'counts'
if
(
return_counts
)
{
counts
->
Resize
(
phi
::
make_ddim
({
num_out
}));
auto
count_data
=
context
.
template
Alloc
<
IndexT
>(
counts
);
// init 'count_data' as 0
thrust
::
fill
(
thrust
::
device
,
count_data
,
count_data
+
num_out
,
0
);
thrust
::
device_ptr
<
IndexT
>
range_data_ptr_dev
(
range_data_ptr
);
range_data_ptr_dev
[
num_out
]
=
num_input
;
thrust
::
adjacent_difference
(
thrust
::
device
,
range_data_ptr
+
1
,
range_data_ptr
+
num_out
+
1
,
count_data
);
}
}
// The logic of compute unique with axis required, it's a little different
// from above function
template
<
typename
Context
,
...
...
@@ -409,8 +499,6 @@ struct UniqueFlattendCUDAFunctor {
return_index_
,
return_inverse_
,
return_counts_
,
thrust
::
equal_to
<
InT
>
(),
thrust
::
not_equal_to
<
InT
>
(),
in_
.
numel
());
}
};
...
...
@@ -548,8 +636,16 @@ void UniqueKernel(const Context& context,
}
// namespace phi
PD_REGISTER_KERNEL
(
unique
,
GPU
,
ALL_LAYOUT
,
phi
::
UniqueKernel
,
float
,
double
,
int64_t
,
int
)
{
PD_REGISTER_KERNEL
(
unique
,
GPU
,
ALL_LAYOUT
,
phi
::
UniqueKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
,
int64_t
,
int
)
{
kernel
->
OutputAt
(
1
).
SetDataType
(
phi
::
DataType
::
UNDEFINED
);
kernel
->
OutputAt
(
2
).
SetDataType
(
phi
::
DataType
::
UNDEFINED
);
kernel
->
OutputAt
(
3
).
SetDataType
(
phi
::
DataType
::
UNDEFINED
);
...
...
@@ -561,6 +657,8 @@ PD_REGISTER_KERNEL(unique_raw,
phi
::
UniqueRawKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
,
int64_t
,
int
)
{
kernel
->
OutputAt
(
1
).
SetDataType
(
phi
::
DataType
::
UNDEFINED
);
...
...
python/paddle/fluid/tests/unittests/test_unique.py
浏览文件 @
00b7c819
...
...
@@ -24,6 +24,7 @@ from paddle.fluid import core
class
TestUniqueOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"unique"
self
.
init_dtype
()
self
.
init_config
()
def
test_check_output
(
self
):
...
...
@@ -31,13 +32,16 @@ class TestUniqueOp(OpTest):
check_dygraph
=
False
)
# unique return sorted data in dygraph
def
init_dtype
(
self
):
self
.
dtype
=
np
.
int64
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
'int64'
),
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
self
.
dtype
),
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)}
self
.
outputs
=
{
'Out'
:
np
.
array
([
2
,
3
,
1
,
5
],
dtype
=
'int64'
),
'Out'
:
np
.
array
([
2
,
3
,
1
,
5
],
dtype
=
self
.
dtype
),
'Index'
:
np
.
array
([
0
,
1
,
1
,
2
,
3
,
1
],
dtype
=
'int32'
),
}
...
...
@@ -45,25 +49,25 @@ class TestUniqueOp(OpTest):
class
TestOne
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
],
dtype
=
'int64'
),
'X'
:
np
.
array
([
2
],
dtype
=
self
.
dtype
),
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)}
self
.
outputs
=
{
'Out'
:
np
.
array
([
2
],
dtype
=
'int64'
),
'Out'
:
np
.
array
([
2
],
dtype
=
self
.
dtype
),
'Index'
:
np
.
array
([
0
],
dtype
=
'int32'
),
}
class
TestRandom
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
150
,),
dtype
=
'int64'
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
150
,),
dtype
=
self
.
dtype
)}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT64
)}
np_unique
,
np_index
,
reverse_index
=
np
.
unique
(
self
.
inputs
[
'X'
],
True
,
True
)
np_tuple
=
[(
np_unique
[
i
],
np_index
[
i
])
for
i
in
range
(
len
(
np_unique
))]
np_tuple
.
sort
(
key
=
lambda
x
:
x
[
1
])
target_out
=
np
.
array
([
i
[
0
]
for
i
in
np_tuple
],
dtype
=
'int64'
)
target_out
=
np
.
array
([
i
[
0
]
for
i
in
np_tuple
],
dtype
=
self
.
dtype
)
target_index
=
np
.
array
(
[
list
(
target_out
).
index
(
i
)
for
i
in
self
.
inputs
[
'X'
]],
dtype
=
'int64'
)
...
