diff --git a/CMakeLists.txt b/CMakeLists.txt index e8ea828dd2a25f5f47b03e92ae86e083d4425dc9..49334279f6dc88c0d35fec43daf80e3cbe65760c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -137,7 +137,7 @@ include(external/openblas) # download, build, install openblas include(external/mkldnn) # download, build, install mkldnn include(external/swig) # download, build, install swig include(external/warpctc) # download, build, install warpctc -include(external/boost) # download, build, install boost +include(external/boost) # download boost include(external/any) # download libn::any include(external/eigen) # download eigen3 include(external/pybind11) # download pybind11 diff --git a/benchmark/cluster/vgg16/Dockerfile b/benchmark/cluster/vgg16/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..98356cd7613baff7f0cd66d1462068232b2b8500 --- /dev/null +++ b/benchmark/cluster/vgg16/Dockerfile @@ -0,0 +1,18 @@ +#FROM python:2.7.14 +FROM nvidia/cuda:8.0-cudnn5-runtime-ubuntu16.04 +RUN apt-get update && apt-get install -y python +RUN pip install -U kubernetes opencv-python && apt-get update -y && apt-get install -y iputils-ping libgtk2.0-dev +# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF, +# so we must build one with distribute support to install in this image. +RUN pip install paddlepaddle +RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()" | python' +RUN pip uninstall -y paddlepaddle + +# below lines may change a lot for debugging +ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin +ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root +ADD *.whl / +RUN pip install /*.whl && rm -f /*.whl && \ +chmod +x /usr/bin/paddle_k8s +ENV LD_LIBRARY_PATH=/usr/local/lib +ADD vgg16_fluid.py vgg16_v2.py /workspace/ diff --git a/benchmark/cluster/vgg16/README.md b/benchmark/cluster/vgg16/README.md new file mode 100644 index 0000000000000000000000000000000000000000..11d00b8f85382aa720c169338c51333b730d44d5 --- /dev/null +++ b/benchmark/cluster/vgg16/README.md @@ -0,0 +1,76 @@ +# Performance for Distributed vgg16 + +## Test Result + +### Hardware Infomation + +- CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz +- cpu MHz : 2101.000 +- cache size : 20480 KB + +### Single Node Single Thread + +- PServer Count: 10 +- Trainer Count: 20 +- Metrics: samples / sec + +| Batch Size | 32 | 64 | 128 | 256 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 | +| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 | +| TensorFlow | - | - | - | - | + +### Different Batch Size + +- PServer Count: 10 +- Trainer Count: 20 +- Per trainer CPU Core: 1 +- Metrics: samples / sec + +| Batch Size | 32 | 64 | 128 | 256 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 | +| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 | +| TensorFlow | - | - | - | - | + + +### Accelerate Rate + +- Pserver Count: 20 +- Batch Size: 128 +- Metrics: samples / sec + +| Trainer Count | 20 | 40 | 80 | 100 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) | +| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) | +| TensorFlow | - | - | - | - | + +### Different Pserver Count + +- Trainer Count: 60 +- Batch Size: 128 +- Metrics: samples/ sec + +| PServer Count | 3 | 6 |10 | 20 | +| -- | -- | -- | -- | -- | +| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 | +| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 | +| TensorFlow | - | - | - | - | + +*The performance gap between Fuild and v2 comes from the network interference.* + + +## Steps to Run the Performance Test + +1. You must re-compile PaddlePaddle and enable `-DWITH_DISTRIBUTE` to build PaddlePaddle with distributed support. +1. When the build finishes, copy the output `whl` package located under `build/python/dist` to current directory. +1. Run `docker build -t [image:tag] .` to build the docker image and run `docker push [image:tag]` to push the image to reponsitory so kubernetes can find it. +1. Run `kubectl create -f pserver.yaml && kubectl create -f trainer.yaml` to start the job on your kubernetes cluster (you must configure the `kubectl` client before this step). +1. Run `kubectl get po` to get running pods, and run `kubectl logs [podID]` to fetch the pod log of pservers and trainers. + +Check the logs for the distributed training progress and analyze the performance. + +## Enable Verbos Logs + +Edit `pserver.yaml` and `trainer.yaml` and add an environment variable `GLOG_v=3` and `GLOG_logtostderr=1` to see what happend in detail. diff --git a/benchmark/cluster/vgg16/fluid_pserver.yaml b/benchmark/cluster/vgg16/fluid_pserver.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ee8b0763b62fc011f40f6197e929a68b48a93e47 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid_pserver.yaml @@ -0,0 +1,72 @@ +apiVersion: extensions/v1beta1 +kind: ReplicaSet +metadata: + name: vgg16job-pserver +spec: + replicas: 10 + template: + metadata: + labels: + paddle-job-pserver: vgg16job + spec: + hostNetwork: true + imagePullSecrets: + - name: job-registry-secret + containers: + - name: pserver + image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16" + imagePullPolicy: Always + ports: + - name: jobport-30236 + containerPort: 30236 + env: + - name: PADDLE_JOB_NAME + value: vgg16job + - name: MKL_NUM_THREADS + value: "1" + - name: TRAINING_ROLE + value: "PSERVER" + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "MKL_NUM_THREADS=1 python /workspace/vgg16_fluid.py --local 0" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "1" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/lib:/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + - name: POD_IP + valueFrom: + fieldRef: + fieldPath: "status.podIP" + command: ["paddle_k8s", "start_fluid"] + resources: + requests: + memory: 10Gi + cpu: 4 + limits: + memory: 10Gi + cpu: 4 diff --git a/benchmark/cluster/vgg16/fluid_trainer.yaml b/benchmark/cluster/vgg16/fluid_trainer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0a0ed25ebe43c4cc0d5ab0b72cf36c936fcce802 --- /dev/null +++ b/benchmark/cluster/vgg16/fluid_trainer.yaml @@ -0,0 +1,69 @@ +apiVersion: batch/v1 +kind: Job +metadata: + name: vgg16job-trainer +spec: + parallelism: 20 + completions: 20 + template: + metadata: + labels: + paddle-job: vgg16job + spec: + imagePullSecrets: + - name: job-registry-secret + hostNetwork: true + containers: + - name: trainer + image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16" + imagePullPolicy: Always + command: ["paddle_k8s", "start_fluid"] + env: + - name: PADDLE_JOB_NAME + value: vgg16job + - name: TRAINING_ROLE + value: "TRAINER" + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "MKL_NUM_THREADS=1 python /workspace/vgg16_fluid.py --local 0 --batch_size 128" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "1" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/lib:/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + - name: POD_IP + valueFrom: + fieldRef: + fieldPath: "status.podIP" + resources: + requests: + memory: 40Gi + cpu: 2 + limits: + memory: 40Gi + cpu: 2 + restartPolicy: Never diff --git a/benchmark/cluster/vgg16/v2_pserver.yaml b/benchmark/cluster/vgg16/v2_pserver.yaml new file mode 100644 index 0000000000000000000000000000000000000000..dd1271e0cf399184134c06b3200ee1202c65cef0 --- /dev/null +++ b/benchmark/cluster/vgg16/v2_pserver.yaml @@ -0,0 +1,64 @@ +apiVersion: extensions/v1beta1 +kind: ReplicaSet +metadata: + name: vgg16v2job-pserver +spec: + replicas: 10 + template: + metadata: + labels: + paddle-job-pserver: vgg16v2job + spec: + hostNetwork: true + imagePullSecrets: + - name: job-registry-secret + containers: + - name: pserver + image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16" + imagePullPolicy: Always + ports: + - name: jobport-30236 + containerPort: 30236 + env: + - name: PADDLE_JOB_NAME + value: vgg16v2job + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "python train.py" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "1" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/lib:/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + command: ["paddle_k8s", "start_pserver"] + resources: + requests: + memory: 10Gi + cpu: 4 + limits: + memory: 10Gi + cpu: 4 diff --git a/benchmark/cluster/vgg16/v2_trainer.yaml b/benchmark/cluster/vgg16/v2_trainer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..12c8964066cbcfe8d2a44de2f51a3d12ea422fe2 --- /dev/null +++ b/benchmark/cluster/vgg16/v2_trainer.yaml @@ -0,0 +1,65 @@ +apiVersion: batch/v1 +kind: Job +metadata: + name: vgg16v2job-trainer +spec: + parallelism: 20 + completions: 20 + template: + metadata: + labels: + paddle-job: vgg16v2job + spec: + imagePullSecrets: + - name: job-registry-secret + hostNetwork: true + containers: + - name: trainer + image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16" + imagePullPolicy: Always + command: ["paddle_k8s", "start_trainer", "v2"] + env: + - name: PADDLE_JOB_NAME + value: vgg16v2job + - name: BATCH_SIZE + value: "256" + - name: TRAINERS + value: "20" + - name: PSERVERS + value: "10" + - name: TOPOLOGY + value: "" + - name: ENTRY + value: "cd /workspace && MKL_NUM_THREADS=1 python /workspace/vgg16_v2.py" + - name: TRAINER_PACKAGE + value: "/workspace" + - name: PADDLE_INIT_PORT + value: "30236" + - name: PADDLE_INIT_NICS + value: "xgbe0" + - name: PADDLE_INIT_TRAINER_COUNT + value: "1" + - name: PADDLE_INIT_PORTS_NUM + value: "1" + - name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE + value: "1" + - name: PADDLE_INIT_NUM_GRADIENT_SERVERS + value: "20" + - name: PADDLE_INIT_NUM_PASSES + value: "2" + - name: PADDLE_INIT_USE_GPU + value: "0" + - name: LD_LIBRARY_PATH + value: "/usr/local/lib:/usr/local/nvidia/lib64" + - name: NAMESPACE + valueFrom: + fieldRef: + fieldPath: "metadata.namespace" + resources: + requests: + memory: 40Gi + cpu: 2 + limits: + memory: 40Gi + cpu: 2 + restartPolicy: Never diff --git a/benchmark/cluster/vgg16/vgg16_fluid.py b/benchmark/cluster/vgg16/vgg16_fluid.py new file mode 100644 index 0000000000000000000000000000000000000000..499e06ec42fc8f840137173628fa465e0541ba30 --- /dev/null +++ b/benchmark/cluster/vgg16/vgg16_fluid.py @@ -0,0 +1,277 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""VGG16 benchmark in Fluid""" +from __future__ import print_function + +import sys +import time +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import paddle.v2.fluid.profiler as profiler +import argparse +import functools +import os + + +def str2bool(v): + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Boolean value expected.') + + +parser = argparse.ArgumentParser(description=__doc__) +parser.add_argument( + '--batch_size', type=int, default=128, help="Batch size for training.") +parser.add_argument( + '--learning_rate', + type=float, + default=1e-3, + help="Learning rate for training.") +parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.") +parser.add_argument( + '--device', + type=str, + default='CPU', + choices=['CPU', 'GPU'], + help="The device type.") +parser.add_argument('--device_id', type=int, default=0, help="The device id.") +parser.add_argument( + '--data_format', + type=str, + default='NCHW', + choices=['NCHW', 'NHWC'], + help='The data order, now only support NCHW.') +parser.add_argument( + '--data_set', + type=str, + default='cifar10', + choices=['cifar10', 'flowers'], + help='Optional dataset for benchmark.') +parser.add_argument( + '--local', + type=str2bool, + default=True, + help='Whether to run as local mode.') +args = parser.parse_args() + + +def vgg16_bn_drop(input): + def conv_block(input, num_filter, groups, dropouts): + return fluid.nets.img_conv_group( + input=input, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act='relu', + conv_with_batchnorm=True, + conv_batchnorm_drop_rate=dropouts, + pool_type='max') + + conv1 = conv_block(input, 64, 2, [0.3, 0]) + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) + + drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) + fc1 = fluid.layers.fc(input=drop, size=512, act=None) + bn = fluid.layers.batch_norm(input=fc1, act='relu') + drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) + fc2 = fluid.layers.fc(input=drop2, size=512, act=None) + return fc2 + + +def main(): + if args.data_set == "cifar10": + classdim = 10 + if args.data_format == 'NCHW': + data_shape = [3, 32, 32] + else: + data_shape = [32, 32, 3] + else: + classdim = 102 + if args.data_format == 'NCHW': + data_shape = [3, 224, 224] + else: + data_shape = [224, 224, 3] + + # Input data + images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + # Train program + net = vgg16_bn_drop(images) + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + # Evaluator + accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + + # inference program + inference_program = fluid.default_main_program().clone() + with fluid.program_guard(inference_program): + test_target = accuracy.metrics + accuracy.states + inference_program = fluid.io.get_inference_program(test_target) + + # Optimization + optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) + optimize_ops, params_grads = optimizer.minimize(avg_cost) + + # Initialize executor + place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace( + args.device_id) + exe = fluid.Executor(place) + + # test + def test(exe): + accuracy.reset(exe) + for batch_id, data in enumerate(test_reader()): + img_data = np.array(map(lambda x: x[0].reshape(data_shape), + data)).astype("float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = y_data.reshape([-1, 1]) + + exe.run(inference_program, + feed={"pixel": img_data, + "label": y_data}) + + return accuracy.eval(exe) + + def train_loop(exe, trainer_prog): + iters = 0 + ts = time.time() + for pass_id in range(args.num_passes): + # train + start_time = time.time() + num_samples = 0 + accuracy.reset(exe) + with profiler.profiler("CPU", 'total') as prof: + for batch_id, data in enumerate(train_reader()): + ts = time.time() + img_data = np.array( + map(lambda x: x[0].reshape(data_shape), data)).astype( + "float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = y_data.reshape([-1, 1]) + + loss, acc = exe.run( + trainer_prog, + feed={"pixel": img_data, + "label": y_data}, + fetch_list=[avg_cost] + accuracy.metrics) + iters += 1 + num_samples += len(data) + print( + "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f" + % (pass_id, iters, loss, acc, time.time() - ts) + ) # The accuracy is the accumulation of batches, but not the current batch. + + pass_elapsed = time.time() - start_time + pass_train_acc = accuracy.eval(exe) + pass_test_acc = test(exe) + print( + "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n" + % (pass_id, num_samples / pass_elapsed, pass_train_acc, + pass_test_acc)) + + if args.local: + # Parameter initialization + exe.run(fluid.default_startup_program()) + + # data reader + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10() if args.data_set == 'cifar10' + else paddle.dataset.flowers.train(), + buf_size=5120), + batch_size=args.batch_size) + test_reader = paddle.batch( + paddle.dataset.cifar.test10() + if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), + batch_size=args.batch_size) + train_loop(exe, fluid.default_main_program()) + else: + pserver_ips = os.getenv("PADDLE_INIT_PSERVERS") # all pserver endpoints + eplist = [] + for ip in pserver_ips.split(","): + eplist.append(':'.join([ip, "6174"])) + pserver_endpoints = ",".join(eplist) + print("pserver endpoints: ", pserver_endpoints) + trainers = int(os.getenv("TRAINERS")) # total trainer count + print("trainers total: ", trainers) + current_endpoint = os.getenv( + "POD_IP") + ":6174" # current pserver endpoint + training_role = os.getenv( + "TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver + t = fluid.DistributeTranspiler() + t.transpile( + optimize_ops, + params_grads, + pservers=pserver_endpoints, + trainers=trainers) + + if training_role == "PSERVER": + if not current_endpoint: + print("need env SERVER_ENDPOINT") + exit(1) + pserver_prog = t.get_pserver_program(current_endpoint) + pserver_startup = t.get_startup_program(current_endpoint, + pserver_prog) + print("starting server side startup") + exe.run(pserver_startup) + print("starting parameter server...") + exe.run(pserver_prog) + elif training_role == "TRAINER": + # Parameter initialization + exe.run(fluid.default_startup_program()) + + # data reader + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10() if args.data_set == 'cifar10' + else paddle.dataset.flowers.train(), + buf_size=5120), + batch_size=args.batch_size) + test_reader = paddle.batch( + paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else + paddle.dataset.flowers.test(), + batch_size=args.batch_size) + + trainer_prog = t.get_trainer_program() + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver + exe.run(fluid.default_startup_program()) + train_loop(exe, trainer_prog) + else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") + + +def print_arguments(): + print('----------- Configuration Arguments -----------') + for arg, value in sorted(vars(args).iteritems()): + print('%s: %s' % (arg, value)) + print('------------------------------------------------') + + +if __name__ == "__main__": + print_arguments() + main() diff --git a/benchmark/cluster/vgg16/vgg16_v2.py b/benchmark/cluster/vgg16/vgg16_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..6ac6b3c33252e0a1f596f539fc090c5ada118e15 --- /dev/null +++ b/benchmark/cluster/vgg16/vgg16_v2.py @@ -0,0 +1,154 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. + +import gzip + +import paddle.v2.dataset.cifar as cifar +import paddle.v2 as paddle +import time +import os + +DATA_DIM = 3 * 32 * 32 +CLASS_DIM = 10 +BATCH_SIZE = os.getenv("BATCH_SIZE") +if BATCH_SIZE: + BATCH_SIZE = int(BATCH_SIZE) +else: + BATCH_SIZE = 128 +print "batch_size", BATCH_SIZE +NODE_COUNT = int(os.getenv("TRAINERS")) +ts = 0 + + +def vgg(input, nums, class_dim): + def conv_block(input, num_filter, groups, num_channels=None): + return paddle.networks.img_conv_group( + input=input, + num_channels=num_channels, + pool_size=2, + pool_stride=2, + conv_num_filter=[num_filter] * groups, + conv_filter_size=3, + conv_act=paddle.activation.Relu(), + pool_type=paddle.pooling.Max()) + + assert len(nums) == 5 + # the channel of input feature is 3 + conv1 = conv_block(input, 64, nums[0], 3) + conv2 = conv_block(conv1, 128, nums[1]) + conv3 = conv_block(conv2, 256, nums[2]) + conv4 = conv_block(conv3, 512, nums[3]) + conv5 = conv_block(conv4, 512, nums[4]) + + fc_dim = 512 + fc1 = paddle.layer.fc(input=conv5, + size=fc_dim, + act=paddle.activation.Relu(), + layer_attr=paddle.attr.Extra(drop_rate=0.5)) + fc2 = paddle.layer.fc(input=fc1, + size=fc_dim, + act=paddle.activation.Relu(), + layer_attr=paddle.attr.Extra(drop_rate=0.5)) + out = paddle.layer.fc(input=fc2, + size=class_dim, + act=paddle.activation.Softmax()) + return out + + +def vgg13(input, class_dim): + nums = [2, 2, 2, 2, 2] + return vgg(input, nums, class_dim) + + +def vgg16(input, class_dim): + nums = [2, 2, 3, 3, 3] + return vgg(input, nums, class_dim) + + +def vgg19(input, class_dim): + nums = [2, 2, 4, 4, 4] + return vgg(input, nums, class_dim) + + +def main(): + global ts + paddle.init(use_gpu=False) + image = paddle.layer.data( + name="image", type=paddle.data_type.dense_vector(DATA_DIM)) + lbl = paddle.layer.data( + name="label", type=paddle.data_type.integer_value(CLASS_DIM)) + + extra_layers = None + # NOTE: for v2 distributed training need averaging updates. + learning_rate = 1e-3 / NODE_COUNT + out = vgg16(image, class_dim=CLASS_DIM) + cost = paddle.layer.classification_cost(input=out, label=lbl) + + # Create parameters + parameters = paddle.parameters.create(cost) + + # Create optimizer + optimizer = paddle.optimizer.Momentum( + momentum=0.9, + regularization=paddle.optimizer.L2Regularization(rate=0.0005 * + BATCH_SIZE), + learning_rate=learning_rate / BATCH_SIZE, + learning_rate_decay_a=0.1, + learning_rate_decay_b=128000 * 35, + learning_rate_schedule="discexp", ) + + train_reader = paddle.batch( + paddle.reader.shuffle( + cifar.train10(), + # To use other data, replace the above line with: + # reader.train_reader('train.list'), + buf_size=1000), + batch_size=BATCH_SIZE) + test_reader = paddle.batch( + cifar.test10(), + # To use other data, replace the above line with: + # reader.test_reader('val.list'), + batch_size=BATCH_SIZE) + + # Create trainer + trainer = paddle.trainer.SGD(cost=cost, + parameters=parameters, + update_equation=optimizer, + extra_layers=extra_layers, + is_local=False) + + # End batch and end pass event handler + def event_handler(event): + global ts, ts_pass + if isinstance(event, paddle.event.BeginPass): + ts_pass = time.time() + if isinstance(event, paddle.event.BeginIteration): + ts = time.time() + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 1 == 0: + print "\nPass %d, Batch %d, Cost %f, %s, spent: %f" % ( + event.pass_id, event.batch_id, event.cost, event.metrics, + time.time() - ts) + if isinstance(event, paddle.event.EndPass): + print "Pass %d end, spent: %f" % (event.pass_id, + time.time() - ts_pass) + result = trainer.test(reader=test_reader) + print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) + + trainer.train( + reader=train_reader, num_passes=200, event_handler=event_handler) + + +if __name__ == '__main__': + main() diff --git a/cmake/external/boost.cmake b/cmake/external/boost.cmake index c70d83b3f4bb24740ed67b4e2f98a3ced26d1648..dbc676bdac30e0d730206c17a1912d49d4f896eb 100644 --- a/cmake/external/boost.cmake +++ b/cmake/external/boost.cmake @@ -21,6 +21,7 @@ set(BOOST_URL "http://sourceforge.net/projects/boost/files/boost/${BOO set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost) set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}") set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE) +set_directory_properties(PROPERTIES CLEAN_NO_CUSTOM 1) include_directories(${BOOST_INCLUDE_DIR}) diff --git a/cmake/generic.cmake b/cmake/generic.cmake index 18770fe2861380ea1320aef5cb7ec3432147d7ce..33ef6860e1d38f4e87c4431addf43f9f8a655fc2 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -186,6 +186,11 @@ function(cc_library TARGET_NAME) add_library(${TARGET_NAME} STATIC ${cc_library_SRCS}) endif() if (cc_library_DEPS) + # Don't need link libwarpctc.so + if ("${cc_library_DEPS};" MATCHES "warpctc;") + list(REMOVE_ITEM cc_library_DEPS warpctc) + add_dependencies(${TARGET_NAME} warpctc) + endif() add_dependencies(${TARGET_NAME} ${cc_library_DEPS}) target_link_libraries(${TARGET_NAME} ${cc_library_DEPS}) endif() @@ -465,10 +470,10 @@ function(py_test TARGET_NAME) if(WITH_TESTING) set(options "") set(oneValueArgs "") - set(multiValueArgs SRCS DEPS ARGS) + set(multiValueArgs SRCS DEPS ARGS ENVS) cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) add_test(NAME ${TARGET_NAME} - COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python + COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python ${py_test_ENVS} ${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS} WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) endif() diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index 94dd3457fb5b513441c4c8e339e1862de9092517..58ce5d61c950d12630cfe1de354ffc2a2ba1fd59 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -47,3 +47,5 @@ sphinx_add_target(paddle_docs_cn ${SPHINX_CACHE_DIR_CN} ${CMAKE_CURRENT_SOURCE_DIR} ${SPHINX_HTML_DIR_CN}) + +add_subdirectory(api) diff --git a/doc/api/CMakeLists.txt b/doc/api/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..4e0bc1d5b8e799ef86cb92a0dda348b0be4e299a --- /dev/null +++ b/doc/api/CMakeLists.txt @@ -0,0 +1,20 @@ +# configured documentation tools and intermediate build results +set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build") + +# Sphinx cache with pickled ReST documents +set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees") + +# HTML output director +set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html") + +configure_file( + "${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in" + "${BINARY_BUILD_DIR_EN}/conf.py" + @ONLY) + +sphinx_add_target(paddle_api_docs + html + ${BINARY_BUILD_DIR_EN} + ${SPHINX_CACHE_DIR_EN} + ${CMAKE_CURRENT_SOURCE_DIR} + ${SPHINX_HTML_DIR_EN}) diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index ddf0b055a92d80295b24255a5462d477e0d9c796..29388f5005bf779a1bfa63c0d46d35996c0c792d 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -87,6 +87,11 @@ roi_pool .. autoclass:: paddle.v2.layer.roi_pool :noindex: +pad +---- +.. autoclass:: paddle.v2.layer.pad + :noindex: + Norm Layer ========== @@ -133,6 +138,11 @@ grumemory .. autoclass:: paddle.v2.layer.grumemory :noindex: +gated_unit +----------- +.. autoclass:: paddle.v2.layer.gated_unit + :noindex: + Recurrent Layer Group ===================== @@ -340,6 +350,11 @@ bilinear_interp .. autoclass:: paddle.v2.layer.bilinear_interp :noindex: +dropout +-------- +.. autoclass:: paddle.v2.layer.dropout + :noindex: + dot_prod --------- .. autoclass:: paddle.v2.layer.dot_prod @@ -402,6 +417,11 @@ scale_shift .. autoclass:: paddle.v2.layer.scale_shift :noindex: +factorization_machine +--------------------- +.. autoclass:: paddle.v2.layer.factorization_machine + :noindex: + Sampling Layers =============== @@ -420,22 +440,6 @@ multiplex .. autoclass:: paddle.v2.layer.multiplex :noindex: -Factorization Machine Layer -============================ - -factorization_machine ---------------------- -.. autoclass:: paddle.v2.layer.factorization_machine - :noindex: - -Slicing and Joining Layers -========================== - -pad ----- -.. autoclass:: paddle.v2.layer.pad - :noindex: - .. _api_v2.layer_costs: Cost Layers @@ -526,6 +530,11 @@ multibox_loss .. autoclass:: paddle.v2.layer.multibox_loss :noindex: +detection_output +---------------- +.. autoclass:: paddle.v2.layer.detection_output + :noindex: + Check Layer ============ @@ -534,31 +543,10 @@ eos .. autoclass:: paddle.v2.layer.eos :noindex: -Miscs -===== - -dropout --------- -.. autoclass:: paddle.v2.layer.dropout - :noindex: - -Activation with learnable parameter -=================================== +Activation +========== prelu -------- .. autoclass:: paddle.v2.layer.prelu :noindex: - -gated_unit ------------ -.. autoclass:: paddle.v2.layer.gated_unit - :noindex: - -Detection output Layer -====================== - -detection_output ----------------- -.. autoclass:: paddle.v2.layer.detection_output - :noindex: diff --git a/doc/api/v2/data/dataset.rst b/doc/api/v2/data/dataset.rst index 6a8ecc5bb1d855e0ded3719943ab3adb810de365..02e41564b1e48c07da6ac071fc4b60089169e05a 100644 --- a/doc/api/v2/data/dataset.rst +++ b/doc/api/v2/data/dataset.rst @@ -73,3 +73,10 @@ wmt14 .. automodule:: paddle.v2.dataset.wmt14 :members: :noindex: + +wmt16 ++++++ + +.. automodule:: paddle.v2.dataset.wmt16 + :members: + :noindex: diff --git a/doc/design/csp.md b/doc/design/csp.md index ba9cacfdea7dcf7c6499b562dfc58400d082f2c8..ae2e3e1b998f949b5ca34707fa598725ef9fcbfd 100644 --- a/doc/design/csp.md +++ b/doc/design/csp.md @@ -42,7 +42,7 @@ The type *channel* is conceptually the blocking queue. In Go, its implemented i The `select` operation has been in OS kernels long before Go language. All Unix kernels implement system calls *poll* and *select*. They monitor multiple file descriptors to see if I/O is possible on any of them. This takes O(N) time. Since Linux 2.6, a new system call, *epoll*, can do the same in O(1) time. In BSD systems, there is a similar system call *kqueue*. Go's Linux implementation uses epoll. -It might be a good idea to implement Fluid's select using epoll too. In this design doc, we start from the O(N) way, so we could focus on Python binding and the syntax. +It might be a good idea to implement Fluid's select using epoll too. In this design doc, we start from the O(N) way so that we could focus on Python binding and the syntax. ### Type Channel @@ -71,14 +71,14 @@ ch1 := make(chan int, 100) // a channel that can buffer 100 ints. In Fluid, we should be able to do the same: ```python -ch = fluid.make_chan(dtype=INT) -ch1 = fluid.make_chan(dtype=INT, 100) +ch = fluid.make_channel(dtype=INT) +ch1 = fluid.make_channel(dtype=INT, 100) ``` In addition to that, we want channels that can hold more complex element types, e.g., Tensors of float16: ```python -ch = fluid.make_chan(dtype=Tensor, etype=float16) +ch = fluid.make_channel(dtype=Tensor, etype=float16) ``` or Tensors of Tensors of float16 etc. @@ -87,8 +87,135 @@ The point here is that we need a consistent way to compose types, like in C++ we ### Send and Recv +Go's CSP implementation depends on data type *channel*. There are two types of channels: + +1. The unblocked channel, or buffered channel, is a blocking queue with a non-zero sized buffer. The sending to buffered channel blocks if the buffer is full, and the receive operation blocks if the buffer is empty. +1. blocked channel, or unbuffered channel, is a blocking queue with no buffer. Both sending and receiving block with unbuffered channels. + +There are four types of actions with a channel: + +1. Create a channel + + ```go + ch := make(chan int) // this is an unbuffered channel + ch := make(chan int, 100) // this is a buffered channel of 100 ints. + ``` + +1. Send + + ```go + ch <- 111 + ``` + +1. Recv + + ```go + y, ok <- ch + ``` + +1. Close + + ```go + close(ch) + ``` + + Please be aware that a closed channel is not a nil channel, which is `var ch chan int`. + +There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms): + +1. A send to a nil channel blocks forever + +1. A receive from a nil channel blocks forever + +1. A send to a closed channel panics + +1. A receive from a closed channel returns the residual values and then zeros. + +In Fluid, we have [buffered channels](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/details/buffered_channel.h) and [unbuffered channels](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/details/unbuffered_channel.h) + +The following program illustrates the Python syntax for accessing Fluid buffers. + +```python +import fluid + +buffer_size = 10 +ch = fluid.make_channel(dtype=INT, buffer_size) + +# Now write three elements to the channel +with fluid.while(steps=buffer_size): + fluid.send(ch, step) + fluid.close_channel(ch) + +with fluid.while(steps=buffer_size): + fluid.print(fluid.recv(ch)) +``` + +The following example shows that to avoid the always-blocking behavior of unbuffered channels, we need to use Fluid's goroutines. + +```python +import fluid + +ch = fluid.make_channel(dtype=INT) + +with fluid.go(): + fluid.send(ch) + +y = fluid.recv(ch) + +fluid.close_channel(ch) +``` + ### Select +In Go, the `select` statement lets a goroutine wait on multiple communication operations. A `select` blocks until one of its cases can run, then it executes that case. It chooses one at random if multiple are ready. + +```go + +ch1 := make(chan int) +ch2 := make(chan int, 100) + +x := 0 + +for { + select { + case ch1 <- x: + x := x + 1 + case y <- ch2: + fmt.Println("Received on channel") + default: + fmt.Println("Default") + } + } + +``` + +In Fluid, we should be able to do the same: + +```python +ch1 = fluid.make_chan(dtype=INT) +ch2 = fluid.make_chan(dtype=INT, 100) + +sel = fluid.select() + +with sel.case(ch1, 'w', X): + fluid.layers.increment(X) + +with sel.case(ch2, 'r', Y): + fluid.print("Received on Channel") + +with sel.default(): + fluid.print("Default") + +``` + +In the above code snippet, `X` and `Y` are variables. Now let us look at each of these statements one by one. + +- `sel.case(ch1, 'w', X)` : This specifies that we are writing to `ch1` and we want to write the integer in variable `X` to the channel. The character `w` is used here to make the syntax familiar to write syntax in Python I/O. + +- `sel.case(ch2, 'r', Y)` : This specifies that we would like to read the result from `ch2` into variable `Y`. The character `r` is used here to make the syntax familiar to read syntax in Python I/O. + +- `sel.default()` : This is equivalent to the default in Go `select`. If none of the channels are ready for read or write, then the fluid code in the default block will be executed. + ## Example Programs ### 1. RPC between Trainers and Parameter Servers diff --git a/doc/design/switch.md b/doc/design/switch.md new file mode 100644 index 0000000000000000000000000000000000000000..9db1b2782a521c2ff4b28b8f9efcdf1492242ed4 --- /dev/null +++ b/doc/design/switch.md @@ -0,0 +1,32 @@ +### Design Doc: Switch + +### Background + +Many programming languages provide `switch` as a generalization of `if-elif-else`. We want to add it to Fluid. + +The following example shows the usage of `fluid.switch`. + +```python +a = fluid.Var(10) +b = fluid.Var(0) + +switch = fluid.switch() +with switch.block(): + with switch.case(fluid.less_equal(a, 10)): + fluid.print("Case 1") + with switch.case(fluid.larger(a, 0)): + fluid.print("Case 2") + with switch.default(): + fluid.print("Case 3") +``` + +### The Semantics + +1. A `switch` control-flow checks cases one-by-one. +1. The condition of each case is a boolean value, which is a scalar, and differs from the `fluid.if_else` control-flow, which condition could be a vector of boolean values. +1. It runs the first matched case, or the default case if there is one. +1. Once it matches a case, it runs the corresponding branch and only that branch. It's like there is a C's `break` keyword at the end of each case. + +The above program should print and print only "Case 1". + +The implementation of the backward pass of the `switch` control-flow is easier than the backward of the `if_else`, because `switch` runs at most one branch, whereas `if-else` could run more than one branches. diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index c2fc86687d7106aac7c74d6dd16bc229353cb7c1..0f3db59607fb6b43da01f5fdb46949087517ed6c 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -92,11 +92,11 @@ paddle.init( 参数说明 - use_gpu: **可选,默认False**,是否启用GPU训练 -- trainer_count:**必选,默认1**,当前训练任务trainer总个数 +- trainer_count:**必选,默认1**,当前trainer的线程数目 - port:**必选,默认7164**,连接到pserver的端口 - ports_num:**必选,默认1**,连接到pserver的端口个数 - ports_num_for_sparse:**必选,默认0**,和pserver之间用于稀疏类型参数通信的端口个数 -- num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 +- num_gradient_servers:**必选,默认1**,当前训练任务trainer总数 - trainer_id:**必选,默认0**,每个trainer的唯一ID,从0开始的整数 - pservers:**必选,默认127.0.0.1**,当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index 28cd1fa7903e559e33a7fc2f00172fdfbe2fdc97..f9424f8f1a29fcf001c4e7976086512b22f6e858 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -95,11 +95,11 @@ paddle.init( Parameter Description - use_gpu: **optional, default False**, set to "True" to enable GPU training. -- trainer_count: **required, default 1**, total count of trainers in the training job. +- trainer_count: **required, default 1**, number of threads in current trainer. - port: **required, default 7164**, port to connect to parameter server. - ports_num: **required, default 1**, number of ports for communication. - ports_num_for_sparse: **required, default 0**, number of ports for sparse type caculation. -- num_gradient_servers: **required, default 1**, total number of gradient server. +- num_gradient_servers: **required, default 1**, number of trainers in current job. - trainer_id: **required, default 0**, ID for every trainer, start from 0. - pservers: **required, default 127.0.0.1**, list of IPs of parameter servers, separated by ",". diff --git a/doc/index_cn.rst b/doc/index_cn.rst index ada51c2d73263898b2c748437f8eb0f30b537073..9279bac7f4b2898c18979630a8d6dfcb2dba70e0 100644 --- a/doc/index_cn.rst +++ b/doc/index_cn.rst @@ -8,4 +8,3 @@ PaddlePaddle 文档 howto/index_cn.rst api/index_cn.rst faq/index_cn.rst - mobile/index_cn.rst diff --git a/doc/index_en.rst b/doc/index_en.rst index 23b64b6cadf776d44c4d0aa5a550ffe24be13b18..64684b8b9b27e245c6b32ea28809d3bbce22fab9 100644 --- a/doc/index_en.rst +++ b/doc/index_en.rst @@ -7,4 +7,3 @@ PaddlePaddle Documentation getstarted/index_en.rst howto/index_en.rst api/index_en.rst - mobile/index_en.rst diff --git a/doc/mobile/index_cn.rst b/doc/mobile/index_cn.rst deleted file mode 100644 index 1d99666e58b7043b85b0203ee0dfcd1957710161..0000000000000000000000000000000000000000 --- a/doc/mobile/index_cn.rst +++ /dev/null @@ -1,9 +0,0 @@ -MOBILE -====== - -.. toctree:: - :maxdepth: 1 - - cross_compiling_for_android_cn.md - cross_compiling_for_ios_cn.md - cross_compiling_for_raspberry_cn.md diff --git a/doc/mobile/index_en.rst b/doc/mobile/index_en.rst deleted file mode 100644 index ef421dacad458828cadf8cf505375d6c4bfd9dde..0000000000000000000000000000000000000000 --- a/doc/mobile/index_en.rst +++ /dev/null @@ -1,9 +0,0 @@ -MOBILE -====== - -.. toctree:: - :maxdepth: 1 - - cross_compiling_for_android_en.md - cross_compiling_for_ios_en.md - cross_compiling_for_raspberry_en.md diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 85e693434af863bfc3bde29989dbbfc69678d3b7..f52a51519fceffd96a4e8db240b23d15ed399fff 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -534,7 +534,7 @@ ParamGradInfoMap AppendBackward( auto root_block = program_desc.MutableBlock(root_block_idx); std::string fill_one_op_out = GradVarName(target.Name()); - bool is_scalar = target.Shape() == std::vector{1}; + bool is_scalar = target.GetShape() == std::vector{1}; PADDLE_ENFORCE(is_scalar, "target should be scalar"); VLOG(3) << "backward from loss=" << target.Name() << " data_type=" << target.GetDataType(); @@ -565,7 +565,7 @@ ParamGradInfoMap AppendBackward( auto var = root_block->Var(fill_one_op_out); var->SetDataType(target.GetDataType()); - var->SetShape(target.Shape()); + var->SetShape(target.GetShape()); auto& target_grad = retv[target.Name()]; target_grad.name_ = fill_one_op_out; target_grad.block_idx_ = root_block_idx; diff --git a/paddle/framework/channel.h b/paddle/framework/channel.h index 0570980c5a4d7fa45e672ae5baac65d2c65ddad9..b679387b1124e42499df158767b6c7afe1afd0c6 100644 --- a/paddle/framework/channel.h +++ b/paddle/framework/channel.h @@ -23,8 +23,8 @@ namespace framework { template class Channel { public: - virtual void Send(T*) = 0; - virtual void Receive(T*) = 0; + virtual bool Send(T*) = 0; + virtual bool Receive(T*) = 0; virtual size_t Cap() = 0; virtual void Close() = 0; virtual ~Channel() {} diff --git a/paddle/framework/channel_test.cc b/paddle/framework/channel_test.cc index 1510fb8abf54f05804bd404d9bd00ecc42fbef63..444d68498c9676fe0e246167dfacbe999a41d1a7 100644 --- a/paddle/framework/channel_test.cc +++ b/paddle/framework/channel_test.cc @@ -29,16 +29,16 @@ TEST(Channel, MakeAndClose) { { // MakeChannel should return a buffered channel is buffer_size > 0. auto ch = MakeChannel(10); - EXPECT_NE(dynamic_cast*>(ch), nullptr); - EXPECT_EQ(dynamic_cast*>(ch), nullptr); + EXPECT_NE(dynamic_cast *>(ch), nullptr); + EXPECT_EQ(dynamic_cast *>(ch), nullptr); CloseChannel(ch); delete ch; } { // MakeChannel should return an un-buffered channel is buffer_size = 0. auto ch = MakeChannel(0); - EXPECT_EQ(dynamic_cast*>(ch), nullptr); - EXPECT_NE(dynamic_cast*>(ch), nullptr); + EXPECT_EQ(dynamic_cast *>(ch), nullptr); + EXPECT_NE(dynamic_cast *>(ch), nullptr); CloseChannel(ch); delete ch; } @@ -48,12 +48,12 @@ TEST(Channel, SufficientBufferSizeDoesntBlock) { const size_t buffer_size = 10; auto ch = MakeChannel(buffer_size); for (size_t i = 0; i < buffer_size; ++i) { - ch->Send(&i); // should not block + EXPECT_EQ(ch->Send(&i), true); // should not block } size_t out; for (size_t i = 0; i < buffer_size; ++i) { - ch->Receive(&out); // should not block + EXPECT_EQ(ch->Receive(&out), true); // should not block EXPECT_EQ(out, i); } CloseChannel(ch); @@ -67,7 +67,10 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) { std::thread t([&]() { // Try to write more than buffer size. for (size_t i = 0; i < 2 * buffer_size; ++i) { - ch->Send(&i); // should not block + if (i < buffer_size) + EXPECT_EQ(ch->Send(&i), true); // should block after 10 iterations + else + EXPECT_EQ(ch->Send(&i), false); sum += i; } }); @@ -78,3 +81,262 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) { t.join(); delete ch; } + +TEST(Channel, SimpleUnbufferedChannelTest) { + auto ch = MakeChannel(0); + unsigned sum_send = 0; + std::thread t([&]() { + for (int i = 0; i < 5; i++) { + EXPECT_EQ(ch->Send(&i), true); + sum_send += i; + } + }); + for (int i = 0; i < 5; i++) { + int recv; + EXPECT_EQ(ch->Receive(&recv), true); + EXPECT_EQ(recv, i); + } + + CloseChannel(ch); + t.join(); + EXPECT_EQ(sum_send, 10U); + delete ch; +} + +// This tests that closing a buffered channel also unblocks +// any receivers waiting on the channel +TEST(Channel, BufferedChannelCloseUnblocksReceiversTest) { + auto ch = MakeChannel(1); + size_t num_threads = 5; + std::thread t[num_threads]; + bool thread_ended[num_threads]; + + // Launches threads that try to read and are blocked because of no writers + for (size_t i = 0; i < num_threads; i++) { + thread_ended[i] = false; + t[i] = std::thread( + [&](bool *p) { + int data; + // All reads should return false + EXPECT_EQ(ch->Receive(&data), false); + *p = true; + }, + &thread_ended[i]); + } + std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait + + // Verify that all threads are blocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], false); + } + + // Explicitly close the channel + // This should unblock all receivers + CloseChannel(ch); + + std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait + + // Verify that all threads got unblocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], true); + } + + for (size_t i = 0; i < num_threads; i++) t[i].join(); + delete ch; +} + +// This tests that closing a buffered channel also unblocks +// any senders waiting for channel to have write space +TEST(Channel, BufferedChannelCloseUnblocksSendersTest) { + auto ch = MakeChannel(1); + size_t num_threads = 5; + std::thread t[num_threads]; + bool thread_ended[num_threads]; + bool send_success[num_threads]; + + // Launches threads that try to write and are blocked because of no readers + for (size_t i = 0; i < num_threads; i++) { + thread_ended[i] = false; + send_success[i] = false; + t[i] = std::thread( + [&](bool *ended, bool *success) { + int data = 10; + *success = ch->Send(&data); + *ended = true; + }, + &thread_ended[i], &send_success[i]); + } + std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait + + // Verify that atleast 4 threads are blocked + int ct = 0; + for (size_t i = 0; i < num_threads; i++) { + if (thread_ended[i] == false) ct++; + } + // Atleast 4 threads must be blocked + EXPECT_GE(ct, 4); + + // Explicitly close the thread + // This should unblock all senders + CloseChannel(ch); + + std::this_thread::sleep_for(std::chrono::milliseconds(200)); // wait + + // Verify that all threads got unblocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], true); + } + + // Verify that only 1 send was successful + ct = 0; + for (size_t i = 0; i < num_threads; i++) { + if (send_success[i]) ct++; + } + // Only 1 send must be successful + EXPECT_EQ(ct, 1); + + for (size_t i = 0; i < num_threads; i++) t[i].join(); + delete ch; +} + +// This tests that closing an unbuffered channel also unblocks +// unblocks any receivers waiting for senders +TEST(Channel, UnbufferedChannelCloseUnblocksReceiversTest) { + auto ch = MakeChannel(0); + size_t num_threads = 5; + std::thread t[num_threads]; + bool thread_ended[num_threads]; + + // Launches threads that try to read and are blocked becausew of no writers + for (size_t i = 0; i < num_threads; i++) { + thread_ended[i] = false; + t[i] = std::thread( + [&](bool *p) { + int data; + EXPECT_EQ(ch->Receive(&data), false); + *p = true; + }, + &thread_ended[i]); + } + std::this_thread::sleep_for(std::chrono::milliseconds(500)); // wait 0.5 sec + + // Verify that all the threads are blocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], false); + } + + // Explicitly close the thread + // This should unblock all receivers + CloseChannel(ch); + + std::this_thread::sleep_for(std::chrono::milliseconds(500)); // wait 0.5 sec + + // Verify that all threads got unblocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], true); + } + + for (size_t i = 0; i < num_threads; i++) t[i].join(); + delete ch; +} + +// This tests that closing an unbuffered channel also unblocks +// unblocks any senders waiting for senders +TEST(Channel, UnbufferedChannelCloseUnblocksSendersTest) { + auto ch = MakeChannel(0); + size_t num_threads = 5; + std::thread t[num_threads]; + bool thread_ended[num_threads]; + + // Launches threads that try to read and are blocked becausew of no writers + for (size_t i = 0; i < num_threads; i++) { + thread_ended[i] = false; + t[i] = std::thread( + [&](bool *p) { + int data = 10; + EXPECT_EQ(ch->Send(&data), false); + *p = true; + }, + &thread_ended[i]); + } + std::this_thread::sleep_for(std::chrono::milliseconds(500)); // wait 0.5 sec + + // Verify that all the threads are blocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], false); + } + + // Explicitly close the thread + // This should unblock all receivers + CloseChannel(ch); + + std::this_thread::sleep_for(std::chrono::milliseconds(500)); // wait 0.5 sec + + // Verify that all threads got unblocked + for (size_t i = 0; i < num_threads; i++) { + EXPECT_EQ(thread_ended[i], true); + } + + for (size_t i = 0; i < num_threads; i++) t[i].join(); + delete ch; +} + +TEST(Channel, UnbufferedLessReceiveMoreSendTest) { + auto ch = MakeChannel(0); + unsigned sum_send = 0; + // Send should block after three iterations + // since we only have three receivers. + std::thread t([&]() { + // Try to send more number of times + // than receivers + for (int i = 0; i < 4; i++) { + ch->Send(&i); + sum_send += i; + } + }); + for (int i = 0; i < 3; i++) { + int recv; + ch->Receive(&recv); + EXPECT_EQ(recv, i); + } + std::this_thread::sleep_for(std::chrono::milliseconds(100)); // wait 0.5 sec + EXPECT_EQ(sum_send, 3U); + + CloseChannel(ch); + t.join(); + delete ch; +} + +TEST(Channel, UnbufferedMoreReceiveLessSendTest) { + auto ch = MakeChannel(0); + unsigned sum_send = 0; + unsigned sum_receive = 0; + // The receiver should block after 5 + // iterations, since there are only 5 senders. + std::thread t([&]() { + for (int i = 0; i < 8; i++) { + int recv; + ch->Receive(&recv); // should block after the fifth iteration. + EXPECT_EQ(recv, i); + sum_receive += i; + } + }); + for (int i = 0; i < 5; i++) { + ch->Send(&i); + sum_send += i; + } + std::this_thread::sleep_for(std::chrono::milliseconds(500)); // wait 0.5 sec + EXPECT_EQ(sum_send, 10U); + EXPECT_EQ(sum_receive, 10U); + // send three more elements + for (int i = 5; i < 8; i++) { + ch->Send(&i); + sum_send += i; + } + + CloseChannel(ch); + t.join(); + EXPECT_EQ(sum_send, 28U); + EXPECT_EQ(sum_receive, 28U); + delete ch; +} diff --git a/paddle/framework/details/buffered_channel.h b/paddle/framework/details/buffered_channel.h index b093e1589293b030ef2bedb82504a8e86b3dc857..b9761eab9b52780d383ecf649a58c5e9152a9765 100644 --- a/paddle/framework/details/buffered_channel.h +++ b/paddle/framework/details/buffered_channel.h @@ -30,8 +30,8 @@ class Buffered : public paddle::framework::Channel { friend void paddle::framework::CloseChannel(Channel*); public: - virtual void Send(T*); - virtual void Receive(T*); + virtual bool Send(T*); + virtual bool Receive(T*); virtual size_t Cap() { return cap_; } virtual void Close(); virtual ~Buffered(); @@ -48,39 +48,43 @@ class Buffered : public paddle::framework::Channel { PADDLE_ENFORCE_GT(cap, 0); } - void NotifyAllSenders(std::unique_lock*); + void NotifyAllParticipants(std::unique_lock*); }; template -void Buffered::Send(T* item) { +bool Buffered::Send(T* item) { std::unique_lock lock(mu_); full_cond_var_.wait(lock, [this]() { return channel_.size() < cap_ || closed_; }); + bool ret = false; if (!closed_) { channel_.push_back(std::move(*item)); lock.unlock(); empty_cond_var_.notify_one(); + ret = true; } + return ret; } template -void Buffered::Receive(T* item) { +bool Buffered::Receive(T* item) { std::unique_lock lock(mu_); empty_cond_var_.wait(lock, [this]() { return !channel_.empty() || closed_; }); - if (!closed_) { + bool ret = false; + if (!channel_.empty()) { *item = std::move(channel_.front()); channel_.pop_front(); - NotifyAllSenders(&lock); - } else { - item = nullptr; + full_cond_var_.notify_one(); + ret = true; } + return ret; } template void Buffered::Close() { std::unique_lock lock(mu_); closed_ = true; - NotifyAllSenders(&lock); + NotifyAllParticipants(&lock); } template @@ -88,13 +92,14 @@ Buffered::~Buffered() { std::unique_lock lock(mu_); closed_ = true; channel_.clear(); - NotifyAllSenders(&lock); + NotifyAllParticipants(&lock); } template -void Buffered::NotifyAllSenders(std::unique_lock* lock) { +void Buffered::NotifyAllParticipants(std::unique_lock* lock) { lock->unlock(); full_cond_var_.notify_all(); + empty_cond_var_.notify_all(); } } // namespace details diff --git a/paddle/framework/details/unbuffered_channel.h b/paddle/framework/details/unbuffered_channel.h index cc2d2e587eca981307d4e522bd569fbffa450207..f86a894bb4a42e45edf6964e30620b68183faaa8 100644 --- a/paddle/framework/details/unbuffered_channel.h +++ b/paddle/framework/details/unbuffered_channel.h @@ -1,4 +1,4 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -13,8 +13,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include -#include #include #include "paddle/framework/channel.h" @@ -29,27 +29,117 @@ class UnBuffered : public paddle::framework::Channel { friend void paddle::framework::CloseChannel(Channel*); public: - virtual void Send(T*); - virtual void Receive(T*); + virtual bool Send(T*); + virtual bool Receive(T*); virtual size_t Cap() { return 0; } virtual void Close(); virtual ~UnBuffered(); private: - UnBuffered() {} + std::mutex mu_ch_; + // Mutex for readers and writers who are waiting for other reader + // and writer to complete execution + std::recursive_mutex mu_read_, mu_write_; + // reader_found_ is set true when a reader is ready to accept data + // writer_found_ is set true when a writer is ready to send data + // A transaction occurs only when both are true + std::atomic reader_found_{false}, writer_found_{false}; + std::condition_variable cv_channel_; + std::condition_variable_any cv_reader_, cv_writer_; + T* item{nullptr}; + std::atomic closed_{false}; + + UnBuffered() : closed_(false) {} + + void NotifyAllParticipants(std::unique_lock*); }; +// This function implements the concept of how data should +// be sent from a writer to a reader. +template +bool UnBuffered::Send(T* data) { + // Prevent other writers from entering + std::unique_lock writer_lock(mu_write_); + writer_found_ = true; + std::unique_lock cv_lock(mu_write_); + // If writer comes first, it should wait till a reader arrives + cv_writer_.wait(cv_lock, + [this]() { return reader_found_ == true || closed_; }); + cv_reader_.notify_one(); + bool ret = false; + if (!closed_) { + std::unique_lock channel_lock(mu_ch_); + item = data; + channel_lock.unlock(); + cv_channel_.notify_one(); + channel_lock.lock(); + cv_channel_.wait(channel_lock, + [this]() { return item == nullptr || closed_; }); + ret = true; + } + writer_found_ = false; + return ret; +} + +// This function implements the concept of how +// data that was sent by a writer is read from a reader. template -void UnBuffered::Send(T* channel_element) {} +bool UnBuffered::Receive(T* data) { + // Prevent other readers from entering + std::unique_lock read_lock{mu_read_}; + reader_found_ = true; + std::unique_lock cv_lock{mu_read_}; + // If reader comes first, it should wait till a writer arrives + cv_reader_.wait(cv_lock, + [this]() { return writer_found_ == true || closed_; }); + cv_writer_.notify_one(); + bool ret = false; + if (!closed_) { + std::unique_lock lock_ch{mu_ch_}; + // Reader should wait for the writer to first write its data + cv_channel_.wait(lock_ch, [this]() { return item != nullptr || closed_; }); + if (!closed_) { + *data = std::move(*item); + item = nullptr; + lock_ch.unlock(); + ret = true; + } + cv_channel_.notify_one(); + } + reader_found_ = false; + return ret; +} +// This function implements the sequence of events +// that take place once the channel is closed. template -void UnBuffered::Receive(T*) {} +void UnBuffered::Close() { + std::unique_lock lock(mu_ch_); + item = nullptr; + closed_ = true; + NotifyAllParticipants(&lock); +} +// This function implements the sequence of events +// that are executed once the object of an UnBuffered +// channel is destroyed. template -void UnBuffered::Close() {} +UnBuffered::~UnBuffered() { + std::unique_lock lock(mu_ch_); + item = nullptr; + closed_ = true; + NotifyAllParticipants(&lock); +} +// This function notifies all the readers, writers and +// the channel condition variables. template -UnBuffered::~UnBuffered() {} +void UnBuffered::NotifyAllParticipants(std::unique_lock* lock) { + lock->unlock(); + cv_writer_.notify_all(); + cv_channel_.notify_all(); + cv_reader_.notify_all(); +} } // namespace details } // namespace framework diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index 5b6ef03f610926578d2c02dcf06f399f106a30a1..f65ccae6e6a4df4490d49128e871efa55800b505 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -116,6 +116,8 @@ message LoDTensorArrayDesc { optional int32 lod_level = 2 [ default = 0 ]; } +message Reader { repeated LoDTensorDesc lod_tensor = 1; } + message VarDesc { enum VarType { LOD_TENSOR = 1; @@ -126,13 +128,15 @@ message VarDesc { LOD_RANK_TABLE = 6; LOD_TENSOR_ARRAY = 7; PLACE_LIST = 8; + READER = 9; } required string name = 1; required VarType type = 2; - optional LoDTensorDesc lod_tensor = 3; - optional TensorDesc selected_rows = 4; + optional bool persistable = 3 [ default = false ]; + optional LoDTensorDesc lod_tensor = 4; + optional TensorDesc selected_rows = 5; optional LoDTensorArrayDesc tensor_array = 6; - optional bool persistable = 5 [ default = false ]; + optional Reader reader = 7; } message BlockDesc { diff --git a/paddle/framework/mixed_vector.h b/paddle/framework/mixed_vector.h index 0e0e23958602343f8e0106e3a88eaac9c6d71066..85caac8dcd9ede4fe997e2fd246d1421aa73c80a 100644 --- a/paddle/framework/mixed_vector.h +++ b/paddle/framework/mixed_vector.h @@ -34,18 +34,6 @@ namespace framework { template class Vector : public std::vector { - public: - /* NOTE(dzhwinter): - * Data always store and modified on Host. - * If the data is modified when use cuda_data interface, - * You need to call the CopyFromCUDA explicitly to synchronize data. - * - */ - enum class kDataPosition { - kDataOnHost = 0, - kDataOnDevice = 1, - }; - public: using std::vector::vector; @@ -55,11 +43,12 @@ class Vector : public std::vector { virtual ~Vector() { #ifdef PADDLE_WITH_CUDA if (cuda_ptr_ != nullptr) { - memory::Free(place_, static_cast(cuda_ptr_)); + memory::Free(place_, cuda_ptr_); } #endif } + /* Get device vector */ T *cuda_data() { CopyToCUDA(); PADDLE_ENFORCE_NOT_NULL( @@ -67,81 +56,73 @@ class Vector : public std::vector { return static_cast(cuda_ptr_); } + /* Get host vector */ T *data() { return std::vector::data(); } - const T *data() const { return std::vector::data(); } + /* Synchronize host vector to device vector */ void CopyToCUDA(); - + /* Synchronize device vector to host vector */ void CopyFromCUDA(); - + /* Switch device vector location */ void CopyToPeer(platform::Place); private: void *cuda_ptr_ = nullptr; - size_t cuda_size_ = 0; - /*The DataPosition is unused now, - if we want support random access from cpu and cuda, - we need to overload all the vector method */ - - kDataPosition position_ = kDataPosition::kDataOnHost; + size_t cuda_size_ = 0; // device vector numel platform::CUDAPlace place_; }; template void Vector::CopyToCUDA() { #ifdef PADDLE_WITH_CUDA - if (cuda_ptr_ == nullptr) { + if (cuda_size_ < this->size()) { + if (cuda_ptr_ != nullptr) { + memory::Free(place_, cuda_ptr_); + } cuda_ptr_ = memory::Alloc(place_, this->size() * sizeof(T)); } + cuda_size_ = this->size(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); - auto *cuda_ctx = pool.GetByPlace(place_); - - memory::Copy(place_, static_cast(cuda_ptr_), platform::CPUPlace(), + auto *ctx = pool.GetByPlace(place_); + memory::Copy(place_, cuda_ptr_, platform::CPUPlace(), static_cast(this->data()), - this->size() * sizeof(T), cuda_ctx->stream()); - cuda_ctx->Wait(); - - cuda_size_ = this->size(); + this->size() * sizeof(T), ctx->stream()); + ctx->Wait(); #endif } template void Vector::CopyFromCUDA() { #ifdef PADDLE_WITH_CUDA - platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); - auto *cuda_ctx = pool.GetByPlace(place_); if (cuda_ptr_ == nullptr) { - LOG(WARNING) << "No uncommited cuda data."; + LOG(WARNING) << "No uncommitted cuda data."; return; } this->resize(cuda_size_); + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto *ctx = pool.GetByPlace(place_); memory::Copy(platform::CPUPlace(), static_cast(this->data()), place_, static_cast(cuda_ptr_), this->size() * sizeof(T), - cuda_ctx->stream()); - cuda_ctx->Wait(); - + ctx->stream()); + ctx->Wait(); #endif } template void Vector::CopyToPeer(platform::Place peer_place) { - if (platform::is_cpu_place(peer_place)) { - return; - } #ifdef PADDLE_WITH_CUDA - auto *cuda_ctx = platform::DeviceContextPool::Instance().GetByPlace(place_); - void *peer_cuda_ptr_ = memory::Alloc( + auto *ctx = platform::DeviceContextPool::Instance().GetByPlace(place_); + void *peer_cuda_ptr = memory::Alloc( boost::get(peer_place), this->size() * sizeof(T)); - memory::Copy(boost::get(peer_place), - static_cast(peer_cuda_ptr_), place_, - static_cast(cuda_ptr_), this->size() * sizeof(T), - cuda_ctx->stream()); - cuda_ctx->Wait(); - memory::Free(place_, static_cast(cuda_ptr_)); + memory::Copy(boost::get(peer_place), peer_cuda_ptr, + place_, cuda_ptr_, this->size() * sizeof(T), ctx->stream()); + ctx->Wait(); + + memory::Free(place_, cuda_ptr_); place_ = boost::get(peer_place); - cuda_ptr_ = peer_cuda_ptr_; + cuda_ptr_ = peer_cuda_ptr; #endif } diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index f8df2cf97ad532f06cb1393b1a24cd789f8bde29..ad361852ec9f2bb35b24209179f96b15300ca8d0 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -39,10 +39,6 @@ class CompileTimeInferShapeContext : public InferShapeContext { bool HasOutputs(const std::string &name) const override; - DDim GetInputDim(const std::string &name) const override; - - void SetOutputDim(const std::string &name, const DDim &dim) override; - AttrReader Attrs() const override; const std::vector &Inputs( @@ -444,21 +440,6 @@ bool CompileTimeInferShapeContext::HasOutputs(const std::string &name) const { return true; } -DDim CompileTimeInferShapeContext::GetInputDim(const std::string &name) const { - std::vector ddims = GetInputsDim(name); - auto length = ddims.size(); - PADDLE_ENFORCE_EQ(length, 1UL, - "Input(%s) should have 1 value, " - "but it has %d now", - name, length); - return ddims[0]; -} - -void CompileTimeInferShapeContext::SetOutputDim(const std::string &name, - const DDim &dim) { - SetOutputsDim(name, {dim}); -} - AttrReader CompileTimeInferShapeContext::Attrs() const { return AttrReader(op_.GetAttrMap()); } @@ -477,11 +458,11 @@ DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const { auto var = block_.FindVarRecursive(name); PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name); try { - auto shape = var->Shape(); + auto shape = var->GetShape(); if (shape.empty()) { return framework::make_ddim({0UL}); } else { - return framework::make_ddim(var->Shape()); + return framework::make_ddim(var->GetShape()); } } catch (...) { VLOG(5) << "GetDim of variable " << name << " error"; diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 4e854f54dd43d760bab44fb5f7cafeb13314b27c..81fa8cf477423fc2a54c719c9a743729215513c3 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -366,14 +366,6 @@ class RuntimeInferShapeContext : public InferShapeContext { return true; } - DDim GetInputDim(const std::string& name) const override { - return GetDim(op_.Input(name)); - } - - void SetOutputDim(const std::string& name, const DDim& dim) override { - SetDim(op_.Output(name), dim); - } - AttrReader Attrs() const override { return AttrReader(op_.Attrs()); } const std::vector& Inputs( diff --git a/paddle/framework/program_desc_test.cc b/paddle/framework/program_desc_test.cc index 59947c9f2189348226b7ff6c2b9315196bbf55fa..9945aee31b647a6243971c7e64c8391c0b1c09c5 100644 --- a/paddle/framework/program_desc_test.cc +++ b/paddle/framework/program_desc_test.cc @@ -53,7 +53,7 @@ TEST(ProgramDesc, copy_ctor) { ASSERT_NE(copy, var_before); ASSERT_EQ(copy->Name(), var_before->Name()); ASSERT_EQ(copy->GetType(), var_before->GetType()); - ASSERT_EQ(copy->Shape(), var_before->Shape()); + ASSERT_EQ(copy->GetShape(), var_before->GetShape()); ASSERT_EQ(copy->Proto()->SerializeAsString(), var_before->Proto()->SerializeAsString()); }; @@ -117,7 +117,7 @@ TEST(ProgramDescBind, serialize_and_deserialize) { ASSERT_NE(restored, var_before); ASSERT_EQ(restored->Name(), var_before->Name()); ASSERT_EQ(restored->GetType(), var_before->GetType()); - ASSERT_EQ(restored->Shape(), var_before->Shape()); + ASSERT_EQ(restored->GetShape(), var_before->GetShape()); ASSERT_EQ(restored->Proto()->SerializeAsString(), var_before->Proto()->SerializeAsString()); }; diff --git a/paddle/framework/shape_inference.cc b/paddle/framework/shape_inference.cc index e53cc0cdabc623ae358f1a3e21823a2f38ec3c62..a0fa467291bb42c59b65f5efeabe9c2235e15b2a 100644 --- a/paddle/framework/shape_inference.cc +++ b/paddle/framework/shape_inference.cc @@ -18,10 +18,18 @@ limitations under the License. */ namespace paddle { namespace framework { -std::vector InferShapeContext::GetInputsDim( +DDim InferShapeContext::GetInputDim(const std::string &name) const { + const std::vector &arg_names = Inputs(name); + PADDLE_ENFORCE_EQ(arg_names.size(), 1UL, + "Input(%s) should hold one element, but now it holds %d", + name, arg_names.size()); + return this->GetDim(arg_names[0]); +} + +std::vector InferShapeContext::GetInputsDim( const std::string &name) const { - const std::vector &names = Inputs(name); - return GetDims(names); + const std::vector &arg_names = Inputs(name); + return GetDims(arg_names); } DDim InferShapeContext::GetInputsElementDim(const std::string &name, @@ -30,24 +38,31 @@ DDim InferShapeContext::GetInputsElementDim(const std::string &name, return this->GetDim(names[idx]); } -void InferShapeContext::SetOutputsDim( - const std::string &name, const std::vector &dims) { +void InferShapeContext::SetOutputDim(const std::string &name, const DDim &dim) { + auto &arg_names = Outputs(name); + PADDLE_ENFORCE_EQ(arg_names.size(), 1UL, + "Output(%s) should hold one element, but now it holds %d", + name, arg_names.size()); + SetDim(arg_names[0], dim); +} + +void InferShapeContext::SetOutputsDim(const std::string &name, + const std::vector &dims) { auto &names = Outputs(name); SetDims(names, dims); } -std::vector InferShapeContext::GetDims( +std::vector InferShapeContext::GetDims( const std::vector &names) const { - std::vector ret; + std::vector ret; ret.reserve(names.size()); std::transform( names.begin(), names.end(), std::back_inserter(ret), [this](const std::string &name) { return this->GetDim(name); }); return ret; } - void InferShapeContext::SetDims(const std::vector &names, - const std::vector &dims) { + const std::vector &dims) { size_t length = names.size(); PADDLE_ENFORCE_EQ(length, dims.size()); for (size_t i = 0; i < length; ++i) { diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index f93319d8f2fd4c5d388bd57fd595a6a5edd51775..830f199ed1451538f12fc8dd34fb7b2bfc356a71 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -35,14 +35,13 @@ class InferShapeContext { virtual bool HasInputs(const std::string &name) const = 0; virtual bool HasOutputs(const std::string &name) const = 0; - virtual framework::DDim GetInputDim(const std::string &name) const = 0; + DDim GetInputDim(const std::string &name) const; - std::vector GetInputsDim(const std::string &name) const; + std::vector GetInputsDim(const std::string &name) const; DDim GetInputsElementDim(const std::string &name, int idx) const; - virtual void SetOutputDim(const std::string &name, const DDim &dim) = 0; - void SetOutputsDim(const std::string &name, - const std::vector &dims); + void SetOutputDim(const std::string &name, const DDim &dim); + void SetOutputsDim(const std::string &name, const std::vector &dims); virtual AttrReader Attrs() const = 0; virtual const std::vector &Inputs( @@ -57,15 +56,13 @@ class InferShapeContext { // Note: In while op, we need this to be public void SetDims(const std::vector &names, - const std::vector &dims); + const std::vector &dims); protected: - virtual framework::DDim GetDim(const std::string &name) const = 0; - virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0; - - std::vector GetDims( - const std::vector &names) const; + virtual DDim GetDim(const std::string &name) const = 0; + virtual void SetDim(const std::string &name, const DDim &dim) = 0; + std::vector GetDims(const std::vector &names) const; std::vector GetVarTypes( const std::vector &names) const; diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc index 62ab6593ef23c195e3caa2336574796ecaf35bc8..6d83e2e41126db0b3ac6fc1c86c9ed7fc4dfb39b 100644 --- a/paddle/framework/var_desc.cc +++ b/paddle/framework/var_desc.cc @@ -26,18 +26,91 @@ void VarDesc::SetShape(const std::vector &dims) { VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims()); } +void VarDesc::SetTensorDescNum(size_t num) { + switch (desc_.type()) { + case proto::VarDesc::READER: { + auto *lod_tensors_ptr = desc_.mutable_reader()->mutable_lod_tensor(); + lod_tensors_ptr->Clear(); + for (size_t i = 0; i < num; ++i) { + lod_tensors_ptr->Add(); + } + return; + } break; + default: + PADDLE_THROW( + "Setting 'sub_tensor_number' is not supported by the type of var %s.", + this->Name()); + } +} + +size_t VarDesc::GetTensorDescNum() const { + switch (desc_.type()) { + case proto::VarDesc::READER: + return desc_.reader().lod_tensor_size(); + break; + default: + PADDLE_THROW( + "Getting 'sub_tensor_number' is not supported by the type of var %s.", + this->Name()); + } +} + +void VarDesc::SetShapes( + const std::vector> &multiple_dims) { + PADDLE_ENFORCE_EQ(multiple_dims.size(), GetTensorDescNum(), + "The number of given shapes(%d) doesn't equal to the " + "number of sub tensor.", + multiple_dims.size(), GetTensorDescNum()); + std::vector tensors = mutable_tensor_descs(); + for (size_t i = 0; i < multiple_dims.size(); ++i) { + VectorToRepeated(multiple_dims[i], tensors[i]->mutable_dims()); + } +} + +std::vector VarDesc::GetShape() const { + return RepeatedToVector(tensor_desc().dims()); +} + +std::vector> VarDesc::GetShapes() const { + std::vector descs = tensor_descs(); + std::vector> res; + res.reserve(descs.size()); + for (const auto &tensor_desc : descs) { + res.push_back(RepeatedToVector(tensor_desc.dims())); + } + return res; +} + void VarDesc::SetDataType(proto::DataType data_type) { mutable_tensor_desc()->set_data_type(data_type); } -std::vector VarDesc::Shape() const { - return RepeatedToVector(tensor_desc().dims()); +void VarDesc::SetDataTypes( + const std::vector &multiple_data_type) { + PADDLE_ENFORCE_EQ(multiple_data_type.size(), GetTensorDescNum(), + "The number of given data types(%d) doesn't equal to the " + "number of sub tensor.", + multiple_data_type.size(), GetTensorDescNum()); + std::vector tensor_descs = mutable_tensor_descs(); + for (size_t i = 0; i < multiple_data_type.size(); ++i) { + tensor_descs[i]->set_data_type(multiple_data_type[i]); + } } proto::DataType VarDesc::GetDataType() const { return tensor_desc().data_type(); } +std::vector VarDesc::GetDataTypes() const { + std::vector descs = tensor_descs(); + std::vector res; + res.reserve(descs.size()); + for (const auto &tensor_desc : descs) { + res.push_back(tensor_desc.data_type()); + } + return res; +} + void VarDesc::SetLoDLevel(int32_t lod_level) { switch (desc_.type()) { case proto::VarDesc::LOD_TENSOR: @@ -47,8 +120,28 @@ void VarDesc::SetLoDLevel(int32_t lod_level) { desc_.mutable_tensor_array()->set_lod_level(lod_level); break; default: - PADDLE_THROW("Tensor type=%d does not support LoDLevel", - desc_.tensor_array().lod_level()); + PADDLE_THROW( + "Setting 'lod_level' is not supported by the type of var %s.", + this->Name()); + } +} + +void VarDesc::SetLoDLevels(const std::vector &multiple_lod_level) { + PADDLE_ENFORCE_EQ(multiple_lod_level.size(), GetTensorDescNum(), + "The number of given data types(%d) doesn't equal to the " + "number of sub tensor.", + multiple_lod_level.size(), GetTensorDescNum()); + switch (desc_.type()) { + case proto::VarDesc::READER: { + size_t i = 0; + for (auto &lod_tensor : *desc_.mutable_reader()->mutable_lod_tensor()) { + lod_tensor.set_lod_level(multiple_lod_level[i++]); + } + } break; + default: + PADDLE_THROW( + "Setting 'lod_levels' is not supported by the type of var %s.", + this->Name()); } } @@ -59,13 +152,31 @@ int32_t VarDesc::GetLoDLevel() const { case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().lod_level(); default: - PADDLE_THROW("Tensor type=%d does not support LoDLevel", - desc_.tensor_array().lod_level()); + PADDLE_THROW( + "Getting 'lod_level' is not supported by the type of var %s.", + this->Name()); + } +} + +std::vector VarDesc::GetLoDLevels() const { + std::vector res; + switch (desc_.type()) { + case proto::VarDesc::READER: + res.reserve(desc_.reader().lod_tensor_size()); + for (auto &lod_tensor : desc_.reader().lod_tensor()) { + res.push_back(lod_tensor.lod_level()); + } + return res; + break; + default: + PADDLE_THROW( + "Getting 'lod_levels' is not supported by the type of var %s.", + this->Name()); } } const proto::TensorDesc &VarDesc::tensor_desc() const { - PADDLE_ENFORCE(desc_.has_type(), "invoke TensorDesc must after set type"); + PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set."); switch (desc_.type()) { case proto::VarDesc::SELECTED_ROWS: return desc_.selected_rows(); @@ -74,13 +185,32 @@ const proto::TensorDesc &VarDesc::tensor_desc() const { case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().tensor(); default: - PADDLE_THROW("The type of var %s is unsupported.", this->Name()); + PADDLE_THROW( + "Getting 'tensor_desc' is not supported by the type of var %s.", + this->Name()); + } +} + +std::vector VarDesc::tensor_descs() const { + PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); + std::vector res; + res.reserve(GetTensorDescNum()); + switch (desc_.type()) { + case proto::VarDesc::READER: + for (const auto &lod_tensor : desc_.reader().lod_tensor()) { + res.push_back(lod_tensor.tensor()); + } + return res; + default: + PADDLE_THROW( + "Getting 'tensor_descs' is not supported by the type of var " + "%s.", + this->Name()); } } proto::TensorDesc *VarDesc::mutable_tensor_desc() { - PADDLE_ENFORCE(desc_.has_type(), - "invoke MutableTensorDesc must after set type"); + PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); switch (desc_.type()) { case proto::VarDesc::SELECTED_ROWS: return desc_.mutable_selected_rows(); @@ -89,8 +219,30 @@ proto::TensorDesc *VarDesc::mutable_tensor_desc() { case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.mutable_tensor_array()->mutable_tensor(); default: - PADDLE_THROW("Unexpected branch."); + PADDLE_THROW( + "Getting 'mutable_tensor_desc' is not supported by the type of var " + "%s.", + this->Name()); } } + +std::vector VarDesc::mutable_tensor_descs() { + PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set."); + std::vector res; + res.reserve(GetTensorDescNum()); + switch (desc_.type()) { + case proto::VarDesc::READER: + for (auto &lod_tensor : *desc_.mutable_reader()->mutable_lod_tensor()) { + res.push_back(lod_tensor.mutable_tensor()); + } + return res; + default: + PADDLE_THROW( + "Getting 'tensor_descs' is not supported by the type of var " + "%s.", + this->Name()); + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 9316b14bb695c185efd6db4296d422ef0c476d57..72da2fbb0a66ec7ca8c0c274dc4273bfbfcf303e 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -68,18 +68,34 @@ class VarDesc { void SetName(std::string name) { desc_.set_name(name); } + void SetTensorDescNum(size_t num); + + size_t GetTensorDescNum() const; + void SetShape(const std::vector &dims); + void SetShapes(const std::vector> &multiple_dims); + + std::vector GetShape() const; + + std::vector> GetShapes() const; + void SetDataType(proto::DataType data_type); - std::vector Shape() const; + void SetDataTypes(const std::vector &multiple_data_type); proto::DataType GetDataType() const; + std::vector GetDataTypes() const; + void SetLoDLevel(int32_t lod_level); + void SetLoDLevels(const std::vector &multiple_lod_level); + int32_t GetLoDLevel() const; + std::vector GetLoDLevels() const; + proto::VarDesc::VarType GetType() const; void SetType(proto::VarDesc::VarType type); @@ -90,7 +106,9 @@ class VarDesc { private: const proto::TensorDesc &tensor_desc() const; + std::vector tensor_descs() const; proto::TensorDesc *mutable_tensor_desc(); + std::vector mutable_tensor_descs(); proto::VarDesc desc_; }; diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index cbdbf5335d32d55a0221728758025c9d2cb3e7d1..a9876cec2aabf7d116443b685391ee9d20bc1370 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -178,19 +178,22 @@ public: real* inputData = inputs[0].data(); real* filterData = inputs[1].data(); real* outputData = outputs[0].data(); + real* colData = NULL; bool needIm2col = isNeedIm2col(filter); TensorShape imShape = TensorShape({inputChannels / groups_, inputHeight, inputWidth}); - TensorShape colShape; - real* colData = NULL; - size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth; - size_t colWidth = outputHeight * outputWidth; - // Max col matrix height 256, Max col matrix width 1024 - size_t stepColHeight = std::min(colHeight, static_cast(256)); - size_t stepColWidth = std::min(colWidth, static_cast(2048)); + // Max col matrix width 4096, Max col matrix size 4M. + size_t outputHeightSteps = + std::min(std::max(4096 / outputWidth, (size_t)1), outputHeight); + size_t maxColWidth = outputHeightSteps * outputWidth; + size_t channelSteps = + std::min(std::max((1048576 / maxColWidth) / filterHeight * filterWidth, + (size_t)1), + inputChannels / groups_); + size_t maxColHeight = channelSteps * filterHeight * filterWidth; if (needIm2col) { colShape = TensorShape({inputChannels / groups_, @@ -199,7 +202,7 @@ public: outputHeight, outputWidth}); - resizeBuffer(stepColHeight * stepColWidth * sizeof(real)); + resizeBuffer(maxColHeight * maxColWidth * sizeof(real)); colData = reinterpret_cast(memory_->getBuf()); } @@ -209,20 +212,24 @@ public: (outputChannels / groups_) * outputHeight * outputWidth; size_t filterOffset = filter.getElements() / groups_; - int nStride = colWidth; - int kStride = colHeight; + int nStride = outputHeight * outputWidth; + int kStride = inputChannels / groups_ * filterHeight * filterWidth; for (size_t i = 0; i < batchSize; i++) { + filterData = inputs[1].data(); for (size_t g = 0; g < groups_; g++) { if (needIm2col) { real beta_ = beta; - for (size_t colHeightStart = 0; colHeightStart < colHeight; - colHeightStart += stepColHeight) { - for (size_t colWidthStart = 0; colWidthStart < colWidth; - colWidthStart += stepColWidth) { - int N = std::min(colWidth - colWidthStart, stepColWidth); - int K = std::min(colHeight - colHeightStart, stepColHeight); + for (size_t ic = 0; ic < inputChannels / groups_; + ic += channelSteps) { + int channels = std::min(inputChannels / groups_ - ic, channelSteps); + for (size_t oh = 0; oh < outputHeight; oh += outputHeightSteps) { + int height = std::min(outputHeight - oh, outputHeightSteps); + + int M = outputChannels / groups_; + int N = height * outputWidth; + int K = channels * filterHeight * filterWidth; // im2col - im2col(inputData + g * inputOffset, + im2col(inputData, imShape, colData, colShape, @@ -232,13 +239,12 @@ public: paddingW(), dilationH(), dilationW(), - colHeightStart, - K, - colWidthStart, + channels, + oh, + height, N); // gemm - int M = outputChannels / groups_; BlasGemm::compute( false, false, @@ -246,12 +252,12 @@ public: N, K, 1.0f, - filterData + g * filterOffset + colHeightStart, + filterData + ic * filterHeight * filterWidth, kStride, colData, N, beta_, - outputData + g * outputOffset + colWidthStart, + outputData + oh * outputWidth, nStride); } beta_ = 1.0; @@ -266,17 +272,18 @@ public: N, K, 1.0f, - filterData + g * filterOffset, + filterData, K, - inputData + g * inputOffset, + inputData, N, beta, - outputData + g * outputOffset, + outputData, N); } + inputData += inputOffset; + outputData += outputOffset; + filterData += filterOffset; } - inputData += inputChannels * inputHeight * inputWidth; - outputData += outputChannels * outputHeight * outputWidth; } memory_.reset(); diff --git a/paddle/function/Im2Col.h b/paddle/function/Im2Col.h index 36a9bcf84e4b14965c83627821b71d1c7c0da1b2..915119e291caaa223249cf8e37078723621517b0 100644 --- a/paddle/function/Im2Col.h +++ b/paddle/function/Im2Col.h @@ -111,39 +111,42 @@ public: int paddingWidth, int dilationHeight, int dilationWidth, - int colHeightStart, - int colHeightSize, - int colWidthStart, - int colWidthSize) { + int inputChannels, + int colOffset, + int colOutputHeight, + int colWidth) { int inputHeight = imShape[1]; int inputWidth = imShape[2]; int filterHeight = colShape[1]; int filterWidth = colShape[2]; int outputWidth = colShape[4]; - for (int colh = 0; colh < colHeightSize; colh++) { - int wOffset = (colHeightStart + colh) % filterWidth; - int hOffset = ((colHeightStart + colh) / filterWidth) % filterHeight; - int c_im = (colHeightStart + colh) / filterWidth / filterHeight; - - for (int colw = 0; colw < colWidthSize; colw++) { - int h = (colWidthStart + colw) / outputWidth; - int w = (colWidthStart + colw) % outputWidth; - - int imRowIdx = h * strideHeight + hOffset * dilationHeight; - int imColIdx = w * strideWidth + wOffset * dilationWidth; - if ((imRowIdx - paddingHeight) < 0 || - (imRowIdx - paddingHeight) >= inputHeight || - (imColIdx - paddingWidth) < 0 || - (imColIdx - paddingWidth) >= inputWidth) { - colData[colh * colWidthSize + colw] = static_cast(0); - } else { - imRowIdx += c_im * inputHeight - paddingHeight; - imColIdx -= paddingWidth; - colData[colh * colWidthSize + colw] = - imData[imRowIdx * inputWidth + imColIdx]; + for (int ic = 0; ic < inputChannels; ic++) { + for (int oh = 0; oh < colOutputHeight; oh++) { + T* dstData = colData + oh * outputWidth; + for (int fh = 0; fh < filterHeight; fh++) { + for (int fw = 0; fw < filterWidth; fw++) { + int imRowIdx = (oh + colOffset) * strideHeight + + fh * dilationHeight - paddingHeight; + if (imRowIdx < 0 || imRowIdx >= inputHeight) { + memset(dstData, 0, outputWidth * sizeof(T)); + } else { + for (int ow = 0; ow < outputWidth; ow++) { + int imColIdx = + ow * strideWidth + fw * dilationWidth - paddingWidth; + if (imColIdx < 0 || imColIdx >= inputWidth) { + dstData[ow] = T(0); + } else { + dstData[ow] = imData[imRowIdx * inputWidth + imColIdx]; + } + } + } + dstData += colWidth; + } } } + colData += filterHeight * filterWidth * colWidth; + imData += inputHeight * inputWidth; } } }; diff --git a/paddle/function/Im2ColTest.cpp b/paddle/function/Im2ColTest.cpp index 3ba866dcdd845403d52f7a85adfef08cbb11c305..fe44a8bf79005efb87c56f6a79f46421129bab22 100644 --- a/paddle/function/Im2ColTest.cpp +++ b/paddle/function/Im2ColTest.cpp @@ -202,10 +202,10 @@ void TestIm2ColMobileFunctor() { padding, dilation, dilation, + channels, 0, - height, - 0, - width); + outputHeight, + outputHeight * outputWidth); autotest::TensorCheckEqual(*output1, *output2); } diff --git a/paddle/inference/io.cc b/paddle/inference/io.cc index 60ad7af1c0a469beb6a07bf057a8647fcb98cca8..1ed14b69c83a7a0fb5a55db9c179df133407440c 100644 --- a/paddle/inference/io.cc +++ b/paddle/inference/io.cc @@ -55,7 +55,7 @@ void LoadPersistables(framework::Executor& executor, VLOG(3) << "parameter's name: " << var->Name(); framework::VarDesc* new_var = load_block->Var(var->Name()); - new_var->SetShape(var->Shape()); + new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); diff --git a/paddle/inference/tests/book/CMakeLists.txt b/paddle/inference/tests/book/CMakeLists.txt index d3798fb8fd8769aef5940d4ce724cb0cc8686422..0e987eb0240301c58cfb74c9e995d3b525130125 100644 --- a/paddle/inference/tests/book/CMakeLists.txt +++ b/paddle/inference/tests/book/CMakeLists.txt @@ -4,4 +4,4 @@ cc_test(test_inference_recognize_digits_mlp DEPS ARCHIVE_START paddle_fluid ARCHIVE_END ARGS --dirname=${PYTHON_TESTS_DIR}/book/recognize_digits_mlp.inference.model) set_tests_properties(test_inference_recognize_digits_mlp - PROPERTIES DEPENDS test_recognize_digits_mlp_cpu) + PROPERTIES DEPENDS test_recognize_digits) diff --git a/paddle/inference/tests/book/test_inference_recognize_digits.cc b/paddle/inference/tests/book/test_inference_recognize_digits.cc index 26dc2aee04261d9a1fd29b4d75bfacc7870c09d8..ce8772587f371991591b65cd61a95b177ca509ec 100644 --- a/paddle/inference/tests/book/test_inference_recognize_digits.cc +++ b/paddle/inference/tests/book/test_inference_recognize_digits.cc @@ -58,6 +58,47 @@ void TestInference(const std::string& dirname, delete scope; } +template +void SetupTensor(paddle::framework::LoDTensor& input, + paddle::framework::DDim dims, + T lower, + T upper) { + srand(time(0)); + float* input_ptr = input.mutable_data(dims, paddle::platform::CPUPlace()); + for (int i = 0; i < input.numel(); ++i) { + input_ptr[i] = + (static_cast(rand()) / static_cast(RAND_MAX)) * (upper - lower) + + lower; + } +} + +template +void CheckError(paddle::framework::LoDTensor& output1, + paddle::framework::LoDTensor& output2) { + // Check lod information + EXPECT_EQ(output1.lod(), output2.lod()); + + EXPECT_EQ(output1.dims(), output2.dims()); + EXPECT_EQ(output1.numel(), output2.numel()); + + T err = static_cast(0); + if (typeid(T) == typeid(float)) { + err = 1E-3; + } else if (typeid(T) == typeid(double)) { + err = 1E-6; + } else { + err = 0; + } + + size_t count = 0; + for (int64_t i = 0; i < output1.numel(); ++i) { + if (fabs(output1.data()[i] - output2.data()[i]) > err) { + count++; + } + } + EXPECT_EQ(count, 0) << "There are " << count << " different elements."; +} + TEST(inference, recognize_digits) { if (FLAGS_dirname.empty()) { LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model"; @@ -70,12 +111,10 @@ TEST(inference, recognize_digits) { // In unittests, this is done in paddle/testing/paddle_gtest_main.cc paddle::framework::LoDTensor input; - srand(time(0)); - float* input_ptr = - input.mutable_data({1, 28, 28}, paddle::platform::CPUPlace()); - for (int i = 0; i < 784; ++i) { - input_ptr[i] = rand() / (static_cast(RAND_MAX)); - } + // Use normilized image pixels as input data, + // which should be in the range [-1.0, 1.0]. + SetupTensor( + input, {1, 28, 28}, static_cast(-1), static_cast(1)); std::vector cpu_feeds; cpu_feeds.push_back(&input); @@ -98,16 +137,6 @@ TEST(inference, recognize_digits) { dirname, cpu_feeds, cpu_fetchs2); LOG(INFO) << output2.dims(); - EXPECT_EQ(output1.dims(), output2.dims()); - EXPECT_EQ(output1.numel(), output2.numel()); - - float err = 1E-3; - int count = 0; - for (int64_t i = 0; i < output1.numel(); ++i) { - if (fabs(output1.data()[i] - output2.data()[i]) > err) { - count++; - } - } - EXPECT_EQ(count, 0) << "There are " << count << " different elements."; + CheckError(output1, output2); #endif } diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index 1ec4336cabbc7d3073b7638b7484bf61e83a2dc5..cc86b12be08ba987f9682ebf3fda56c2f07fb576 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -2015,13 +2015,6 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, CHECK_EQ(channels * outLength, maskMatP->getWidth()); } - /* initialize the data_ */ - for (size_t i = 0; i < height_; i++) { - for (size_t j = 0; j < width_; j++) { - outData[i * outStride + j] = -(real)FLT_MAX; - } - } - /* pool max one by one */ for (size_t n = 0; n < num; ++n) { // frame by frame if (!isContiguous()) { @@ -2030,19 +2023,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, for (size_t c = 0; c < channels; ++c) { // channel by channel for (size_t ph = 0; ph < outputH; ++ph) { int hstart = ph * strideH - paddingH; - int hend = std::min(hstart + sizeY, imgSizeH); - hstart = std::max(hstart, 0); + int hend = hstart + sizeY; + hstart = hstart < 0 ? 0 : hstart; + hend = hend < (int)imgSizeH ? hend : (int)imgSizeH; for (size_t pw = 0; pw < outputW; ++pw) { int wstart = pw * strideW - paddingW; - int wend = std::min(wstart + sizeX, imgSizeW); - wstart = std::max(wstart, 0); + int wend = wstart + sizeX; + wstart = wstart < 0 ? 0 : wstart; + wend = wend < (int)imgSizeW ? wend : (int)imgSizeW; if (maskData == NULL) { + real tmp = -(real)FLT_MAX; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - outData[ph * outputW + pw] = std::max( - outData[ph * outputW + pw], inputData[h * imgSizeW + w]); + tmp = tmp < inputData[h * imgSizeW + w] + ? inputData[h * imgSizeW + w] + : tmp; } } + outData[ph * outputW + pw] = tmp; } else { for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index e903f43ba69ee9e28b3a03e8921a41ffa81a2542..000c2089c176adf8d845a56a1f98528734f47ea1 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -158,7 +158,10 @@ op_library(parallel_do_op DEPS executor) # Regist multiple Kernel to pybind if (WITH_GPU) -op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS vol2col) + +op_library(conv_op SRCS conv_op.cc conv_op.cu.cc conv_cudnn_op.cu.cc DEPS + vol2col depthwise_conv) + op_library(edit_distance_op SRCS edit_distance_op.cc edit_distance_op.cu DEPS math_function) op_library(pool_op SRCS pool_op.cc pool_op.cu.cc pool_cudnn_op.cu.cc DEPS pooling) op_library(conv_transpose_op SRCS conv_transpose_op.cc conv_transpose_op.cu.cc diff --git a/paddle/operators/bipartite_match_op.cc b/paddle/operators/bipartite_match_op.cc index 83c8778fe4cec4d9d80de691e117a39fdd92f494..1e6fa2091de25218e2bdafeb740ce884234638a5 100644 --- a/paddle/operators/bipartite_match_op.cc +++ b/paddle/operators/bipartite_match_op.cc @@ -1,4 +1,4 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -28,12 +28,18 @@ class BipartiteMatchOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("DistMat"), "Input(DistMat) of BipartiteMatch should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("ColToRowMatchIndices"), + "Output(ColToRowMatchIndices) of BipartiteMatch should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("ColToRowMatchDist"), + "Output(ColToRowMatchDist) of BipartiteMatch should not be null."); auto dims = ctx->GetInputDim("DistMat"); PADDLE_ENFORCE_EQ(dims.size(), 2, "The rank of Input(DistMat) must be 2."); ctx->SetOutputDim("ColToRowMatchIndices", dims); - ctx->SetOutputDim("ColToRowMatchDis", dims); + ctx->SetOutputDim("ColToRowMatchDist", dims); } }; @@ -91,7 +97,7 @@ class BipartiteMatchKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& context) const override { auto* dist_mat = context.Input("DistMat"); auto* match_indices = context.Output("ColToRowMatchIndices"); - auto* match_dist = context.Output("ColToRowMatchDis"); + auto* match_dist = context.Output("ColToRowMatchDist"); auto& dev_ctx = context.device_context(); @@ -148,13 +154,13 @@ class BipartiteMatchOpMaker : public framework::OpProtoAndCheckerMaker { "Otherwise, it means B[j] is matched to row " "ColToRowMatchIndices[i][j] in i-th instance. The row number of " "i-th instance is saved in ColToRowMatchIndices[i][j]."); - AddOutput("ColToRowMatchDis", + AddOutput("ColToRowMatchDist", "(Tensor) A 2-D Tensor with shape [N, M] in float type. " "N is batch size. If ColToRowMatchIndices[i][j] is -1, " - "ColToRowMatchDis[i][j] is also -1.0. Otherwise, assumed " + "ColToRowMatchDist[i][j] is also -1.0. Otherwise, assumed " "ColToRowMatchIndices[i][j] = d, and the row offsets of each " "instance are called LoD. Then " - "ColToRowMatchDis[i][j] = DistMat[d+LoD[i]][j]"); + "ColToRowMatchDist[i][j] = DistMat[d+LoD[i]][j]"); AddComment(R"DOC( This operator is a greedy bipartite matching algorithm, which is used to obtain the matching with the maximum distance based on the input diff --git a/paddle/operators/box_coder_op.cc b/paddle/operators/box_coder_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..539813d4858b8faef386047f9ef64aa232aefca1 --- /dev/null +++ b/paddle/operators/box_coder_op.cc @@ -0,0 +1,121 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/box_coder_op.h" + +namespace paddle { +namespace operators { + +class BoxCoderOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("PriorBox"), + "Input(PriorBox) of BoxCoderOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("PriorBoxVar"), + "Input(PriorBoxVar) of BoxCoderOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("TargetBox"), + "Input(TargetBox) of BoxCoderOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("OutputBox"), + "Output(OutputBox) of BoxCoderOp should not be null."); + + auto prior_box_dims = ctx->GetInputDim("PriorBox"); + auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar"); + auto target_box_dims = ctx->GetInputDim("TargetBox"); + + PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2, + "The rank of Input of PriorBoxVar must be 2"); + PADDLE_ENFORCE_EQ(prior_box_dims[1], 4, "The shape of PriorBox is [N, 4]"); + PADDLE_ENFORCE_EQ(prior_box_dims, prior_box_var_dims); + PADDLE_ENFORCE_EQ(target_box_dims.size(), 2, + "The rank of Input of TargetBox must be 2"); + PADDLE_ENFORCE_EQ(target_box_dims[1], 4, + "The shape of TargetBox is [M, 4]"); + + GetBoxCodeType(ctx->Attrs().Get("code_type")); + + ctx->SetOutputDim( + "OutputBox", + framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4})); + ctx->ShareLoD("TargetBox", /*->*/ "OutputBox"); + } +}; + +class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker { + public: + BoxCoderOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "PriorBox", + "(Tensor, default Tensor) " + "Box list PriorBox is a 2-D Tensor with shape [M, 4] holds M boxes, " + "each box is represented as [xmin, ymin, xmax, ymax], " + "[xmin, ymin] is the left top coordinate of the anchor box, " + "if the input is image feature map, they are close to the origin " + "of the coordinate system. [xmax, ymax] is the right bottom " + "coordinate of the anchor box."); + AddInput("PriorBoxVar", + "(Tensor, default Tensor) " + "PriorBoxVar is a 2-D Tensor with shape [M, 4] holds M group " + "of variance."); + AddInput( + "TargetBox", + "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape " + "[N, 4], each box is represented as [xmin, ymin, xmax, ymax], " + "[xmin, ymin] is the left top coordinate of the box if the input " + "is image feature map, they are close to the origin of the coordinate " + "system. [xmax, ymax] is the right bottom coordinate of the box. " + "This tensor can contain LoD information to represent a batch " + "of inputs. One instance of this batch can contain different " + "numbers of entities."); + AddAttr("code_type", + "(string, default encode_center_size) " + "the code type used with the target box") + .SetDefault("encode_center_size") + .InEnum({"encode_center_size", "decode_center_size"}); + AddOutput( + "OutputBox", + "(LoDTensor or Tensor) " + "(Tensor) The output of box_coder_op, a tensor with shape [N, M, 4] " + "representing the result of N target boxes encoded/decoded with " + "M Prior boxes and variances."); + + AddComment(R"DOC( +Bounding Box Coder Operator. +Encode/Decode the target bounding box with the priorbox information. +The Encoding schema described below: +ox = (tx - px) / pw / pxv +oy = (ty - py) / ph / pyv +ow = log(abs(tw / pw)) / pwv +oh = log(abs(th / ph)) / phv +The Decoding schema described below: +ox = (pw * pxv * tx * + px) - tw / 2 +oy = (ph * pyv * ty * + py) - th / 2 +ow = exp(pwv * tw) * pw + tw / 2 +oh = exp(phv * th) * ph + th / 2 +where tx, ty, tw, th denote the target box's center coordinates, width and +height respectively. Similarly, px, py, pw, ph denote the priorbox's(anchor) +center coordinates, width and height. pxv, pyv, pwv, phv denote the variance +of the priorbox and ox, oy, ow, oh denote the encoded/decoded coordinates, +width and height. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker); +REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel, + ops::BoxCoderKernel); diff --git a/paddle/operators/box_coder_op.cu b/paddle/operators/box_coder_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..98bd93457fafb49f2af5e1ff258fbfa9f9985600 --- /dev/null +++ b/paddle/operators/box_coder_op.cu @@ -0,0 +1,150 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/box_coder_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +template +__global__ void EncodeCenterSizeKernel(const T* prior_box_data, + const T* prior_box_var_data, + const T* target_box_data, const int row, + const int col, const int len, + T* output) { + const int idx = threadIdx.x + blockIdx.x * blockDim.x; + if (idx < row * col) { + const int row_idx = idx / col; + const int col_idx = idx % col; + T prior_box_width = + prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len]; + T prior_box_height = + prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1]; + T prior_box_center_x = + (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2; + T prior_box_center_y = (prior_box_data[col_idx * len + 3] + + prior_box_data[col_idx * len + 1]) / + 2; + + T target_box_center_x = + (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) / + 2; + T target_box_center_y = (target_box_data[row_idx * len + 3] + + target_box_data[row_idx * len + 1]) / + 2; + T target_box_width = + target_box_data[row_idx * len + 2] - target_box_data[row_idx * len]; + T target_box_height = + target_box_data[row_idx * len + 3] - target_box_data[row_idx * len + 1]; + + output[idx * len] = (target_box_center_x - prior_box_center_x) / + prior_box_width / prior_box_var_data[col_idx * len]; + output[idx * len + 1] = (target_box_center_y - prior_box_center_y) / + prior_box_height / + prior_box_var_data[col_idx * len + 1]; + output[idx * len + 2] = log(fabs(target_box_width / prior_box_width)) / + prior_box_var_data[col_idx * len + 2]; + output[idx * len + 3] = log(fabs(target_box_height / prior_box_height)) / + prior_box_var_data[col_idx * len + 3]; + } +} + +template +__global__ void DecodeCenterSizeKernel(const T* prior_box_data, + const T* prior_box_var_data, + const T* target_box_data, const int row, + const int col, const int len, + T* output) { + const int idx = threadIdx.x + blockIdx.x * blockDim.x; + if (idx < row * col) { + const int row_idx = idx / col; + const int col_idx = idx % col; + T prior_box_width = + prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len]; + T prior_box_height = + prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1]; + T prior_box_center_x = + (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2; + T prior_box_center_y = (prior_box_data[col_idx * len + 3] + + prior_box_data[col_idx * len + 1]) / + 2; + + T target_box_width = exp(prior_box_var_data[col_idx * len + 2] * + target_box_data[row_idx * len + 2]) * + prior_box_width; + T target_box_height = exp(prior_box_var_data[col_idx * len + 3] * + target_box_data[row_idx * len + 3]) * + prior_box_height; + T target_box_center_x = prior_box_var_data[col_idx * len] * + target_box_data[row_idx * len] * + prior_box_width + + prior_box_center_x; + T target_box_center_y = prior_box_var_data[col_idx * len + 1] * + target_box_data[row_idx * len + 1] * + prior_box_height + + prior_box_center_y; + + output[idx * len] = target_box_center_x - target_box_width / 2; + output[idx * len + 1] = target_box_center_y - target_box_height / 2; + output[idx * len + 2] = target_box_center_x + target_box_width / 2; + output[idx * len + 3] = target_box_center_y + target_box_height / 2; + } +} + +template +class BoxCoderCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()), + "This kernel only runs on GPU device."); + auto* prior_box = context.Input("PriorBox"); + auto* prior_box_var = context.Input("PriorBoxVar"); + auto* target_box = context.Input("TargetBox"); + auto* output_box = context.Output("OutputBox"); + + if (target_box->lod().size()) { + PADDLE_ENFORCE_EQ(target_box->lod().size(), 1, + "Only support 1 level of LoD."); + } + auto row = target_box->dims()[0]; + auto col = prior_box->dims()[0]; + auto len = prior_box->dims()[1]; + int block = 512; + int grid = (row * col + block - 1) / block; + auto& device_ctx = context.cuda_device_context(); + + const T* prior_box_data = prior_box->data(); + const T* prior_box_var_data = prior_box_var->data(); + const T* target_box_data = target_box->data(); + + output_box->mutable_data({row, col, len}, context.GetPlace()); + T* output = output_box->data(); + + auto code_type = GetBoxCodeType(context.Attr("code_type")); + if (code_type == BoxCodeType::kEncodeCenterSize) { + EncodeCenterSizeKernel<<>>( + prior_box_data, prior_box_var_data, target_box_data, row, col, len, + output); + } else if (code_type == BoxCodeType::kDecodeCenterSize) { + DecodeCenterSizeKernel<<>>( + prior_box_data, prior_box_var_data, target_box_data, row, col, len, + output); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL(box_coder, ops::BoxCoderCUDAKernel, + ops::BoxCoderCUDAKernel); diff --git a/paddle/operators/box_coder_op.h b/paddle/operators/box_coder_op.h new file mode 100644 index 0000000000000000000000000000000000000000..086251f6e066f082743f332ce72918c6e572ce19 --- /dev/null +++ b/paddle/operators/box_coder_op.h @@ -0,0 +1,151 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 }; + +inline BoxCodeType GetBoxCodeType(const std::string& type) { + if (type == "encode_center_size") { + return BoxCodeType::kEncodeCenterSize; + } else if (type == "decode_center_size") { + return BoxCodeType::kDecodeCenterSize; + } + PADDLE_THROW("Not support type %s.", type); +} + +template +class BoxCoderKernel : public framework::OpKernel { + public: + void EncodeCenterSize(const framework::Tensor& target_box, + const framework::Tensor& prior_box, + const framework::Tensor& prior_box_var, + T* output) const { + int64_t row = target_box.dims()[0]; + int64_t col = prior_box.dims()[0]; + int64_t len = prior_box.dims()[1]; + auto* target_box_data = target_box.data(); + auto* prior_box_data = prior_box.data(); + auto* prior_box_var_data = prior_box_var.data(); + + for (int64_t i = 0; i < row; ++i) { + for (int64_t j = 0; j < col; ++j) { + T prior_box_width = + prior_box_data[j * len + 2] - prior_box_data[j * len]; + T prior_box_height = + prior_box_data[j * len + 3] - prior_box_data[j * len + 1]; + T prior_box_center_x = + (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2; + T prior_box_center_y = + (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2; + + T target_box_center_x = + (target_box_data[i * len + 2] + target_box_data[i * len]) / 2; + T target_box_center_y = + (target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2; + T target_box_width = + target_box_data[i * len + 2] - target_box_data[i * len]; + T target_box_height = + target_box_data[i * len + 3] - target_box_data[i * len + 1]; + + size_t offset = i * col * len + j * len; + output[offset] = (target_box_center_x - prior_box_center_x) / + prior_box_width / prior_box_var_data[j * len]; + output[offset + 1] = (target_box_center_y - prior_box_center_y) / + prior_box_height / prior_box_var_data[j * len + 1]; + output[offset + 2] = + std::log(std::fabs(target_box_width / prior_box_width)) / + prior_box_var_data[j * len + 2]; + output[offset + 3] = + std::log(std::fabs(target_box_height / prior_box_height)) / + prior_box_var_data[j * len + 3]; + } + } + } + void DecodeCenterSize(const framework::Tensor& target_box, + const framework::Tensor& prior_box, + const framework::Tensor& prior_box_var, + T* output) const { + int64_t row = target_box.dims()[0]; + int64_t col = prior_box.dims()[0]; + int64_t len = prior_box.dims()[1]; + + auto* target_box_data = target_box.data(); + auto* prior_box_data = prior_box.data(); + auto* prior_box_var_data = prior_box_var.data(); + + for (int64_t i = 0; i < row; ++i) { + for (int64_t j = 0; j < col; ++j) { + T prior_box_width = + prior_box_data[j * len + 2] - prior_box_data[j * len]; + T prior_box_height = + prior_box_data[j * len + 3] - prior_box_data[j * len + 1]; + T prior_box_center_x = + (prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2; + T prior_box_center_y = + (prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2; + + T target_box_center_x = prior_box_var_data[j * len] * + target_box_data[i * len] * prior_box_width + + prior_box_center_x; + T target_box_center_y = prior_box_var_data[j * len + 1] * + target_box_data[i * len + 1] * + prior_box_height + + prior_box_center_y; + T target_box_width = std::exp(prior_box_var_data[j * len + 2] * + target_box_data[i * len + 2]) * + prior_box_width; + T target_box_height = std::exp(prior_box_var_data[j * len + 3] * + target_box_data[i * len + 3]) * + prior_box_height; + + size_t offset = i * col * len + j * len; + output[offset] = target_box_center_x - target_box_width / 2; + output[offset + 1] = target_box_center_y - target_box_height / 2; + output[offset + 2] = target_box_center_x + target_box_width / 2; + output[offset + 3] = target_box_center_y + target_box_height / 2; + } + } + } + + void Compute(const framework::ExecutionContext& context) const override { + auto* prior_box = context.Input("PriorBox"); + auto* prior_box_var = context.Input("PriorBoxVar"); + auto* target_box = context.Input("TargetBox"); + auto* output_box = context.Output("OutputBox"); + + if (target_box->lod().size()) { + PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL, + "Only support 1 level of LoD."); + } + auto row = target_box->dims()[0]; + auto col = prior_box->dims()[0]; + auto len = prior_box->dims()[1]; + + output_box->mutable_data({row, col, len}, context.GetPlace()); + + auto code_type = GetBoxCodeType(context.Attr("code_type")); + T* output = output_box->data(); + if (code_type == BoxCodeType::kEncodeCenterSize) { + EncodeCenterSize(*target_box, *prior_box, *prior_box_var, output); + } else if (code_type == BoxCodeType::kDecodeCenterSize) { + DecodeCenterSize(*target_box, *prior_box, *prior_box_var, output); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/compare_op.h b/paddle/operators/compare_op.h index 9c655d6c0d8e5fe04ee6d85f7e9d9da68105230c..b275fd75b3512343825170fc38565dd27f7f1c75 100644 --- a/paddle/operators/compare_op.h +++ b/paddle/operators/compare_op.h @@ -54,7 +54,15 @@ class CompareOpKernel public: void Compute(const framework::ExecutionContext& context) const override { using T = typename Functor::ELEM_TYPE; - ElementwiseComputeEx(context); + using Tensor = framework::Tensor; + + auto* x = context.Input("X"); + auto* y = context.Input("Y"); + auto* z = context.Output("Out"); + z->mutable_data(context.GetPlace()); + int axis = context.Attr("axis"); + ElementwiseComputeEx(context, x, y, axis, + z); } }; diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index d6882b275b22b9a2a2b6ff8cfb53a3462bbdbefe..cef7ddd5fe7e12a374fb9cc79211bd2eb97c6c52 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -318,9 +318,25 @@ framework::OpKernelType ConvOpGrad::GetExpectedKernelType( namespace ops = paddle::operators; REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad, ops::ConvOpGrad); + +// depthwise convolution op +REGISTER_OP(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker, + depthwise_conv2d_grad, ops::ConvOpGrad); REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad, ops::ConvOpGrad); +// depthwise conv kernel +// TODO(xingzhaolong): neon kernel for mobile +REGISTER_OP_CPU_KERNEL( + depthwise_conv2d, + ops::GemmConvKernel, + ops::GemmConvKernel); + +REGISTER_OP_CPU_KERNEL( + depthwise_conv2d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); + REGISTER_OP_CPU_KERNEL( conv2d, ops::GemmConvKernel, ops::GemmConvKernel); diff --git a/paddle/operators/conv_op.cu.cc b/paddle/operators/conv_op.cu.cc index 4f942444f3eb5584f07399b8d1b4d6a5087496d4..d0bd40ee95dab3b2589742b8a0c3a5de7918b5b9 100644 --- a/paddle/operators/conv_op.cu.cc +++ b/paddle/operators/conv_op.cu.cc @@ -16,6 +16,16 @@ limitations under the License. */ namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + depthwise_conv2d, + ops::DepthwiseConvKernel, + ops::DepthwiseConvKernel); + +REGISTER_OP_CUDA_KERNEL( + depthwise_conv2d_grad, + ops::DepthwiseConvGradKernel, + ops::DepthwiseConvGradKernel); + REGISTER_OP_CUDA_KERNEL( conv2d, ops::GemmConvKernel, ops::GemmConvKernel); diff --git a/paddle/operators/conv_op.h b/paddle/operators/conv_op.h index 5a8933e7915960f9fcbe92ae73c4f37b3b69ecaf..3c1d0e9c1c4bb964bfaebc3bfed115548bd53f97 100644 --- a/paddle/operators/conv_op.h +++ b/paddle/operators/conv_op.h @@ -16,6 +16,7 @@ limitations under the License. */ #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/depthwise_conv.h" #include "paddle/operators/math/im2col.