...
@@ -95,11 +99,11 @@ class TestUniqueRaiseError(unittest.TestCase):
class
TestOneGPU
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
],
dtype
=
'int64'
),
'X'
:
np
.
array
([
2
],
dtype
=
self
.
dtype
),
}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)}
self
.
outputs
=
{
'Out'
:
np
.
array
([
2
],
dtype
=
'int64'
),
'Out'
:
np
.
array
([
2
],
dtype
=
self
.
dtype
),
'Index'
:
np
.
array
([
0
],
dtype
=
'int32'
),
}
...
...
@@ -116,14 +120,14 @@ class TestOneGPU(TestUniqueOp):
)
class
TestRandomGPU
(
TestUniqueOp
):
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
150
,),
dtype
=
'int64'
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
150
,),
dtype
=
self
.
dtype
)}
self
.
attrs
=
{
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT64
)}
np_unique
,
np_index
,
reverse_index
=
np
.
unique
(
self
.
inputs
[
'X'
],
True
,
True
)
np_tuple
=
[(
np_unique
[
i
],
np_index
[
i
])
for
i
in
range
(
len
(
np_unique
))]
np_tuple
.
sort
(
key
=
lambda
x
:
x
[
1
])
target_out
=
np
.
array
([
i
[
0
]
for
i
in
np_tuple
],
dtype
=
'int64'
)
target_out
=
np
.
array
([
i
[
0
]
for
i
in
np_tuple
],
dtype
=
self
.
dtype
)
target_index
=
np
.
array
(
[
list
(
target_out
).
index
(
i
)
for
i
in
self
.
inputs
[
'X'
]],
dtype
=
'int64'
)
...
...
@@ -139,8 +143,11 @@ class TestRandomGPU(TestUniqueOp):
class
TestSortedUniqueOp
(
TestUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
'int64'
)}
self
.
inputs
=
{
'X'
:
np
.
array
([
2
,
3
,
3
,
1
,
5
,
3
],
dtype
=
self
.
dtype
)}
unique
,
indices
,
inverse
,
count
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
...
...
@@ -164,9 +171,35 @@ class TestSortedUniqueOp(TestUniqueOp):
}
class
TestSortedUniqueFP16Op
(
TestSortedUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA or not support the bfloat16"
,
)
class
TestSortedUniqueBF16Op
(
TestSortedUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
# unique return sorted data in dygraph
class
TestUniqueOpAxisNone
(
TestUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
4
,
7
,
10
)).
astype
(
'float64'
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
4
,
7
,
10
)).
astype
(
self
.
dtype
)
}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
...
...
@@ -190,9 +223,35 @@ class TestUniqueOpAxisNone(TestUniqueOp):
}
class
TestUniqueOpAxisNoneFP16Op
(
TestUniqueOpAxisNone
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA or not support the bfloat16"
,
)
class
TestUniqueOpAxisNoneBF16Op
(
TestUniqueOpAxisNone
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
# unique return sorted data in dygraph
class
TestUniqueOpAxisNeg
(
TestUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
6
,
1
,
8
)).
astype
(
'float64'
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
6
,
1
,
8
)).
astype
(
self
.
dtype
)
}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
...
...
@@ -216,9 +275,35 @@ class TestUniqueOpAxisNeg(TestUniqueOp):
}
class
TestUniqueOpAxisNegFP16Op
(
TestUniqueOpAxisNeg
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA or not support the bfloat16"
,
)
class
TestUniqueOpAxisNegBF16Op
(
TestUniqueOpAxisNeg
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
# unique return sorted data in dygraph
class
TestUniqueOpAxis1
(
TestUniqueOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_config
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
8
,
8
)).
astype
(
'float64'
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
randint
(
0
,
100
,
(
3
,
8
,
8
)).
astype
(
self
.
dtype
)
}
unique
,
indices
,
inverse
,
counts
=
np
.
unique
(
self
.
inputs
[
'X'
],
return_index
=
True
,
...
...
@@ -242,6 +327,27 @@ class TestUniqueOpAxis1(TestUniqueOp):
}
class
TestUniqueOpAxis1FP16Op
(
TestUniqueOpAxis1
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
not
core
.
is_bfloat16_supported
(
core
.
CUDAPlace
(
0
)),
"core is not compiled with CUDA or not support the bfloat16"
,
)
class
TestUniqueOpAxis1BF16Op
(
TestUniqueOpAxis1
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
uint16
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
check_dygraph
=
False
)
# unique return sorted data in dygraph
class
TestUniqueAPI
(
unittest
.
TestCase
):
def
test_dygraph_api_out
(
self
):
paddle
.
disable_static
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录