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/vol2col.h" @@ -350,5 +351,72 @@ class GemmConvGradKernel : public framework::OpKernel { } } }; + +template +class DepthwiseConvKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + Tensor filter = *context.Input("Filter"); + Tensor* output = context.Output("Output"); + output->mutable_data(context.GetPlace()); + + PADDLE_ENFORCE_EQ( + output->dims()[1] % input->dims()[1], 0, + "The output channels must be a multiple of the input channels"); + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); + + math::DepthwiseConvFunctor depthwiseConv; + + auto& dev_ctx = context.template device_context(); + depthwiseConv(dev_ctx, *input, filter, strides, paddings, output); + } +}; + +template +class DepthwiseConvGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + const Tensor* output_grad = + context.Input(framework::GradVarName("Output")); + Tensor* input_grad = + context.Output(framework::GradVarName("Input")); + Tensor* filter_grad = + context.Output(framework::GradVarName("Filter")); + Tensor filter = *context.Input("Filter"); + + if (!input_grad && !filter_grad) return; + + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); + + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + + math::DepthwiseConvInputGradFunctor + depthwiseConvInputGrad; + math::DepthwiseConvFilterGradFunctor + depthwiseConvFilterGrad; + + if (input_grad) { + input_grad->mutable_data(context.GetPlace()); + set_zero(dev_ctx, input_grad, static_cast(0)); + depthwiseConvInputGrad(dev_ctx, *input, filter, *output_grad, strides, + paddings, input_grad); + } + + if (filter_grad) { + filter_grad->mutable_data(context.GetPlace()); + set_zero(dev_ctx, filter_grad, static_cast(0)); + depthwiseConvFilterGrad(dev_ctx, *input, *output_grad, strides, paddings, + filter_grad); + } + } +}; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/elementwise_add_op.h b/paddle/operators/elementwise_add_op.h index a8389429f26c17ceab1db22175c90888546ead6f..c32288d6984f126f2374a13973541f4f663b25a4 100644 --- a/paddle/operators/elementwise_add_op.h +++ b/paddle/operators/elementwise_add_op.h @@ -28,7 +28,14 @@ template class ElementwiseAddKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -92,9 +99,19 @@ template class ElementwiseAddGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseAddBroadCastGradFunctor, - ElementwiseAddBroadCast2GradFunctor>(ctx); + ElementwiseAddBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/elementwise_div_op.h b/paddle/operators/elementwise_div_op.h index ef26cb6c914f50ded07cc9d0d8de3f49f2151129..07ebade31ff5b3d5c89156e28ff5fa0670a9a842 100644 --- a/paddle/operators/elementwise_div_op.h +++ b/paddle/operators/elementwise_div_op.h @@ -28,7 +28,14 @@ template class ElementwiseDivKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -111,9 +118,19 @@ template class ElementwiseDivGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseDivBroadCastGradFunctor, - ElementwiseDivBroadCast2GradFunctor>(ctx); + ElementwiseDivBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/elementwise_max_op.h b/paddle/operators/elementwise_max_op.h index 255728e8e620665a7de225b228c19d6c510da1c8..717e45ab31db9b9a6629fb33e17654dbf986d8c5 100644 --- a/paddle/operators/elementwise_max_op.h +++ b/paddle/operators/elementwise_max_op.h @@ -28,7 +28,14 @@ template class ElementwiseMaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -110,9 +117,19 @@ template class ElementwiseMaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseMaxBroadCastGradFunctor, - ElementwiseMaxBroadCast2GradFunctor>(ctx); + ElementwiseMaxBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/elementwise_min_op.h b/paddle/operators/elementwise_min_op.h index e6627a0f1bb468c8e4661b83489cb964b72dddb0..0de9a91c52b0ab82cd62604de318ce68e56b767d 100644 --- a/paddle/operators/elementwise_min_op.h +++ b/paddle/operators/elementwise_min_op.h @@ -28,7 +28,14 @@ template class ElementwiseMinKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -110,9 +117,19 @@ template class ElementwiseMinGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseMinBroadCastGradFunctor, - ElementwiseMinBroadCast2GradFunctor>(ctx); + ElementwiseMinBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/elementwise_mul_op.h b/paddle/operators/elementwise_mul_op.h index 4b86b00b5a095ae898f9ce0c17cde2cc91060ba9..ae7a71e0244dfb8ad3e55683ac081f92bc36bea5 100644 --- a/paddle/operators/elementwise_mul_op.h +++ b/paddle/operators/elementwise_mul_op.h @@ -27,7 +27,14 @@ template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -110,9 +117,19 @@ template class ElementwiseMulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseMulBroadCastGradFunctor, - ElementwiseMulBroadCast2GradFunctor>(ctx); + ElementwiseMulBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h index d749b8e8757d0d433be05876779ccc22b95ca80b..213fe1f5a818873e8b666464cb112637261c598c 100644 --- a/paddle/operators/elementwise_op_function.h +++ b/paddle/operators/elementwise_op_function.h @@ -313,21 +313,18 @@ EIGEN_FUNCTOR(Div, EIGEN_DIV); template -void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { - using Tensor = framework::Tensor; - - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* out = ctx.Input("Out"); - auto* dout = ctx.Input(framework::GradVarName("Out")); +void ElementwiseGradCompute(const framework::ExecutionContext& ctx, + const framework::Tensor* x, + const framework::Tensor* y, + const framework::Tensor* out, + const framework::Tensor* dout, int axis, + framework::Tensor* dx, framework::Tensor* dy) { auto& place = *ctx.template device_context().eigen_device(); auto x_dims = x->dims(); auto y_dims = y->dims(); - auto* dx = ctx.Output(framework::GradVarName("X")); - auto* dy = ctx.Output(framework::GradVarName("Y")); if (dx) { dx->mutable_data(ctx.GetPlace()); } @@ -348,7 +345,6 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { x_dims = framework::make_ddim(extended_dims); } - int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); int pre, n, post; @@ -367,13 +363,10 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { template -void ElementwiseComputeEx(const framework::ExecutionContext& ctx) { - using Tensor = framework::Tensor; - - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* z = ctx.Output("Out"); - z->mutable_data(ctx.GetPlace()); +void ElementwiseComputeEx(const framework::ExecutionContext& ctx, + const framework::Tensor* x, + const framework::Tensor* y, int axis, + framework::Tensor* z) { TransformFunctor functor( x, y, z, ctx.template device_context(), Functor()); @@ -394,7 +387,6 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx) { x_dims = framework::make_ddim(extended_dims); } - int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); diff --git a/paddle/operators/elementwise_pow_op.h b/paddle/operators/elementwise_pow_op.h index 6019e709e0db0fd62b4d3350bb768095f87ef241..874fd3f09f2afaccfbfca75799cc3448f7393b03 100644 --- a/paddle/operators/elementwise_pow_op.h +++ b/paddle/operators/elementwise_pow_op.h @@ -29,7 +29,14 @@ template class ElementwisePowKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; diff --git a/paddle/operators/elementwise_sub_op.h b/paddle/operators/elementwise_sub_op.h index a2aca793026189ec87e00b52d7c351689f870400..c2749a8e6ba689233dab4f3c72de10bf01f39fab 100644 --- a/paddle/operators/elementwise_sub_op.h +++ b/paddle/operators/elementwise_sub_op.h @@ -27,7 +27,14 @@ template class ElementwiseSubKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseComputeEx, DeviceContext, T>(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + int axis = ctx.Attr("axis"); + ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, z); } }; @@ -93,9 +100,19 @@ template class ElementwiseSubGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseSubBroadCastGradFunctor, - ElementwiseSubBroadCast2GradFunctor>(ctx); + ElementwiseSubBroadCast2GradFunctor>( + ctx, x, y, out, dout, axis, dx, dy); } }; diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index 28c5aec1996ad04a6cb551ac68c14b613d16858e..768106fadf355ea6fb148491e232dc0ef1453a75 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -8,6 +8,7 @@ if(WITH_GPU) nv_library(softmax SRCS softmax.cc softmax.cu DEPS device_context) nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS device_context) nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context) + nv_library(depthwise_conv SRCS depthwise_conv.cu DEPS device_context) nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function) nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor) nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function) diff --git a/paddle/operators/math/depthwise_conv.cu b/paddle/operators/math/depthwise_conv.cu new file mode 100644 index 0000000000000000000000000000000000000000..b212e78208355866516211d276cb8046623babd7 --- /dev/null +++ b/paddle/operators/math/depthwise_conv.cu @@ -0,0 +1,311 @@ +/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/depthwise_conv.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +// A Cuda kernel to compute the depthwise convolution forward pass +// in NCHW format. +template +__global__ void KernelDepthwiseConv( + const int nthreads, const T* const input_data, const T* const filter_data, + const int batch_size, const int output_channels, const int output_height, + const int output_width, const int input_channels, const int input_height, + const int input_width, const int filter_multiplier, const int filter_height, + const int filter_width, const int stride_height, const int stride_width, + const int padding_height, const int padding_width, T* const output_data) { + int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + + if (index < nthreads) { + const int batch = index / output_channels / output_height / output_width; + const int c_out = (index / output_height / output_width) % output_channels; + const int h_out = (index / output_width) % output_height; + const int w_out = index % output_width; + + const int c_in = c_out / filter_multiplier; + const T* weight = filter_data + c_out * filter_height * filter_width; + T value = 0; + const int h_in_start = -padding_height + h_out * stride_height; + const int w_in_start = -padding_width + w_out * stride_width; + const int h_in_end = h_in_start + filter_height; + const int w_in_end = w_in_start + filter_width; + + const int in_offset = + ((batch * input_channels + c_in) * input_height) * input_width; + + const int h_end = h_in_end < input_height ? h_in_end : input_height; + const int w_end = w_in_end < input_width ? w_in_end : input_width; + const int h_start = h_in_start > 0 ? h_in_start : 0; + const int w_start = w_in_start > 0 ? w_in_start : 0; + + for (int h_in = h_start; h_in < h_end; h_in++) { + for (int w_in = w_start; w_in < w_end; w_in++) { + const int offset = in_offset + h_in * input_width + w_in; + value += + weight[(h_in - h_in_start) * filter_width + (w_in - w_in_start)] * + input_data[offset]; + } + } + output_data[index] = value; + } +} + +// CUDA kernel to compute the depthwise convolution backprop w.r.t input. +template +__global__ void KernelDepthwiseConvInputGrad( + const int nthreads, const T* const output_grad_data, + const T* const filter_data, const int batch_size, const int output_channels, + const int output_height, const int output_width, const int input_channels, + const int input_height, const int input_width, const int filter_multiplier, + const int filter_height, const int filter_width, const int stride_height, + const int stride_width, const int padding_height, const int padding_width, + T* const input_grad_data) { + int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < nthreads) { + const int batch = index / input_channels / input_height / input_width; + const int c_in = (index / input_height / input_width) % input_channels; + const int h_in = (index / input_width) % input_height; + const int w_in = index % input_width; + + const int c_out_start = c_in * filter_multiplier; + + int h_out_start = + (h_in - filter_height + padding_height + stride_height) / stride_height; + h_out_start = 0 > h_out_start ? 0 : h_out_start; + + int h_out_end = (h_in + padding_height) / stride_height; + h_out_end = output_height - 1 < h_out_end ? output_height - 1 : h_out_end; + + int w_out_start = + (w_in - filter_width + padding_width + stride_width) / stride_width; + w_out_start = 0 > w_out_start ? 0 : w_out_start; + + int w_out_end = (w_in + padding_width) / stride_width; + w_out_end = output_width - 1 < w_out_end ? output_width - 1 : w_out_end; + + T value = 0; + + for (int c_out = c_out_start; c_out < c_out_start + filter_multiplier; + c_out++) { + for (int h_out = h_out_start; h_out <= h_out_end; ++h_out) { + const int filter_h = h_in + padding_height - h_out * stride_height; + for (int w_out = w_out_start; w_out <= w_out_end; ++w_out) { + const int filter_w = w_in + padding_width - w_out * stride_width; + const int filter_offset = c_out * filter_height * filter_width + + filter_h * filter_width + filter_w; + const int output_grad_offset = + ((batch * output_channels + c_out) * output_height + h_out) * + output_width + + w_out; + value += + output_grad_data[output_grad_offset] * filter_data[filter_offset]; + } + } + } + input_grad_data[index] += value; + } +} + +// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter. +template +__global__ void KernelDepthwiseConvFilterGrad( + const int nthreads, const T* const output_grad_data, + const T* const input_data, const int num, const int output_channels, + const int output_height, const int output_width, const int input_channels, + const int input_height, const int input_width, const int filter_multiplier, + const int filter_height, const int filter_width, const int stride_height, + const int stride_width, const int padding_height, const int padding_width, + T* const filter_grad_data) { + int index = (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x; + if (index < nthreads) { + const int w_out = index % output_width; + const int h_out = (index / output_width) % output_height; + const int c_out = (index / output_width / output_height) % output_channels; + const int batch = (index / output_width / output_height / output_channels); + const int c_in = c_out / filter_multiplier; + const int h_in_start = -padding_height + h_out * stride_height; + const int w_in_start = -padding_width + w_out * stride_width; + const int h_in_end = + -padding_height + h_out * stride_height + filter_height; + const int w_in_end = -padding_width + w_out * stride_width + filter_width; + const int in_offset = + (batch * input_channels + c_in) * input_height * input_width; + + T* addr_offset = filter_grad_data + c_out * filter_height * filter_width; + const int h_end = h_in_end < input_height ? h_in_end : input_height; + const int w_end = w_in_end < input_width ? w_in_end : input_width; + const int h_start = h_in_start > 0 ? h_in_start : 0; + const int w_start = w_in_start > 0 ? w_in_start : 0; + + for (int h_in = h_start; h_in < h_end; h_in++) { + for (int w_in = w_start; w_in < w_end; w_in++) { + const int offset = in_offset + h_in * input_width + w_in; + const T diff_temp = output_grad_data[index] * input_data[offset]; + T* addr = addr_offset + (h_in - h_in_start) * filter_width + + (w_in - w_in_start); + paddle::platform::CudaAtomicAdd(addr, diff_temp); + } + } + } +} + +/* + * All tensors are in NCHW format. + * Ksize, strides, paddings are two elements. These two elements represent + * height and width, respectively. + */ +template +class DepthwiseConvFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& filter, + const std::vector& strides, + const std::vector& paddings, framework::Tensor* output) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output->dims()[1]; + const int output_height = output->dims()[2]; + const int output_width = output->dims()[3]; + const int ksize_height = filter.dims()[2]; + const int ksize_width = filter.dims()[3]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* input_data = input.data(); + const T* filter_data = filter.data(); + T* output_data = output->mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_height * output_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelDepthwiseConv<<>>( + nthreads, input_data, filter_data, batch_size, output_channels, + output_height, output_width, input_channels, input_height, input_width, + output_channels / input_channels, ksize_height, ksize_width, + stride_height, stride_width, padding_height, padding_width, + output_data); + } +}; + +template +class DepthwiseConvInputGradFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& filter, + const framework::Tensor& output_grad, + const std::vector& strides, + const std::vector& paddings, + framework::Tensor* input_grad) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output_grad.dims()[1]; + const int output_height = output_grad.dims()[2]; + const int output_width = output_grad.dims()[3]; + const int ksize_height = filter.dims()[2]; + const int ksize_width = filter.dims()[3]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* filter_data = filter.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad->mutable_data(context.GetPlace()); + + int nthreads = batch_size * input_channels * input_height * input_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelDepthwiseConvInputGrad<<>>( + nthreads, output_grad_data, filter_data, batch_size, output_channels, + output_height, output_width, input_channels, input_height, input_width, + output_channels / input_channels, ksize_height, ksize_width, + stride_height, stride_width, padding_height, padding_width, + input_grad_data); + } +}; + +template +class DepthwiseConvFilterGradFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& output_grad, + const std::vector& strides, + const std::vector& paddings, + framework::Tensor* filter_grad) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output_grad.dims()[1]; + const int output_height = output_grad.dims()[2]; + const int output_width = output_grad.dims()[3]; + const int ksize_height = filter_grad->dims()[2]; + const int ksize_width = filter_grad->dims()[3]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* input_data = input.data(); + const T* output_grad_data = output_grad.data(); + T* filter_grad_data = filter_grad->mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_height * output_width; + + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelDepthwiseConvFilterGrad<<>>( + nthreads, output_grad_data, input_data, batch_size, output_channels, + output_height, output_width, input_channels, input_height, input_width, + output_channels / input_channels, ksize_height, ksize_width, + stride_height, stride_width, padding_height, padding_width, + filter_grad_data); + } +}; + +template class DepthwiseConvFunctor; +template class DepthwiseConvFunctor; + +template class DepthwiseConvInputGradFunctor; +template class DepthwiseConvInputGradFunctor; + +template class DepthwiseConvFilterGradFunctor; +template class DepthwiseConvFilterGradFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/depthwise_conv.h b/paddle/operators/math/depthwise_conv.h new file mode 100644 index 0000000000000000000000000000000000000000..4708920bb42db90d84fda0c6a1039991cb79e80d --- /dev/null +++ b/paddle/operators/math/depthwise_conv.h @@ -0,0 +1,60 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { + +/* + * \brief Compute the depthwise convolution which include + * forward process and backpropagation process + */ +template +class DepthwiseConvFunctor { + public: + void operator()(const DeviceContext& context, const framework::Tensor& input, + const framework::Tensor& filter, + const std::vector& strides, + const std::vector& paddings, framework::Tensor* output); +}; + +template +class DepthwiseConvInputGradFunctor { + public: + void operator()(const DeviceContext& context, const framework::Tensor& input, + const framework::Tensor& filter, + const framework::Tensor& output_grad, + const std::vector& strides, + const std::vector& paddings, + framework::Tensor* input_grad); +}; + +template +class DepthwiseConvFilterGradFunctor { + public: + void operator()(const DeviceContext& context, const framework::Tensor& input, + const framework::Tensor& output_grad, + const std::vector& strides, + const std::vector& paddings, + framework::Tensor* filter_grad); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/mine_hard_examples_op.cc b/paddle/operators/mine_hard_examples_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..051cc24706d69ec4f38524af1dd510bf079c74c7 --- /dev/null +++ b/paddle/operators/mine_hard_examples_op.cc @@ -0,0 +1,330 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +enum MiningType { kNone = 0, kMaxNegative, kHardExample }; + +template +bool SortScoreDescend(const std::pair& pair1, + const std::pair& pair2) { + return pair1.first > pair2.first; +} + +inline bool IsEligibleMining(const MiningType mining_type, const int match_idx, + const float match_dist, + const float neg_dist_threshold) { + if (mining_type == MiningType::kMaxNegative) { + return match_idx == -1 && match_dist < neg_dist_threshold; + } else if (mining_type == MiningType::kHardExample) { + return true; + } else { + return false; + } +} + +inline MiningType GetMiningType(std::string str) { + if (str == "max_negative") { + return MiningType::kMaxNegative; + } else if (str == "hard_example") { + return MiningType::kHardExample; + } else { + return MiningType::kNone; + } +} + +template +class MineHardExamplesKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_cls_loss = ctx.Input("ClsLoss"); + auto* in_loc_loss = ctx.Input("LocLoss"); + auto* in_matched_indices = ctx.Input("MatchIndices"); + auto* in_match_dist = ctx.Input("MatchDist"); + float neg_pos_ratio = ctx.Attr("neg_pos_ratio"); + T neg_dist_threshold = + static_cast(ctx.Attr("neg_dist_threshold")); + int sample_size = ctx.Attr("sample_size"); + MiningType mining_type = + GetMiningType(ctx.Attr("mining_type")); + + auto out_neg_indices = ctx.Output("NegIndices"); + auto out_match_indices = + ctx.Output("UpdatedMatchIndices"); + + framework::Copy(*in_matched_indices, ctx.GetPlace(), out_match_indices); + + int batch_size = in_matched_indices->dims()[0]; + int prior_num = in_matched_indices->dims()[1]; + + auto match_indices = framework::EigenMatrix::From(*in_matched_indices); + + auto match_indices_et = + framework::EigenMatrix::From(*out_match_indices); + + auto match_dist = framework::EigenMatrix::From(*in_match_dist); + + const T* cls_loss = in_cls_loss->data(); + const T* loc_loss = nullptr; + if (in_loc_loss) { + loc_loss = in_loc_loss->data(); + } + + std::vector> all_neg_indices; + std::vector batch_starts = {0}; + for (int n = 0; n < batch_size; ++n) { + std::vector> loss_idx; + int neg_sel = 0; + for (int m = 0; m < prior_num; ++m) { + if (IsEligibleMining(mining_type, match_indices(n, m), match_dist(n, m), + neg_dist_threshold)) { + T loss = cls_loss[n * prior_num + m]; + if (mining_type == MiningType::kHardExample && loc_loss != nullptr) { + loss = cls_loss[n * prior_num + m] + loc_loss[n * prior_num + m]; + } + loss_idx.push_back(std::make_pair(loss, m)); + ++neg_sel; + } + } + + if (mining_type == MiningType::kMaxNegative) { + int num_pos = 0; + for (int m = 0; m < prior_num; ++m) { + if (match_indices(n, m) != -1) ++num_pos; + } + neg_sel = std::min(static_cast(num_pos * neg_pos_ratio), neg_sel); + } else if (mining_type == MiningType::kHardExample) { + neg_sel = std::min(sample_size, neg_sel); + } + + std::sort(loss_idx.begin(), loss_idx.end(), SortScoreDescend); + std::set sel_indices; + std::vector neg_indices; + std::transform(loss_idx.begin(), loss_idx.begin() + neg_sel, + std::inserter(sel_indices, sel_indices.begin()), + [](std::pair& l) -> int { + return static_cast(l.second); + }); + + if (mining_type == MiningType::kHardExample) { + for (int m = 0; m < prior_num; ++m) { + if (match_indices(n, m) > -1) { + if (sel_indices.find(m) == sel_indices.end()) { + match_indices_et(n, m) = -1; + } + } else { + if (sel_indices.find(m) != sel_indices.end()) { + neg_indices.push_back(m); + } + } + } + } else { + neg_indices.resize(sel_indices.size()); + std::copy(sel_indices.begin(), sel_indices.end(), neg_indices.begin()); + } + + all_neg_indices.push_back(neg_indices); + batch_starts.push_back(batch_starts.back() + neg_indices.size()); + } + + framework::LoD out_neg_indices_lod; + out_neg_indices_lod.emplace_back(batch_starts); + int neg_offset = 0; + auto neg_data = out_neg_indices->mutable_data( + framework::make_ddim({static_cast(batch_starts.back()), 1}), + ctx.GetPlace()); + + for (auto neg_indices : all_neg_indices) { + std::copy(neg_indices.begin(), neg_indices.end(), neg_data + neg_offset); + neg_offset += neg_indices.size(); + } + out_neg_indices->set_lod(out_neg_indices_lod); + return; + } +}; + +class MineHardExamplesOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("ClsLoss"), + "Input(ClsLoss) of MineHardExamplesOp should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("MatchIndices"), + "Input(MatchIndices) of MineHardExamplesOp should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("MatchDist"), + "Input(MatchDist) of MineHardExamplesOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("NegIndices"), + "Output(NegIndices) of MineHardExamplesOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("UpdatedMatchIndices"), + "Output(UpdatedMatchIndices) of MineHardExamplesOp should " + "not be null."); + + auto cls_loss_dims = ctx->GetInputDim("ClsLoss"); + auto idx_dims = ctx->GetInputDim("MatchIndices"); + auto dis_dims = ctx->GetInputDim("MatchDist"); + + PADDLE_ENFORCE_EQ(cls_loss_dims.size(), 2UL, + "The shape of ClsLoss is [N, Np]."); + PADDLE_ENFORCE_EQ(idx_dims.size(), 2UL, + "The shape of MatchIndices is [N, Np]."); + PADDLE_ENFORCE_EQ(dis_dims.size(), 2UL, + "The shape of MatchDist is [N, Np]."); + + if (ctx->HasInput("LocLoss")) { + auto loc_loss_dims = ctx->GetInputDim("LocLoss"); + PADDLE_ENFORCE_EQ(loc_loss_dims.size(), 2UL, + "The shape of LocLoss is [N, Np]."); + PADDLE_ENFORCE_EQ(cls_loss_dims[0], loc_loss_dims[0], + "Batch size of ClsLoss and LocLoss must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], loc_loss_dims[1], + "Prior box number of ClsLoss and LocLoss must be the same."); + } + + PADDLE_ENFORCE_EQ( + cls_loss_dims[0], idx_dims[0], + "Batch size of ClsLoss and MatchIndices must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], idx_dims[1], + "Prior box number of ClsLoss and MatchIndices must be the same."); + + PADDLE_ENFORCE_EQ(cls_loss_dims[0], dis_dims[0], + "Batch size of ClsLoss and MatchDist must be the same."); + PADDLE_ENFORCE_EQ( + cls_loss_dims[1], idx_dims[1], + "Prior box number of ClsLoss and MatchDist must be the same."); + + auto mining_type = + GetMiningType(ctx->Attrs().Get("mining_type")); + + PADDLE_ENFORCE_NE(mining_type, MiningType::kNone, + "mining_type must be hard_example or max_negative"); + + if (mining_type == MiningType::kMaxNegative) { + auto neg_pos_ratio = ctx->Attrs().Get("neg_pos_ratio"); + auto neg_dist_threshold = ctx->Attrs().Get("neg_dist_threshold"); + PADDLE_ENFORCE_GT( + neg_pos_ratio, 0.0f, + "neg_pos_ratio must greater than zero in max_negative mode"); + PADDLE_ENFORCE_GT( + neg_dist_threshold, 0.0f, + "neg_dist_threshold must greater than zero in max_negative mode"); + } else if (mining_type == MiningType::kHardExample) { + auto sample_size = ctx->Attrs().Get("sample_size"); + PADDLE_ENFORCE_GT( + sample_size, 0, + "sample_size must greater than zero in hard_example mode"); + } + + ctx->SetOutputDim("UpdatedMatchIndices", idx_dims); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("ClsLoss")->type()), + ctx.device_context()); + } +}; + +class MineHardExamplesOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MineHardExamplesOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "ClsLoss", + "(Tensor, default Tensor), The classification loss with shape " + "[N, Np], N is the batch size and Np is the number of prior box."); + AddInput("LocLoss", + "(Tensor, optional, default Tensor), The localization loss " + "with shape [N, Np], N is the batch size and Np is the number of " + "prior box.") + .AsDispensable(); + AddInput("MatchIndices", + "(Tensor, Tensor), Matched indices with shape [N, Np], N is " + "the batch size and Np is the number of prior box. " + "MatchIndices[i][j] equal -1 means the j-th prior box in i-th " + "instance does not match any entity, otherwise means it is " + "matched to row."); + AddInput("MatchDist", + "(Tensor, default Tensor) Matched indices with shape [N, " + "Np], N is the batch size and Np is the number of prior box."); + AddAttr("neg_pos_ratio", + "(float) The ratio of the negative box to the positive " + "box. Use only when mining_type is max_negative.") + .SetDefault(1.0); + AddAttr("neg_dist_threshold", + "(float) The negative overlap upper bound for the unmatched " + "predictions. Use only when mining_type is max_negative.") + .SetDefault(0.5); + AddAttr("sample_size", + "(float) The max sample size of negative box. Use only when " + "mining_type is hard_example.") + .SetDefault(0); + AddAttr("mining_type", + "(float) The mining algorithm name, the value is " + "hard_example or max_negative.") + .SetDefault("max_negative") + .InEnum({"hard_example", "max_negative"}); + + AddOutput( + "NegIndices", + "(LoDTensor) The output of negative example indices. a LoDTensor " + "with shape [Neg, 1]. The size of lod[0] minus 1 is batch size, " + "and each element is the prior box index. " + "For example, the batch size is 2, the lod is [[0, 1, 2]], " + "the sample 0's box 1(MatchIndices[0][1]) is selected, " + "and sample 1's box 0 is selected. The output NegIndices is " + "[[1], [0]]."); + + AddOutput("UpdatedMatchIndices", + "(Tensor) The output of updated MatchIndices, a tensor with " + "shape [N, Np]. Only update when mining_type is " + "hard_example. The input MatchIndices elements will be update to " + "-1 when it is not in the candidate high loss list of negative " + "examples."); + + AddComment(R"DOC( +Mine hard examples Operator. +This operator implements hard example mining to select a subset of negative box indices. +For each image, selects the box with highest losses. subject to the condition that the +box cannot have an Matcht > neg_dist_threshold when mining_type is max_negative. +The selected number is min(sample_size, max_negative_box_number) when mining_type is +hard_example, or min(neg_pos_ratio * positive_box_number, max_negative_box_number) +when mining_type is max_negative, where the max_negative_box_number is the count of +MatchIndices elements with value -1. +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(mine_hard_examples, ops::MineHardExamplesOp, + ops::MineHardExamplesOpMaker); + +REGISTER_OP_CPU_KERNEL( + mine_hard_examples, + ops::MineHardExamplesKernel, + ops::MineHardExamplesKernel); diff --git a/paddle/operators/multiclass_nms_op.cc b/paddle/operators/multiclass_nms_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..41b9335fb8fc9ef5f5336bd8c63dc68bb94ff4f6 --- /dev/null +++ b/paddle/operators/multiclass_nms_op.cc @@ -0,0 +1,384 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; + +constexpr int64_t kOutputDim = 6; +constexpr int64_t kBBoxSize = 4; + +class MultiClassNMSOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("BBoxes"), + "Input(BBoxes) of MultiClassNMS should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Scores"), + "Input(Scores) of MultiClassNMS should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of MultiClassNMS should not be null."); + + auto box_dims = ctx->GetInputDim("BBoxes"); + auto score_dims = ctx->GetInputDim("Scores"); + + PADDLE_ENFORCE_EQ(box_dims.size(), 2, + "The rank of Input(BBoxes) must be 2."); + PADDLE_ENFORCE_EQ(score_dims.size(), 3, + "The rank of Input(Scores) must be 3."); + PADDLE_ENFORCE_EQ(box_dims[1], 4, + "The 2nd dimension of Input(BBoxes) must be 4, " + "represents the layout of coordinate " + "[xmin, ymin, xmax, ymax]"); + PADDLE_ENFORCE_EQ(box_dims[0], score_dims[2], + "The 1st dimensiong of Input(BBoxes) must be equal to " + "3rd dimension of Input(Scores), which represents the " + "predicted bboxes."); + + // Here the box_dims[0] is not the real dimension of output. + // It will be rewritten in the computing kernel. + ctx->SetOutputDim("Out", {box_dims[0], 6}); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType( + ctx.Input("Scores")->type()), + ctx.device_context()); + } +}; + +template +bool SortScorePairDescend(const std::pair& pair1, + const std::pair& pair2) { + return pair1.first > pair2.first; +} + +template +static inline void GetMaxScoreIndex( + const std::vector& scores, const T threshold, int top_k, + std::vector>* sorted_indices) { + for (size_t i = 0; i < scores.size(); ++i) { + if (scores[i] > threshold) { + sorted_indices->push_back(std::make_pair(scores[i], i)); + } + } + // Sort the score pair according to the scores in descending order + std::stable_sort(sorted_indices->begin(), sorted_indices->end(), + SortScorePairDescend); + // Keep top_k scores if needed. + if (top_k > -1 && top_k < static_cast(sorted_indices->size())) { + sorted_indices->resize(top_k); + } +} + +template +static inline T BBoxArea(const T* box, const bool normalized) { + if (box[2] < box[0] || box[3] < box[1]) { + // If coordinate values are is invalid + // (e.g. xmax < xmin or ymax < ymin), return 0. + return static_cast(0.); + } else { + const T w = box[2] - box[0]; + const T h = box[3] - box[1]; + if (normalized) { + return w * h; + } else { + // If coordinate values are not within range [0, 1]. + return (w + 1) * (h + 1); + } + } +} + +template +static inline T JaccardOverlap(const T* box1, const T* box2, + const bool normalized) { + if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] || + box2[3] < box1[1]) { + return static_cast(0.); + } else { + const T inter_xmin = std::max(box1[0], box2[0]); + const T inter_ymin = std::max(box1[1], box2[1]); + const T inter_xmax = std::min(box1[2], box2[2]); + const T inter_ymax = std::min(box1[3], box2[3]); + const T inter_w = inter_xmax - inter_xmin; + const T inter_h = inter_ymax - inter_ymin; + const T inter_area = inter_w * inter_h; + const T bbox1_area = BBoxArea(box1, normalized); + const T bbox2_area = BBoxArea(box2, normalized); + return inter_area / (bbox1_area + bbox2_area - inter_area); + } +} + +template +class MultiClassNMSKernel : public framework::OpKernel { + public: + void NMSFast(const Tensor& bbox, const Tensor& scores, + const T score_threshold, const T nms_threshold, const T eta, + const int64_t top_k, std::vector* selected_indices) const { + // The total boxes for each instance. + int64_t num_boxes = bbox.dims()[0]; + // 4: [xmin ymin xmax ymax] + int64_t box_size = bbox.dims()[1]; + + std::vector scores_data(num_boxes); + std::copy_n(scores.data(), num_boxes, scores_data.begin()); + std::vector> sorted_indices; + GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices); + + selected_indices->clear(); + T adaptive_threshold = nms_threshold; + const T* bbox_data = bbox.data(); + + while (sorted_indices.size() != 0) { + const int idx = sorted_indices.front().second; + bool keep = true; + for (size_t k = 0; k < selected_indices->size(); ++k) { + if (keep) { + const int kept_idx = (*selected_indices)[k]; + T overlap = JaccardOverlap(bbox_data + idx * box_size, + bbox_data + kept_idx * box_size, true); + keep = overlap <= adaptive_threshold; + } else { + break; + } + } + if (keep) { + selected_indices->push_back(idx); + } + sorted_indices.erase(sorted_indices.begin()); + if (keep && eta < 1 && adaptive_threshold > 0.5) { + adaptive_threshold *= eta; + } + } + } + + void MultiClassNMS(const framework::ExecutionContext& ctx, + const Tensor& scores, const Tensor& bboxes, + std::map>& indices, + int& num_nmsed_out) const { + int64_t background_label = ctx.Attr("background_label"); + int64_t nms_top_k = ctx.Attr("nms_top_k"); + int64_t keep_top_k = ctx.Attr("keep_top_k"); + T nms_threshold = static_cast(ctx.Attr("nms_threshold")); + T nms_eta = static_cast(ctx.Attr("nms_eta")); + T score_threshold = static_cast(ctx.Attr("score_threshold")); + + int64_t class_num = scores.dims()[0]; + int64_t predict_dim = scores.dims()[1]; + int num_det = 0; + for (int64_t c = 0; c < class_num; ++c) { + if (c == background_label) continue; + Tensor score = scores.Slice(c, c + 1); + NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k, + &(indices[c])); + num_det += indices[c].size(); + } + + num_nmsed_out = num_det; + const T* scores_data = scores.data(); + if (keep_top_k > -1 && num_det > keep_top_k) { + std::vector>> score_index_pairs; + for (const auto& it : indices) { + int label = it.first; + const T* sdata = scores_data + label * predict_dim; + const std::vector& label_indices = it.second; + for (size_t j = 0; j < label_indices.size(); ++j) { + int idx = label_indices[j]; + PADDLE_ENFORCE_LT(idx, predict_dim); + score_index_pairs.push_back( + std::make_pair(sdata[idx], std::make_pair(label, idx))); + } + } + // Keep top k results per image. + std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(), + SortScorePairDescend>); + score_index_pairs.resize(keep_top_k); + + // Store the new indices. + std::map> new_indices; + for (size_t j = 0; j < score_index_pairs.size(); ++j) { + int label = score_index_pairs[j].second.first; + int idx = score_index_pairs[j].second.second; + new_indices[label].push_back(idx); + } + new_indices.swap(indices); + num_nmsed_out = keep_top_k; + } + } + + void MultiClassOutput(const Tensor& scores, const Tensor& bboxes, + std::map>& selected_indices, + Tensor* outs) const { + int predict_dim = scores.dims()[1]; + auto* scores_data = scores.data(); + auto* bboxes_data = bboxes.data(); + auto* odata = outs->data(); + + int count = 0; + for (const auto& it : selected_indices) { + int label = it.first; + const T* sdata = scores_data + label * predict_dim; + const std::vector& indices = it.second; + for (size_t j = 0; j < indices.size(); ++j) { + int idx = indices[j]; + const T* bdata = bboxes_data + idx * kBBoxSize; + odata[count * kOutputDim] = label; // label + odata[count * kOutputDim + 1] = sdata[idx]; // score + // xmin, ymin, xmax, ymax + std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T)); + count++; + } + } + } + + void Compute(const framework::ExecutionContext& ctx) const override { + auto* boxes = ctx.Input("BBoxes"); + auto* scores = ctx.Input("Scores"); + auto* outs = ctx.Output("Out"); + + auto score_dims = scores->dims(); + + int64_t batch_size = score_dims[0]; + int64_t class_num = score_dims[1]; + int64_t predict_dim = score_dims[2]; + + std::vector>> all_indices; + std::vector batch_starts = {0}; + for (int64_t i = 0; i < batch_size; ++i) { + Tensor ins_score = scores->Slice(i, i + 1); + ins_score.Resize({class_num, predict_dim}); + std::map> indices; + int num_nmsed_out = 0; + MultiClassNMS(ctx, ins_score, *boxes, indices, num_nmsed_out); + all_indices.push_back(indices); + batch_starts.push_back(batch_starts.back() + num_nmsed_out); + } + + int num_kept = batch_starts.back(); + if (num_kept == 0) { + T* od = outs->mutable_data({1}, ctx.GetPlace()); + od[0] = -1; + } else { + outs->mutable_data({num_kept, kOutputDim}, ctx.GetPlace()); + for (int64_t i = 0; i < batch_size; ++i) { + Tensor ins_score = scores->Slice(i, i + 1); + ins_score.Resize({class_num, predict_dim}); + int64_t s = batch_starts[i]; + int64_t e = batch_starts[i + 1]; + if (e > s) { + Tensor out = outs->Slice(s, e); + MultiClassOutput(ins_score, *boxes, all_indices[i], &out); + } + } + } + + framework::LoD lod; + lod.emplace_back(batch_starts); + + outs->set_lod(lod); + } +}; + +class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MultiClassNMSOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("BBoxes", + "(Tensor) A 2-D Tensor with shape [M, 4] represents the " + "predicted locations of M bounding bboxes. Each bounding box " + "has four coordinate values and the layout is " + "[xmin, ymin, xmax, ymax]."); + AddInput("Scores", + "(Tensor) A 3-D Tensor with shape [N, C, M] represents the " + "predicted confidence predictions. N is the batch size, C is the " + "class number, M is number of bounding boxes. For each category " + "there are total M scores which corresponding M bounding boxes. " + " Please note, M is equal to the 1st dimension of BBoxes. "); + AddAttr( + "background_label", + "(int64_t, defalut: 0) " + "The index of background label, the background label will be ignored. " + "If set to -1, then all categories will be considered.") + .SetDefault(0); + AddAttr("score_threshold", + "(float) " + "Threshold to filter out bounding boxes with low " + "confidence score. If not provided, consider all boxes."); + AddAttr("nms_top_k", + "(int64_t) " + "Maximum number of detections to be kept according to the " + "confidences aftern the filtering detections based on " + "score_threshold"); + AddAttr("nms_threshold", + "(float, defalut: 0.3) " + "The threshold to be used in NMS.") + .SetDefault(0.3); + AddAttr("nms_eta", + "(float) " + "The parameter for adaptive NMS.") + .SetDefault(1.0); + AddAttr("keep_top_k", + "(int64_t) " + "Number of total bboxes to be kept per image after NMS " + "step. -1 means keeping all bboxes after NMS step."); + AddOutput("Out", + "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the " + "detections. Each row has 6 values: " + "[label, confidence, xmin, ymin, xmax, ymax], No is the total " + "number of detections in this mini-batch. For each instance, " + "the offsets in first dimension are called LoD, the number of " + "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is " + "no detected bbox."); + AddComment(R"DOC( +This operator is to do multi-class non maximum suppression (NMS) on a batched +of boxes and scores. + +In the NMS step, this operator greedily selects a subset of detection bounding +boxes that have high scores larger than score_threshold, if providing this +threshold, then selects the largest nms_top_k confidences scores if nms_top_k +is larger than -1. Then this operator pruns away boxes that have high IOU +(intersection over union) overlap with already selected boxes by adaptive +threshold NMS based on parameters of nms_threshold and nms_eta. + +Aftern NMS step, at most keep_top_k number of total bboxes are to be kept +per image if keep_top_k is larger than -1. + +This operator support multi-class and batched inputs. It applying NMS +independently for each class. The outputs is a 2-D LoDTenosr, for each +image, the offsets in first dimension of LoDTensor are called LoD, the number +of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0, +means there is no detected bbox for this image. If there is no detected boxes +for all images, all the elements in LoD are 0, and the Out only contains one +value which is -1. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp, + ops::MultiClassNMSOpMaker, + paddle::framework::EmptyGradOpMaker); +REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel, + ops::MultiClassNMSKernel); diff --git a/paddle/operators/prior_box_op.cc b/paddle/operators/prior_box_op.cc index 105ff4ac3e3ba889aad880f4204af15829c6da47..1dc4b288559d0294e5f58cc923ffc78b80604af9 100644 --- a/paddle/operators/prior_box_op.cc +++ b/paddle/operators/prior_box_op.cc @@ -44,12 +44,6 @@ class PriorBoxOp : public framework::OperatorWithKernel { auto aspect_ratios = ctx->Attrs().Get>("aspect_ratios"); bool flip = ctx->Attrs().Get("flip"); - PADDLE_ENFORCE_GT(min_sizes.size(), 0, - "Size of min_sizes must be at least 1."); - for (size_t i = 0; i < min_sizes.size(); ++i) { - PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i); - } - std::vector aspect_ratios_vec; ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec); @@ -65,17 +59,6 @@ class PriorBoxOp : public framework::OperatorWithKernel { } } - PADDLE_ENFORCE_EQ(variances.size(), 4, "Must and only provide 4 variance."); - for (size_t i = 0; i < variances.size(); ++i) { - PADDLE_ENFORCE_GT(variances[i], 0.0, - "variance[%d] must be greater than 0.", i); - } - - const float step_h = ctx->Attrs().Get("step_h"); - PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0."); - const float step_w = ctx->Attrs().Get("step_w"); - PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0."); - std::vector dim_vec(4); dim_vec[0] = input_dims[2]; dim_vec[1] = input_dims[3]; @@ -106,26 +89,54 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker { "PriorBoxOp. The layout is [H, W, num_priors, 4]. " "H is the height of input, W is the width of input, num_priors " "is the box count of each position."); - AddAttr>("min_sizes", "(vector) ", - "List of min sizes of generated prior boxes."); - AddAttr>("max_sizes", "(vector) ", - "List of max sizes of generated prior boxes."); + + AddAttr>("min_sizes", + "(vector) List of min sizes " + "of generated prior boxes.") + .AddCustomChecker([](const std::vector& min_sizes) { + PADDLE_ENFORCE_GT(min_sizes.size(), 0, + "Size of min_sizes must be at least 1."); + for (size_t i = 0; i < min_sizes.size(); ++i) { + PADDLE_ENFORCE_GT(min_sizes[i], 0, + "min_sizes[%d] must be positive.", i); + } + }); + AddAttr>( + "max_sizes", + "(vector) List of max sizes of generated prior boxes."); AddAttr>( - "aspect_ratios", "(vector) ", - "List of aspect ratios of generated prior boxes."); + "aspect_ratios", + "(vector) List of aspect ratios of generated prior boxes."); + AddAttr>( - "variances", "(vector) ", - "List of variances to be encoded in prior boxes."); - AddAttr("flip", "(bool) ", "Whether to flip aspect ratios.") + "variances", + "(vector) List of variances to be encoded in prior boxes.") + .AddCustomChecker([](const std::vector& variances) { + PADDLE_ENFORCE_EQ(variances.size(), 4, + "Must and only provide 4 variance."); + for (size_t i = 0; i < variances.size(); ++i) { + PADDLE_ENFORCE_GT(variances[i], 0.0, + "variance[%d] must be greater than 0.", i); + } + }); + AddAttr("flip", "(bool) Whether to flip aspect ratios.") .SetDefault(true); - AddAttr("clip", "(bool) ", "Whether to clip out-of-boundary boxes.") + AddAttr("clip", "(bool) Whether to clip out-of-boundary boxes.") .SetDefault(true); + AddAttr("step_w", "Prior boxes step across width, 0 for auto calculation.") - .SetDefault(0.0); + .SetDefault(0.0) + .AddCustomChecker([](const float& step_w) { + PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0."); + }); AddAttr("step_h", "Prior boxes step across height, 0 for auto calculation.") - .SetDefault(0.0); + .SetDefault(0.0) + .AddCustomChecker([](const float& step_h) { + PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0."); + }); + AddAttr("offset", "(float) " "Prior boxes center offset.") diff --git a/paddle/operators/prior_box_op.h b/paddle/operators/prior_box_op.h index e0a663ace8f38c2d08fd4714c1247d3313ffae3e..6b221cb74ebb306b99533f49c824ed6c60144ff2 100644 --- a/paddle/operators/prior_box_op.h +++ b/paddle/operators/prior_box_op.h @@ -25,7 +25,7 @@ inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, std::vector& output_aspect_ratior) { constexpr float epsilon = 1e-6; output_aspect_ratior.clear(); - output_aspect_ratior.push_back(1.); + output_aspect_ratior.push_back(1.0f); for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { float ar = input_aspect_ratior[i]; bool already_exist = false; @@ -38,7 +38,7 @@ inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, if (!already_exist) { output_aspect_ratior.push_back(ar); if (flip) { - output_aspect_ratior.push_back(1. / ar); + output_aspect_ratior.push_back(1.0f / ar); } } } @@ -46,7 +46,7 @@ inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, template struct ClipFunctor { - HOSTDEVICE T operator()(T in) const { + HOSTDEVICE inline T operator()(T in) const { return std::min(std::max(in, 0.), 1.); } }; @@ -97,6 +97,9 @@ class PriorBoxOpKernel : public framework::OpKernel { boxes->mutable_data(ctx.GetPlace()); vars->mutable_data(ctx.GetPlace()); + T inv_img_width = 1.0 / img_width; + T inv_img_height = 1.0 / img_height; + auto e_boxes = framework::EigenTensor::From(*boxes); for (int h = 0; h < feature_height; ++h) { for (int w = 0; w < feature_width; ++w) { @@ -109,13 +112,15 @@ class PriorBoxOpKernel : public framework::OpKernel { // first prior: aspect_ratio = 1, size = min_size box_width = box_height = min_size; // xmin - e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; + e_boxes(h, w, idx, 0) = (center_x - box_width * 0.5) * inv_img_width; // ymin - e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; + e_boxes(h, w, idx, 1) = + (center_y - box_height * 0.5) * inv_img_height; // xmax - e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; + e_boxes(h, w, idx, 2) = (center_x + box_width * 0.5) * inv_img_width; // ymax - e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; + e_boxes(h, w, idx, 3) = + (center_y + box_height * 0.5) * inv_img_height; idx++; if (max_sizes.size() > 0) { @@ -124,13 +129,17 @@ class PriorBoxOpKernel : public framework::OpKernel { // size = sqrt(min_size * max_size) box_width = box_height = sqrt(min_size * max_size); // xmin - e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; + e_boxes(h, w, idx, 0) = + (center_x - box_width * 0.5) * inv_img_width; // ymin - e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; + e_boxes(h, w, idx, 1) = + (center_y - box_height * 0.5) * inv_img_height; // xmax - e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; + e_boxes(h, w, idx, 2) = + (center_x + box_width * 0.5) * inv_img_width; // ymax - e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; + e_boxes(h, w, idx, 3) = + (center_y + box_height * 0.5) * inv_img_height; idx++; } @@ -143,13 +152,17 @@ class PriorBoxOpKernel : public framework::OpKernel { box_width = min_size * sqrt(ar); box_height = min_size / sqrt(ar); // xmin - e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; + e_boxes(h, w, idx, 0) = + (center_x - box_width * 0.5) * inv_img_width; // ymin - e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; + e_boxes(h, w, idx, 1) = + (center_y - box_height * 0.5) * inv_img_height; // xmax - e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; + e_boxes(h, w, idx, 2) = + (center_x + box_width * 0.5) * inv_img_width; // ymax - e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; + e_boxes(h, w, idx, 3) = + (center_y + box_height * 0.5) * inv_img_height; idx++; } } diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc index 2fdd25dbbe68659f8a0a9da13a87148ed259127a..a744ebd61595403ee495a2e2c9e84181422e92ff 100644 --- a/paddle/operators/while_op.cc +++ b/paddle/operators/while_op.cc @@ -53,6 +53,8 @@ class WhileOp : public framework::OperatorBase { auto step_scopes = scope.FindVar(Output(kStepScopes))->GetMutable(); + PADDLE_ENFORCE(platform::is_cpu_place(cond.place()), + "Condition of while op must in CPU memory."); while (cond.data()[0]) { auto ¤t_scope = scope.NewScope(); step_scopes->push_back(¤t_scope); @@ -99,6 +101,9 @@ class WhileGradOp : public framework::OperatorBase { void Run(const framework::Scope &scope, const platform::Place &dev_place) const override { + // get device context from pool + platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); + auto &dev_ctx = *pool.Get(dev_place); framework::Executor executor(dev_place); auto *block = Attr(kStepBlock); auto *program = block->Program(); @@ -205,6 +210,8 @@ class WhileGradOp : public framework::OperatorBase { sum_op->Run(cur_scope, dev_place); cur_scope.Rename(new_inside_name, inside_grad_name); } + dev_ctx.Wait(); + const_cast(scope).DeleteScope(&cur_scope); } } }; diff --git a/paddle/platform/profiler.cc b/paddle/platform/profiler.cc index 2a8afc940393baaaa939471f50f2d5c63edd6a84..6df087d154cc104955c6399050c9cb2bce8d36e1 100644 --- a/paddle/platform/profiler.cc +++ b/paddle/platform/profiler.cc @@ -233,7 +233,7 @@ void ParseEvents(std::vector>& events, }; break; default: - sorted_domain = "event end time"; + sorted_domain = "event first end time"; } std::vector> events_table; diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index f39dc47262903219d3c952743fb77346911e9c9d..4636ee1a40d7a52fb0f058e3bd410c5c659135c2 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -220,11 +220,20 @@ void BindVarDsec(py::module &m) { py::return_value_policy::reference) .def("set_name", &VarDesc::SetName) .def("set_shape", &VarDesc::SetShape) + .def("set_shapes", &VarDesc::SetShapes) .def("set_dtype", &VarDesc::SetDataType) - .def("shape", &VarDesc::Shape, py::return_value_policy::reference) + .def("set_dtypes", &VarDesc::SetDataTypes) + .def("set_tensor_num", &VarDesc::SetTensorDescNum) + .def("tensor_num", &VarDesc::GetTensorDescNum) + .def("shape", &VarDesc::GetShape, py::return_value_policy::reference) + .def("shapes", &VarDesc::GetShapes, py::return_value_policy::reference) .def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference) + .def("dtypes", &VarDesc::GetDataTypes, py::return_value_policy::reference) .def("lod_level", &VarDesc::GetLoDLevel) + .def("lod_levels", &VarDesc::GetLoDLevels, + py::return_value_policy::reference) .def("set_lod_level", &VarDesc::SetLoDLevel) + .def("set_lod_levels", &VarDesc::SetLoDLevels) .def("type", &VarDesc::GetType) .def("set_type", &VarDesc::SetType) .def("serialize_to_string", SerializeMessage) @@ -239,7 +248,8 @@ void BindVarDsec(py::module &m) { .value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES) .value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE) .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY) - .value("PLACE_LIST", proto::VarDesc::PLACE_LIST); + .value("PLACE_LIST", proto::VarDesc::PLACE_LIST) + .value("READER", proto::VarDesc::READER); } void BindOpDesc(py::module &m) { diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index df7310d6b70ac95953177024a7c2981d1c81a901..ba496db5f834efe767bfe446a46877932faa81a0 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -79,6 +79,7 @@ function run_build() { Building in /paddle/build ... ============================================ EOF + make clean make -j `nproc` } @@ -116,7 +117,7 @@ EOF -DWITH_STYLE_CHECK=OFF make -j `nproc` gen_proto_py make -j `nproc` paddle_python - make -j `nproc` paddle_docs paddle_docs_cn + make -j `nproc` paddle_docs paddle_docs_cn paddle_api_docs make -j `nproc` print_operators_doc paddle/pybind/print_operators_doc > doc/en/html/operators.json popd diff --git a/paddle/scripts/travis/build_doc.sh b/paddle/scripts/travis/build_doc.sh index 0db8d33bbcb5278ed0dd5584b5822502b719ede9..4af4ac4f5e43543449ae922d7eb2a5740372f68f 100755 --- a/paddle/scripts/travis/build_doc.sh +++ b/paddle/scripts/travis/build_doc.sh @@ -9,13 +9,14 @@ cd $TRAVIS_BUILD_DIR/build cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON make -j `nproc` gen_proto_py make -j `nproc` paddle_python -make -j `nproc` paddle_docs paddle_docs_cn +make -j `nproc` paddle_docs paddle_docs_cn paddle_api_docs make -j `nproc` print_operators_doc paddle/pybind/print_operators_doc > doc/en/html/operators.json # check websites for broken links linkchecker doc/en/html/index.html linkchecker doc/cn/html/index.html +linkchecker doc/api/en/html/index.html # Parse Github URL REPO=`git config remote.origin.url` @@ -54,10 +55,11 @@ function deploy_docs() { mkdir -p ${DIR} # remove old docs. mv new docs. set +e - rm -rf ${DIR}/doc ${DIR}/doc_cn + rm -rf ${DIR}/doc ${DIR}/doc_cn ${DIR}/api_doc set -e cp -r ../doc/cn/html ${DIR}/doc_cn cp -r ../doc/en/html ${DIR}/doc + cp -r ../doc/api/en/html ${DIR}/api_doc git add . } diff --git a/paddle/testing/paddle_gtest_main.cc b/paddle/testing/paddle_gtest_main.cc index a2f21e37e415ccaa0d9624656728d89739972905..fd8c4a69da897cc39f31f435036e32c41285fb59 100644 --- a/paddle/testing/paddle_gtest_main.cc +++ b/paddle/testing/paddle_gtest_main.cc @@ -27,9 +27,10 @@ int main(int argc, char** argv) { } #ifdef PADDLE_WITH_CUDA new_argv.push_back( - strdup("--tryfromenv=fraction_of_gpu_memory_to_use,use_pinned_memory")); + strdup("--tryfromenv=fraction_of_gpu_memory_to_use,use_pinned_memory," + "warpctc_dir")); #else - new_argv.push_back(strdup("--tryfromenv=use_pinned_memory")); + new_argv.push_back(strdup("--tryfromenv=use_pinned_memory,warpctc_dir")); #endif int new_argc = static_cast(new_argv.size()); char** new_argv_address = new_argv.data(); diff --git a/python/paddle/v2/fluid/__init__.py b/python/paddle/v2/fluid/__init__.py index f52346c3b59264370f46844d0e6b1e2d489299c7..3ee58393c72c0b6f9bec96be51ad3946752a35dd 100644 --- a/python/paddle/v2/fluid/__init__.py +++ b/python/paddle/v2/fluid/__init__.py @@ -76,7 +76,9 @@ def __bootstrap__(): os.environ['OMP_NUM_THREADS'] = str(num_threads) - read_env_flags = ['use_pinned_memory', 'check_nan_inf', 'benchmark'] + read_env_flags = [ + 'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir' + ] if core.is_compiled_with_cuda(): read_env_flags += ['fraction_of_gpu_memory_to_use'] core.init_gflags([sys.argv[0]] + diff --git a/python/paddle/v2/fluid/debuger.py b/python/paddle/v2/fluid/debuger.py new file mode 100644 index 0000000000000000000000000000000000000000..db1808c64745ac153962c050b08993450dd93c06 --- /dev/null +++ b/python/paddle/v2/fluid/debuger.py @@ -0,0 +1,265 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import re +from graphviz import GraphPreviewGenerator +import proto.framework_pb2 as framework_pb2 + +_vartype2str_ = [ + "UNK", + "LoDTensor", + "SelectedRows", + "FeedMinibatch", + "FetchList", + "StepScopes", + "LodRankTable", + "LoDTensorArray", + "PlaceList", +] +_dtype2str_ = [ + "bool", + "int16", + "int32", + "int64", + "float16", + "float32", + "float64", +] + + +def repr_data_type(type): + return _dtype2str_[type] + + +def repr_tensor(proto): + return "tensor(type={}, shape={})".format(_dtype2str_[int(proto.data_type)], + str(proto.dims)) + + +reprtpl = "{ttype} {name} ({reprs})" + + +def repr_lodtensor(proto): + if not proto.lod_tensor: return + level = proto.lod_tensor.lod_level + reprs = repr_tensor(proto.lod_tensor.tensor) + return reprtpl.format( + ttype="LoDTensor" if level > 0 else "Tensor", + name=proto.name, + reprs="level=%d, %s" % (level, reprs) if level > 0 else reprs) + + +def repr_selected_rows(proto): + if not proto.selected_rows: return + return reprtpl.format( + ttype="SelectedRows", + name=proto.name, + reprs=repr_tensor(proto.selected_rows)) + + +def repr_tensor_array(proto): + if not proto.tensor_array: return + return reprtpl.format( + ttype="TensorArray", + name=proto.name, + reprs="level=%d, %s" % (proto.tensor_array.lod_level, + repr_tensor(proto.lod_tensor))) + + +type_handlers = [ + repr_lodtensor, + repr_selected_rows, + repr_tensor_array, +] + + +def repr_var(vardesc): + for handler in type_handlers: + res = handler(vardesc) + if res: + return res + + +def pprint_program_codes(program_desc): + reprs = [] + for block_idx in range(program_desc.num_blocks()): + block_desc = program_desc.block(block_idx) + block_repr = pprint_block_codes(block_desc) + reprs.append(block_repr) + return '\n'.join(reprs) + + +def pprint_block_codes(block_desc, show_backward=False): + def is_op_backward(op_desc): + if op_desc.type.endswith('_grad'): return True + + def is_var_backward(var): + if "@GRAD" in var.parameter: return True + for arg in var.arguments: + if "@GRAD" in arg: return True + + for var in op_desc.inputs: + if is_var_backward(var): return True + for var in op_desc.outputs: + if is_var_backward(var): return True + return False + + def is_var_backward(var_desc): + return "@GRAD" in var_desc.name + + if type(block_desc) is not framework_pb2.BlockDesc: + block_desc = framework_pb2.BlockDesc.FromString( + block_desc.serialize_to_string()) + var_reprs = [] + op_reprs = [] + for var in block_desc.vars: + if not show_backward and is_var_backward(var): + continue + var_reprs.append(repr_var(var)) + + for op in block_desc.ops: + if not show_backward and is_op_backward(op): continue + op_reprs.append(repr_op(op)) + + tpl = "// block-{idx} parent-{pidx}\n// variables\n{vars}\n\n// operators\n{ops}\n" + return tpl.format( + idx=block_desc.idx, + pidx=block_desc.parent_idx, + vars='\n'.join(var_reprs), + ops='\n'.join(op_reprs), ) + + +def repr_attr(desc): + tpl = "{key}={value}" + valgetter = [ + lambda attr: attr.i, + lambda attr: attr.f, + lambda attr: attr.s, + lambda attr: attr.ints, + lambda attr: attr.floats, + lambda attr: attr.strings, + lambda attr: attr.b, + lambda attr: attr.bools, + lambda attr: attr.block_idx, + lambda attr: attr.l, + ] + key = desc.name + value = valgetter[desc.type](desc) + if key == "dtype": + value = repr_data_type(value) + return tpl.format(key=key, value=str(value)), (key, value) + + +def _repr_op_fill_constant(optype, inputs, outputs, attrs): + if optype == "fill_constant": + return "{output} = {data} [shape={shape}]".format( + output=','.join(outputs), + data=attrs['value'], + shape=str(attrs['shape'])) + + +op_repr_handlers = [_repr_op_fill_constant, ] + + +def repr_op(opdesc): + optype = None + attrs = [] + attr_dict = {} + is_target = None + inputs = [] + outputs = [] + + tpl = "{outputs} = {optype}({inputs}{is_target}) [{attrs}]" + args2value = lambda args: args[0] if len(args) == 1 else str(list(args)) + for var in opdesc.inputs: + key = var.parameter + value = args2value(var.arguments) + inputs.append("%s=%s" % (key, value)) + for var in opdesc.outputs: + value = args2value(var.arguments) + outputs.append(value) + for attr in opdesc.attrs: + attr_repr, attr_pair = repr_attr(attr) + attrs.append(attr_repr) + attr_dict[attr_pair[0]] = attr_pair[1] + + is_target = opdesc.is_target + + for handler in op_repr_handlers: + res = handler(opdesc.type, inputs, outputs, attr_dict) + if res: return res + + return tpl.format( + outputs=', '.join(outputs), + optype=opdesc.type, + inputs=', '.join(inputs), + attrs="{%s}" % ','.join(attrs), + is_target=", is_target" if is_target else "") + + +def draw_block_graphviz(block, highlights=None, path="./temp.dot"): + ''' + Generate a debug graph for block. + Args: + block(Block): a block. + ''' + graph = GraphPreviewGenerator("some graph") + # collect parameters and args + protostr = block.desc.serialize_to_string() + desc = framework_pb2.BlockDesc.FromString(str(protostr)) + + def need_highlight(name): + if highlights is None: return False + for pattern in highlights: + assert type(pattern) is str + if re.match(pattern, name): + return True + return False + + # draw parameters and args + vars = {} + for var in desc.vars: + shape = [str(i) for i in var.lod_tensor.tensor.dims] + if not shape: + shape = ['null'] + # create var + if var.persistable: + varn = graph.add_param( + var.name, var.type, shape, highlight=need_highlight(var.name)) + else: + varn = graph.add_arg(var.name, highlight=need_highlight(var.name)) + vars[var.name] = varn + + def add_op_link_var(op, var, op2var=False): + for arg in var.arguments: + if arg not in vars: + # add missing variables as argument + vars[arg] = graph.add_arg(arg, highlight=need_highlight(arg)) + varn = vars[arg] + highlight = need_highlight(op.description) or need_highlight( + varn.description) + if op2var: + graph.add_edge(op, varn, highlight=highlight) + else: + graph.add_edge(varn, op, highlight=highlight) + + for op in desc.ops: + opn = graph.add_op(op.type, highlight=need_highlight(op.type)) + for var in op.inputs: + add_op_link_var(opn, var, False) + for var in op.outputs: + add_op_link_var(opn, var, True) + + graph(path, show=True) diff --git a/python/paddle/v2/fluid/executor.py b/python/paddle/v2/fluid/executor.py index 9f48815b8b84426c7d539af4e7d45ea47e69d4d9..0eddcc3a5ab6f71aa5500c3b98b63c0937c7ddfc 100644 --- a/python/paddle/v2/fluid/executor.py +++ b/python/paddle/v2/fluid/executor.py @@ -17,7 +17,9 @@ import contextlib from framework import Program, default_main_program from . import core -__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope'] +__all__ = [ + 'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var' +] g_scope = core.Scope() @@ -80,12 +82,12 @@ def has_feed_operators(block, feed_targets, feed_holder_name): Args: block: a block instance (typically global block of a program) feed_targets: a dictionary of {feed_target_name: feed_target_data} - feed_holder_name: the name of the variable that holds the data of - all feed targets. The type of this feed_holder variable is + feed_holder_name: the name of the variable that holds the data of + all feed targets. The type of this feed_holder variable is FEED_MINIBATCH, which is essentially vector. Returns: - A boolean value that indicates whether a block has feed operators + A boolean value that indicates whether a block has feed operators that match the info contained in feed_targets and feed_holder_name. """ @@ -108,7 +110,7 @@ def has_feed_operators(block, feed_targets, feed_holder_name): def has_fetch_operators(block, fetch_targets, fetch_holder_name): """ Check whether the block already has fetch operators. - + Return false if the block does not have any fetch operators. If some fetch operators have been appended to the block, check that the info contained in these fetch operators matches the fetch_targets @@ -118,13 +120,13 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name): Args: block: a block instance (typically global block of a program) fetch_targets: a dictionary of {fetch_target_name: fetch_target_data} - fetch_holder_name: the name of the variable that holds the data of - all fetch targets. The type of this fetch_holder variable is - FETCH_LIST, which is essentially vector. + fetch_holder_name: the name of the variable that holds the data of + all fetch targets. The type of this fetch_holder variable is + FETCH_LIST, which is essentially vector. - Return: - A boolean value that indicates whether a block has fetch operators - that match the info contained in fetch_targets and fetch_holder_name. + Return: + A boolean value that indicates whether a block has fetch operators + that match the info contained in fetch_targets and fetch_holder_name. """ fetch_count = 0 @@ -146,6 +148,35 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name): return fetch_count > 0 +def fetch_var(name, scope=None, return_numpy=True): + """ + Fetch the value of the variable with the given name from the given scope + Args: + name(str): name of the variable. Typically, only persistable variables + can be found in the scope used for running the program. + scope(core.Scope|None): scope object. It should be the scope where + you pass to Executor.run() when running your program. + If None, global_scope() will be used. + return_numpy(bool): whether convert the tensor to numpy.ndarray + Returns: + LodTensor|numpy.ndarray + """ + assert isinstance(name, str) + if scope is None: + scope = global_scope() + assert isinstance(scope, core.Scope) + + var = global_scope().find_var(name) + assert var is not None, ( + "Cannot find " + name + " in scope. Perhaps you need to make the" + " variable persistable by using var.persistable = True in your" + " program.") + tensor = var.get_tensor() + if return_numpy: + tensor = as_numpy(tensor) + return tensor + + class Executor(object): def __init__(self, places): if not isinstance(places, list) and not isinstance(places, tuple): diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index 5e7dd9837323bd23a19c79d34ba7a291eb7928c8..8fffe95ae176c57a11763e5e3498f3c9fd02e040 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -31,6 +31,7 @@ __all__ = [ 'program_guard', 'switch_startup_program', 'switch_main_program', + 'get_var', ] EMPTY_VAR_NAME = core.kEmptyVarName() @@ -455,9 +456,8 @@ class Operator(object): if not given == need: raise ValueError(("Incorrect setting for output(s) of " "operator \"%s\". Need: [%s] Given: [%s]") % - (type, ", ".join(str(e) - for e in need), ", ".join( - str(e) for e in given))) + (type, ", ".join(str(e) for e in need), + ", ".join(str(e) for e in given))) for out_proto in proto.outputs: out_args = outputs[out_proto.name] @@ -493,7 +493,8 @@ class Operator(object): no_kernel_op_set = { 'feed', 'fetch', 'save', 'load', 'recurrent', 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', - 'recv', 'listen_and_serv', 'parallel_do' + 'recv', 'listen_and_serv', 'parallel_do', 'save_combine', + 'load_combine' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) @@ -1152,3 +1153,22 @@ def program_guard(main_program, startup_program=None): switch_main_program(main_program) if startup_program is not None: switch_startup_program(startup_program) + + +def get_var(name, program=None): + """ + Get a variable by name from the global block of a program + Args: + name(str): name of the variable + program(Program|None): program object. + If None, default_global_program() will be used. + + Returns: + Variable + """ + if program is None: + program = default_main_program() + assert isinstance(name, str) + assert isinstance(name, Program) + + return program.global_block().var(name) diff --git a/python/paddle/v2/fluid/graphviz.py b/python/paddle/v2/fluid/graphviz.py new file mode 100644 index 0000000000000000000000000000000000000000..5881119c39231282b5654cd60720a1d8a7877896 --- /dev/null +++ b/python/paddle/v2/fluid/graphviz.py @@ -0,0 +1,272 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import random +import subprocess +import logging + + +def crepr(v): + if type(v) is str or type(v) is unicode: + return '"%s"' % v + return str(v) + + +class Rank(object): + def __init__(self, kind, name, priority): + ''' + kind: str + name: str + priority: int + ''' + self.kind = kind + self.name = name + self.priority = priority + self.nodes = [] + + def __str__(self): + if not self.nodes: + return '' + + return '{' + 'rank={};'.format(self.kind) + \ + ','.join([node.name for node in self.nodes]) + '}' + + +class Graph(object): + rank_counter = 0 + + def __init__(self, title, **attrs): + self.title = title + self.attrs = attrs + self.nodes = [] + self.edges = [] + self.rank_groups = {} + + def code(self): + return self.__str__() + + def rank_group(self, kind, priority): + name = "rankgroup-%d" % Graph.rank_counter + Graph.rank_counter += 1 + rank = Rank(kind, name, priority) + self.rank_groups[name] = rank + return name + + def node(self, label, prefix, description="", **attrs): + node = Node(label, prefix, description, **attrs) + + if 'rank' in attrs: + rank = self.rank_groups[attrs['rank']] + del attrs['rank'] + rank.nodes.append(node) + self.nodes.append(node) + return node + + def edge(self, source, target, **attrs): + edge = Edge(source, target, **attrs) + self.edges.append(edge) + return edge + + def compile(self, dot_path): + file = open(dot_path, 'w') + file.write(self.__str__()) + image_path = os.path.join( + os.path.dirname(__file__), dot_path[:-3] + "pdf") + cmd = ["dot", "-Tpdf", dot_path, "-o", image_path] + subprocess.Popen( + cmd, + stdin=subprocess.PIPE, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE) + logging.warning("write block debug graph to {}".format(image_path)) + return image_path + + def show(self, dot_path): + image = self.compile(dot_path) + cmd = ["open", image] + subprocess.Popen( + cmd, + stdin=subprocess.PIPE, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE) + + def _rank_repr(self): + ranks = sorted( + self.rank_groups.items(), + cmp=lambda a, b: a[1].priority > b[1].priority) + repr = [] + for x in ranks: + repr.append(str(x[1])) + return '\n'.join(repr) + '\n' + + def __str__(self): + reprs = [ + 'digraph G {', + 'title = {}'.format(crepr(self.title)), + ] + + for attr in self.attrs: + reprs.append("{key}={value};".format( + key=attr, value=crepr(self.attrs[attr]))) + + reprs.append(self._rank_repr()) + + random.shuffle(self.nodes) + reprs += [str(node) for node in self.nodes] + + for x in self.edges: + reprs.append(str(x)) + + reprs.append('}') + return '\n'.join(reprs) + + +class Node(object): + counter = 1 + + def __init__(self, label, prefix, description="", **attrs): + self.label = label + self.name = "%s_%d" % (prefix, Node.counter) + self.description = description + self.attrs = attrs + Node.counter += 1 + + def __str__(self): + reprs = '{name} [label={label} {extra} ];'.format( + name=self.name, + label=self.label, + extra=',' + ','.join("%s=%s" % (key, crepr(value)) + for key, value in self.attrs.items()) + if self.attrs else "") + return reprs + + +class Edge(object): + def __init__(self, source, target, **attrs): + ''' + Link source to target. + :param source: Node + :param target: Node + :param graph: Graph + :param attrs: dic + ''' + self.source = source + self.target = target + self.attrs = attrs + + def __str__(self): + repr = "{source} -> {target} {extra}".format( + source=self.source.name, + target=self.target.name, + extra="" if not self.attrs else + "[" + ','.join("{}={}".format(attr[0], crepr(attr[1])) + for attr in self.attrs.items()) + "]") + return repr + + +class GraphPreviewGenerator(object): + ''' + Generate a graph image for ONNX proto. + ''' + + def __init__(self, title): + # init graphviz graph + self.graph = Graph( + title, + layout="dot", + concentrate="true", + rankdir="TB", ) + + self.op_rank = self.graph.rank_group('same', 2) + self.param_rank = self.graph.rank_group('same', 1) + self.arg_rank = self.graph.rank_group('same', 0) + + def __call__(self, path='temp.dot', show=False): + if not show: + self.graph.compile(path) + else: + self.graph.show(path) + + def add_param(self, name, data_type, shape, highlight=False): + label = '\n'.join([ + '<', + ' ', + ' ', + ' ', + ' ', + ' ' + ' ', + ' ', + ' ' + ' ', + '
', + ' ', + name, + ' ', + '
', + str(data_type), + '
', + '[%s]' % 'x'.join(shape), + '
>', + ]) + return self.graph.node( + label, + prefix="param", + description=name, + shape="none", + style="rounded,filled,bold", + width="1.3", + color="#148b97" if not highlight else "orange", + fontcolor="#ffffff", + fontname="Arial") + + def add_op(self, opType, **kwargs): + highlight = False + if 'highlight' in kwargs: + highlight = kwargs['highlight'] + del kwargs['highlight'] + return self.graph.node( + "<%s>" % opType, + prefix="op", + description=opType, + shape="box", + style="rounded, filled, bold", + color="#303A3A" if not highlight else "orange", + fontname="Arial", + fontcolor="#ffffff", + width="1.3", + height="0.84", ) + + def add_arg(self, name, highlight=False): + return self.graph.node( + crepr(name), + prefix="arg", + description=name, + shape="box", + style="rounded,filled,bold", + fontname="Arial", + fontcolor="#999999", + color="#dddddd" if not highlight else "orange") + + def add_edge(self, source, target, **kwargs): + highlight = False + if 'highlight' in kwargs: + highlight = kwargs['highlight'] + del kwargs['highlight'] + return self.graph.edge( + source, + target, + color="#00000" if not highlight else "orange", + **kwargs) diff --git a/python/paddle/v2/fluid/io.py b/python/paddle/v2/fluid/io.py index d56ec45c538b580f5520bc060b4b339bb1be0539..613dc20b6ea5533d126a73b7ec47796b3f812db5 100644 --- a/python/paddle/v2/fluid/io.py +++ b/python/paddle/v2/fluid/io.py @@ -46,6 +46,9 @@ def is_parameter(var): def is_persistable(var): + if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ + var.desc.type() == core.VarDesc.VarType.FETCH_LIST: + return False return var.persistable @@ -60,7 +63,12 @@ def _clone_var_in_block_(block, var): persistable=True) -def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): +def save_vars(executor, + dirname, + main_program=None, + vars=None, + predicate=None, + save_file_name=None): """ Save variables to directory by executor. @@ -69,9 +77,12 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): :param main_program: program. If vars is None, then filter all variables in this program which fit `predicate`. Default default_main_program. :param predicate: The Predicate describes a callable that returns a variable - as a bool. If it returns true, the variables will be saved. - :param vars: variables need to be saved. If specify vars, program & predicate + as a bool. If it returns true, the corresponding input variable will be saved. + :param vars: variables need to be saved. If vars is specified, program & predicate will be ignored + :param save_file_name: The name of a single file that all vars are saved to. + If it is None, save variables to separate files. + :return: None """ if vars is None: @@ -83,21 +94,39 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): save_vars( executor, dirname=dirname, - vars=filter(predicate, main_program.list_vars())) + vars=filter(predicate, main_program.list_vars()), + save_file_name=save_file_name) else: save_program = Program() save_block = save_program.global_block() + + save_var_map = {} for each_var in vars: new_var = _clone_var_in_block_(save_block, each_var) + if save_file_name is None: + save_block.append_op( + type='save', + inputs={'X': [new_var]}, + outputs={}, + attrs={'file_path': os.path.join(dirname, new_var.name)}) + else: + save_var_map[new_var.name] = new_var + + if save_file_name is not None: + save_var_list = [] + for name in sorted(save_var_map.keys()): + save_var_list.append(save_var_map[name]) + save_block.append_op( - type='save', - inputs={'X': [new_var]}, + type='save_combine', + inputs={'X': save_var_list}, outputs={}, - attrs={'file_path': os.path.join(dirname, new_var.name)}) + attrs={'file_path': os.path.join(dirname, save_file_name)}) + executor.run(save_program) -def save_params(executor, dirname, main_program=None): +def save_params(executor, dirname, main_program=None, save_file_name=None): """ Save all parameters to directory with executor. """ @@ -106,10 +135,12 @@ def save_params(executor, dirname, main_program=None): dirname=dirname, main_program=main_program, vars=None, - predicate=is_parameter) + predicate=is_parameter, + save_file_name=save_file_name) -def save_persistables(executor, dirname, main_program=None): +def save_persistables(executor, dirname, main_program=None, + save_file_name=None): """ Save all persistables to directory with executor. """ @@ -118,21 +149,30 @@ def save_persistables(executor, dirname, main_program=None): dirname=dirname, main_program=main_program, vars=None, - predicate=is_persistable) + predicate=is_persistable, + save_file_name=save_file_name) -def load_vars(executor, dirname, main_program=None, vars=None, predicate=None): +def load_vars(executor, + dirname, + main_program=None, + vars=None, + predicate=None, + load_file_name=None): """ Load variables from directory by executor. - :param executor: executor that save variable + :param executor: executor that load variable :param dirname: directory path :param main_program: program. If vars is None, then filter all variables in this program which fit `predicate`. Default default_main_program(). :param predicate: The Predicate describes a callable that returns a variable - as a bool. If it returns true, the variables will be loaded. - :param vars: variables need to be loaded. If specify vars, program & + as a bool. If it returns true, the corresponding input variable will be loaded. + :param vars: variables need to be loaded. If vars is specified, program & predicate will be ignored + :param load_file_name: The name of the single file that all vars are loaded from. + If it is None, load variables from separate files. + :return: None """ if vars is None: @@ -144,23 +184,40 @@ def load_vars(executor, dirname, main_program=None, vars=None, predicate=None): load_vars( executor, dirname=dirname, - vars=filter(predicate, main_program.list_vars())) + vars=filter(predicate, main_program.list_vars()), + load_file_name=load_file_name) else: load_prog = Program() load_block = load_prog.global_block() + + load_var_map = {} for each_var in vars: assert isinstance(each_var, Variable) new_var = _clone_var_in_block_(load_block, each_var) + if load_file_name is None: + load_block.append_op( + type='load', + inputs={}, + outputs={'Out': [new_var]}, + attrs={'file_path': os.path.join(dirname, new_var.name)}) + else: + load_var_map[new_var.name] = new_var + + if load_file_name is not None: + load_var_list = [] + for name in sorted(load_var_map.keys()): + load_var_list.append(load_var_map[name]) + load_block.append_op( - type='load', + type='load_combine', inputs={}, - outputs={"Out": [new_var]}, - attrs={'file_path': os.path.join(dirname, new_var.name)}) + outputs={"Out": load_var_list}, + attrs={'file_path': os.path.join(dirname, load_file_name)}) executor.run(load_prog) -def load_params(executor, dirname, main_program=None): +def load_params(executor, dirname, main_program=None, load_file_name=None): """ load all parameters from directory by executor. """ @@ -168,10 +225,12 @@ def load_params(executor, dirname, main_program=None): executor, dirname=dirname, main_program=main_program, - predicate=is_parameter) + predicate=is_parameter, + load_file_name=load_file_name) -def load_persistables(executor, dirname, main_program=None): +def load_persistables(executor, dirname, main_program=None, + load_file_name=None): """ load all persistables from directory by executor. """ @@ -179,7 +238,8 @@ def load_persistables(executor, dirname, main_program=None): executor, dirname=dirname, main_program=main_program, - predicate=is_persistable) + predicate=is_persistable, + load_file_name=load_file_name) def get_inference_program(target_vars, main_program=None): @@ -238,7 +298,8 @@ def save_inference_model(dirname, feeded_var_names, target_vars, executor, - main_program=None): + main_program=None, + save_file_name=None): """ Build a model especially for inference, and save it to directory by the executor. @@ -249,6 +310,8 @@ def save_inference_model(dirname, :param executor: executor that save inference model :param main_program: original program, which will be pruned to build the inference model. Default default_main_program(). + :param save_file_name: The name of a single file that all parameters are saved to. + If it is None, save parameters to separate files. :return: None """ @@ -283,25 +346,7 @@ def save_inference_model(dirname, with open(model_file_name, "wb") as f: f.write(inference_program.desc.serialize_to_string()) - save_params(executor, dirname, main_program) - - -def load_persistables_if_exist(executor, dirname, main_program=None): - filenames = next(os.walk(dirname))[2] - filenames = set(filenames) - - def _is_presistable_and_exist_(var): - if not is_persistable(var): - return False - else: - return var.name in filenames - - load_vars( - executor, - dirname, - main_program=main_program, - vars=None, - predicate=_is_presistable_and_exist_) + save_persistables(executor, dirname, inference_program, save_file_name) def get_feed_targets_names(program): @@ -322,13 +367,15 @@ def get_fetch_targets_names(program): return fetch_targets_names -def load_inference_model(dirname, executor): +def load_inference_model(dirname, executor, load_file_name=None): """ Load inference model from a directory :param dirname: directory path :param executor: executor that load inference model - + :param load_file_name: The name of the single file that all parameters are loaded from. + If it is None, load parameters from separate files. + :return: [program, feed_target_names, fetch_targets] program: program especially for inference. feed_target_names: Names of variables that need to feed data @@ -342,7 +389,7 @@ def load_inference_model(dirname, executor): program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) - load_persistables_if_exist(executor, dirname, program) + load_persistables(executor, dirname, program, load_file_name) feed_target_names = get_feed_targets_names(program) fetch_target_names = get_fetch_targets_names(program) @@ -359,6 +406,7 @@ def get_parameter_value(para, executor): :param executor: executor for retrieving the value :param para: the given parameter + :return: the LoDTensor for the parameter """ assert is_parameter(para) @@ -377,6 +425,7 @@ def get_parameter_value_by_name(name, executor, program=None): :param name: the name of the parameter :param program: the program where the variable is found Default default_main_program(). + :return: the LoDTensor for the variable """ if program is None: diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py index c38e21087de1bf7076ce5aaf23d4d4faaebb50a7..a79479f469a0c489edf2676bc5d07066bb480664 100644 --- a/python/paddle/v2/fluid/layers/nn.py +++ b/python/paddle/v2/fluid/layers/nn.py @@ -1231,10 +1231,17 @@ def conv2d(input, """ if stride is None: stride = [1, 1] - helper = LayerHelper('conv2d', **locals()) - dtype = helper.input_dtype() num_channels = input.shape[1] + + l_type = 'conv2d' + if (num_channels == groups and num_filters % num_channels == 0 and + not use_cudnn): + l_type = 'depthwise_conv2d' + + helper = LayerHelper(l_type, **locals()) + dtype = helper.input_dtype() + if groups is None: num_filter_channels = num_channels else: @@ -1267,7 +1274,7 @@ def conv2d(input, pre_bias = helper.create_tmp_variable(dtype) helper.append_op( - type='conv2d', + type=l_type, inputs={ 'Input': input, 'Filter': filter_param, @@ -1478,7 +1485,9 @@ def batch_norm(input, param_attr=None, bias_attr=None, data_layout='NCHW', - name=None): + name=None, + moving_mean_name=None, + moving_variance_name=None): """ This function helps create an operator to implement the BatchNorm layer using the configurations from the input parameters. @@ -1508,6 +1517,7 @@ def batch_norm(input, attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) mean = helper.create_global_variable( + name=moving_mean_name, dtype=input.dtype, shape=param_shape, persistable=True, @@ -1515,6 +1525,7 @@ def batch_norm(input, helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) variance = helper.create_global_variable( + name=moving_variance_name, dtype=input.dtype, shape=param_shape, persistable=True, diff --git a/python/paddle/v2/fluid/layers/ops.py b/python/paddle/v2/fluid/layers/ops.py index ee3172c7b8dfd65c693e5aee9b55179e654ce7be..c701e79ad266d996038c6868718106664e1009b5 100644 --- a/python/paddle/v2/fluid/layers/ops.py +++ b/python/paddle/v2/fluid/layers/ops.py @@ -59,6 +59,7 @@ __all__ = [ 'elementwise_pow', 'clip', 'clip_by_norm', + 'softmax', 'sequence_softmax', ] + __activations__ diff --git a/python/paddle/v2/fluid/layers/tensor.py b/python/paddle/v2/fluid/layers/tensor.py index c435c5206d1ef1ef57683a1a47bf089be6526f38..704e040b9f478ef61991cfbe175f1cdeaf102763 100644 --- a/python/paddle/v2/fluid/layers/tensor.py +++ b/python/paddle/v2/fluid/layers/tensor.py @@ -35,13 +35,15 @@ __all__ = [ ] -def create_tensor(dtype, name=None): +def create_tensor(dtype, name=None, persistable=False): helper = LayerHelper("create_tensor", **locals()) - return helper.create_variable(name=helper.name, dtype=dtype) + return helper.create_variable( + name=helper.name, dtype=dtype, persistable=persistable) def create_parameter(shape, dtype, + name=None, attr=None, is_bias=False, default_initializer=None): @@ -62,7 +64,7 @@ def create_parameter(shape, """ helper = LayerHelper("create_parameter", **locals()) if attr is None: - attr = ParamAttr() + attr = ParamAttr(name=name) return helper.create_parameter(attr, shape, dtype, is_bias, default_initializer) @@ -295,7 +297,7 @@ def fill_constant_batch_size_like(input, return out -def ones(shape, dtype): +def ones(shape, dtype, force_cpu=False): """ **ones** @@ -319,7 +321,7 @@ def ones(shape, dtype): return fill_constant(value=1.0, **locals()) -def zeros(shape, dtype): +def zeros(shape, dtype, force_cpu=False): """ **zeros** diff --git a/python/paddle/v2/fluid/memory_optimization_transpiler.py b/python/paddle/v2/fluid/memory_optimization_transpiler.py index 956c5b66da28fd8e74d4fd12f249688daa72d8ac..2b00923f5e85e6ba8fcdedebf5bbbc29403472c6 100644 --- a/python/paddle/v2/fluid/memory_optimization_transpiler.py +++ b/python/paddle/v2/fluid/memory_optimization_transpiler.py @@ -31,7 +31,7 @@ dtype_to_size = { class ControlFlowGraph(object): - def __init__(self, Program, ops, forward_num): + def __init__(self, Program, ops, forward_num, skip_opt): self._program = Program self._ops = ops self._forward_num = forward_num @@ -41,6 +41,7 @@ class ControlFlowGraph(object): self._defs = defaultdict(set) self._live_in = defaultdict(set) self._live_out = defaultdict(set) + self._skip_opt = skip_opt def _add_connections(self, connections): for node1, node2 in connections: @@ -130,6 +131,10 @@ class ControlFlowGraph(object): block_desc, x, is_forward).type() != core.VarDesc.VarType.LOD_TENSOR: return False + if x in self._skip_opt: + return False + if not self._find_var(block_desc, x, is_forward).shape(): + return False return True self._build_graph() @@ -140,6 +145,7 @@ class ControlFlowGraph(object): if op.type() == "while" or op.type() == "while_grad": continue block_desc = op.block() + self.current_block_desc = block_desc is_forward = i < self._forward_num if self.pool: defs_can_optimize = filter( @@ -197,28 +203,32 @@ def get_cfgs(input_program): block_desc = pdesc.block(0) op_size = block_desc.op_size() # Get global block ops - ops_list.append(([block_desc.op(i) for i in range(op_size)], op_size)) + ops_list.append( + ([block_desc.op(i) for i in range(op_size)], op_size, set())) while_sub_block_ids = [] while_grad_sub_block_ids = [] - while_pair = [] + while_op_output = set() + while_block_id_pair = [] for i in range(op_size): op = block_desc.op(i) if op.type() == "while": while_sub_block_ids.append(op.attr("sub_block").id) + while_op_output.update(op.output_arg_names()) elif op.type() == "while_grad": while_grad_sub_block_ids.append(op.attr("sub_block").id) + while_op_output.update(op.output_arg_names()) # Find while/while_grad block pair for grad_id in while_grad_sub_block_ids: parent_id = pdesc.block(grad_id).parent if parent_id in while_sub_block_ids: - while_pair.append((parent_id, grad_id)) + while_block_id_pair.append((parent_id, grad_id)) while_sub_block_ids.remove(parent_id) # Get while/while_grad block ops - for parent_id, grad_id in while_pair: + for parent_id, grad_id in while_block_id_pair: while_block_ops = [] while_block = pdesc.block(parent_id) while_block_op_size = while_block.op_size() @@ -230,7 +240,7 @@ def get_cfgs(input_program): for i in range(while_grad_block_op_size): while_block_ops.append(while_grad_block.op(i)) - ops_list.append((while_block_ops, while_block_op_size)) + ops_list.append((while_block_ops, while_block_op_size, while_op_output)) # Process rest while block ops for parent_id in while_sub_block_ids: @@ -242,7 +252,7 @@ def get_cfgs(input_program): ops_list.append((while_block_ops, while_block_op_size)) - cfgs = [ControlFlowGraph(input_program, i, j) for i, j in ops_list] + cfgs = [ControlFlowGraph(input_program, i, j, k) for i, j, k in ops_list] return cfgs diff --git a/python/paddle/v2/fluid/profiler.py b/python/paddle/v2/fluid/profiler.py index d4a2cd7eeabecb60699b5be94d89cf7a916749e7..d33a4c52a8873b1e376eb2077014130bdcad2e12 100644 --- a/python/paddle/v2/fluid/profiler.py +++ b/python/paddle/v2/fluid/profiler.py @@ -103,10 +103,10 @@ def profiler(state, sorted_key=None): core.enable_profiler(prof_state) yield - if sorted_key not in ['calls', 'total', 'max', 'min', 'ave']: - raise ValueError("The state must be in 'calls', 'total', " - "'max', 'min', 'ave'") sorted_key = 'default' if sorted_key is None else sorted_key + if sorted_key not in ['default', 'calls', 'total', 'max', 'min', 'ave']: + raise ValueError("The sorted_key must be None or in 'calls', 'total', " + "'max', 'min' and 'ave'") key_map = { 'default': core.EventSortingKey.kDefault, 'calls': core.EventSortingKey.kCalls, diff --git a/python/paddle/v2/fluid/tests/CMakeLists.txt b/python/paddle/v2/fluid/tests/CMakeLists.txt index 628ce60b406d880d961d705a6abd2b5236fb1c8c..26a80abcb5839e80b5a22f9415315519ce3042e8 100644 --- a/python/paddle/v2/fluid/tests/CMakeLists.txt +++ b/python/paddle/v2/fluid/tests/CMakeLists.txt @@ -5,9 +5,11 @@ if(NOT WITH_DISTRIBUTE) list(REMOVE_ITEM TEST_OPS test_recv_op) endif(NOT WITH_DISTRIBUTE) +list(REMOVE_ITEM TEST_OPS test_warpctc_op) foreach(src ${TEST_OPS}) py_test(${src} SRCS ${src}.py) endforeach() +py_test(test_warpctc_op SRCS test_warpctc_op.py ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR}) add_subdirectory(book) add_subdirectory(book_distribute) diff --git a/python/paddle/v2/fluid/tests/book/.gitignore b/python/paddle/v2/fluid/tests/book/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..f0b574b9396706a1d68393482296360362dca750 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book/.gitignore @@ -0,0 +1 @@ +recognize_digits_*.inference.model diff --git a/python/paddle/v2/fluid/tests/book/CMakeLists.txt b/python/paddle/v2/fluid/tests/book/CMakeLists.txt index dda02c03fd531445c1b33b39a6ded10921991d9c..673c965b662a022739f8d489c331f4de9455a926 100644 --- a/python/paddle/v2/fluid/tests/book/CMakeLists.txt +++ b/python/paddle/v2/fluid/tests/book/CMakeLists.txt @@ -1,34 +1,6 @@ file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") -list(REMOVE_ITEM TEST_OPS test_image_classification_train test_recognize_digits) -py_test(test_image_classification_train_resnet SRCS test_image_classification_train.py ARGS resnet) -py_test(test_image_classification_train_vgg SRCS test_image_classification_train.py ARGS vgg) -py_test(test_recognize_digits_mlp_cpu - SRCS test_recognize_digits.py - ARGS mlp) -py_test(test_recognize_digits_mlp_cuda - SRCS test_recognize_digits.py - ARGS mlp --use_cuda) -py_test(test_recognize_digits_conv_cpu - SRCS test_recognize_digits.py - ARGS conv) -py_test(test_recognize_digits_conv_cuda - SRCS test_recognize_digits.py - ARGS conv --use_cuda) -py_test(test_recognize_digits_mlp_cpu_parallel - SRCS test_recognize_digits.py - ARGS mlp --parallel) -py_test(test_recognize_digits_mlp_cuda_parallel - SRCS test_recognize_digits.py - ARGS mlp --use_cuda --parallel) -py_test(test_recognize_digits_conv_cpu_parallel - SRCS test_recognize_digits.py - ARGS conv --parallel) -py_test(test_recognize_digits_conv_cuda_parallel - SRCS test_recognize_digits.py - ARGS conv --use_cuda --parallel) - # default test foreach(src ${TEST_OPS}) py_test(${src} SRCS ${src}.py) diff --git a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py index 0b954c60b6bc2d721c0373243e747056f8f572cf..27f34b17339db31ef3c07555db946fa76d6f1922 100644 --- a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py +++ b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py @@ -12,44 +12,74 @@ # See the License for the specific language governing permissions and # limitations under the License. -import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid +import contextlib +import unittest -x = fluid.layers.data(name='x', shape=[13], dtype='float32') -y_predict = fluid.layers.fc(input=x, size=1, act=None) +def main(use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return -y = fluid.layers.data(name='y', shape=[1], dtype='float32') + x = fluid.layers.data(name='x', shape=[13], dtype='float32') -cost = fluid.layers.square_error_cost(input=y_predict, label=y) -avg_cost = fluid.layers.mean(x=cost) + y_predict = fluid.layers.fc(input=x, size=1, act=None) -sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) -sgd_optimizer.minimize(avg_cost) + y = fluid.layers.data(name='y', shape=[1], dtype='float32') -BATCH_SIZE = 20 + cost = fluid.layers.square_error_cost(input=y_predict, label=y) + avg_cost = fluid.layers.mean(x=cost) -train_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.uci_housing.train(), buf_size=500), - batch_size=BATCH_SIZE) + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) + sgd_optimizer.minimize(avg_cost) -place = fluid.CPUPlace() -feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) -exe = fluid.Executor(place) + BATCH_SIZE = 20 -exe.run(fluid.default_startup_program()) + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.uci_housing.train(), buf_size=500), + batch_size=BATCH_SIZE) -PASS_NUM = 100 -for pass_id in range(PASS_NUM): - fluid.io.save_persistables(exe, "./fit_a_line.model/") - fluid.io.load_persistables(exe, "./fit_a_line.model/") - for data in train_reader(): - avg_loss_value, = exe.run(fluid.default_main_program(), - feed=feeder.feed(data), - fetch_list=[avg_cost]) - print(avg_loss_value) - if avg_loss_value[0] < 10.0: - exit(0) # if avg cost less than 10.0, we think our code is good. -exit(1) + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) + exe = fluid.Executor(place) + + exe.run(fluid.default_startup_program()) + + PASS_NUM = 100 + for pass_id in range(PASS_NUM): + fluid.io.save_persistables(exe, "./fit_a_line.model/") + fluid.io.load_persistables(exe, "./fit_a_line.model/") + for data in train_reader(): + avg_loss_value, = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) + print(avg_loss_value) + if avg_loss_value[0] < 10.0: + return + raise AssertionError("Fit a line cost is too large, {0:2.2}".format( + avg_loss_value[0])) + + +class TestFitALine(unittest.TestCase): + def test_cpu(self): + with self.program_scope_guard(): + main(use_cuda=False) + + def test_cuda(self): + with self.program_scope_guard(): + main(use_cuda=True) + + @contextlib.contextmanager + def program_scope_guard(self): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py index 30582a21d0a5eeab125f3a2764b45b51aa4f94b6..a4168d16db06f904faed811fdda3f0fe52f0b27b 100644 --- a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py +++ b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py @@ -14,10 +14,10 @@ from __future__ import print_function -import sys - import paddle.v2 as paddle import paddle.v2.fluid as fluid +import unittest +import contextlib def resnet_cifar10(input, depth=32): @@ -89,56 +89,89 @@ def vgg16_bn_drop(input): return fc2 -classdim = 10 -data_shape = [3, 32, 32] - -images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') -label = fluid.layers.data(name='label', shape=[1], dtype='int64') - -net_type = "vgg" -if len(sys.argv) >= 2: - net_type = sys.argv[1] - -if net_type == "vgg": - print("train vgg net") - net = vgg16_bn_drop(images) -elif net_type == "resnet": - print("train resnet") - net = resnet_cifar10(images, 32) -else: - raise ValueError("%s network is not supported" % net_type) - -predict = fluid.layers.fc(input=net, size=classdim, act='softmax') -cost = fluid.layers.cross_entropy(input=predict, label=label) -avg_cost = fluid.layers.mean(x=cost) - -optimizer = fluid.optimizer.Adam(learning_rate=0.001) -opts = optimizer.minimize(avg_cost) - -accuracy = fluid.evaluator.Accuracy(input=predict, label=label) - -BATCH_SIZE = 128 -PASS_NUM = 1 - -train_reader = paddle.batch( - paddle.reader.shuffle( - paddle.dataset.cifar.train10(), buf_size=128 * 10), - batch_size=BATCH_SIZE) - -place = fluid.CPUPlace() -exe = fluid.Executor(place) -feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) -exe.run(fluid.default_startup_program()) - -for pass_id in range(PASS_NUM): - accuracy.reset(exe) - for data in train_reader(): - loss, acc = exe.run(fluid.default_main_program(), - feed=feeder.feed(data), - fetch_list=[avg_cost] + accuracy.metrics) - pass_acc = accuracy.eval(exe) - print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( - pass_acc)) - # this model is slow, so if we can train two mini batch, we think it works properly. - exit(0) -exit(1) +def main(net_type, use_cuda): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + + classdim = 10 + data_shape = [3, 32, 32] + + images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + if net_type == "vgg": + print("train vgg net") + net = vgg16_bn_drop(images) + elif net_type == "resnet": + print("train resnet") + net = resnet_cifar10(images, 32) + else: + raise ValueError("%s network is not supported" % net_type) + + predict = fluid.layers.fc(input=net, size=classdim, act='softmax') + cost = fluid.layers.cross_entropy(input=predict, label=label) + avg_cost = fluid.layers.mean(x=cost) + + optimizer = fluid.optimizer.Adam(learning_rate=0.001) + optimizer.minimize(avg_cost) + + accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + + BATCH_SIZE = 128 + PASS_NUM = 1 + + train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.cifar.train10(), buf_size=128 * 10), + batch_size=BATCH_SIZE) + + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + exe = fluid.Executor(place) + feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) + exe.run(fluid.default_startup_program()) + + loss = 0.0 + for pass_id in range(PASS_NUM): + accuracy.reset(exe) + for data in train_reader(): + loss, acc = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost] + accuracy.metrics) + pass_acc = accuracy.eval(exe) + print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( + pass_acc)) + return + + raise AssertionError( + "Image classification loss is too large, {0:2.2}".format(loss)) + + +class TestImageClassification(unittest.TestCase): + def test_vgg_cuda(self): + with self.scope_prog_guard(): + main('vgg', use_cuda=True) + + def test_resnet_cuda(self): + with self.scope_prog_guard(): + main('resnet', use_cuda=True) + + def test_vgg_cpu(self): + with self.scope_prog_guard(): + main('vgg', use_cuda=False) + + def test_resnet_cpu(self): + with self.scope_prog_guard(): + main('resnet', use_cuda=False) + + @contextlib.contextmanager + def scope_prog_guard(self): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/book/test_machine_translation.py b/python/paddle/v2/fluid/tests/book/test_machine_translation.py index 82b760d693560dae1ab1fa39afdc186f60423e65..5716ddd3dda90958ad1008679e018542c4fb73d7 100644 --- a/python/paddle/v2/fluid/tests/book/test_machine_translation.py +++ b/python/paddle/v2/fluid/tests/book/test_machine_translation.py @@ -11,21 +11,20 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import contextlib import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid -import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as pd from paddle.v2.fluid.executor import Executor +import unittest dict_size = 30000 source_dict_dim = target_dict_dim = dict_size -src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) hidden_dim = 32 word_dim = 16 -IS_SPARSE = True batch_size = 2 max_length = 8 topk_size = 50 @@ -34,10 +33,8 @@ beam_size = 2 decoder_size = hidden_dim -place = core.CPUPlace() - -def encoder(): +def encoder(is_sparse): # encoder src_word_id = pd.data( name="src_word_id", shape=[1], dtype='int64', lod_level=1) @@ -45,7 +42,7 @@ def encoder(): input=src_word_id, size=[dict_size, word_dim], dtype='float32', - is_sparse=IS_SPARSE, + is_sparse=is_sparse, param_attr=fluid.ParamAttr(name='vemb')) fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') @@ -54,7 +51,7 @@ def encoder(): return encoder_out -def decoder_train(context): +def decoder_train(context, is_sparse): # decoder trg_language_word = pd.data( name="target_language_word", shape=[1], dtype='int64', lod_level=1) @@ -62,7 +59,7 @@ def decoder_train(context): input=trg_language_word, size=[dict_size, word_dim], dtype='float32', - is_sparse=IS_SPARSE, + is_sparse=is_sparse, param_attr=fluid.ParamAttr(name='vemb')) rnn = pd.DynamicRNN() @@ -82,10 +79,10 @@ def decoder_train(context): return rnn() -def decoder_decode(context): +def decoder_decode(context, is_sparse): init_state = context array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length) - counter = pd.zeros(shape=[1], dtype='int64') + counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True) # fill the first element with init_state state_array = pd.create_array('float32') @@ -117,7 +114,7 @@ def decoder_decode(context): input=pre_ids, size=[dict_size, word_dim], dtype='float32', - is_sparse=IS_SPARSE) + is_sparse=is_sparse) # use rnn unit to update rnn current_state = pd.fc(input=[pre_ids_emb, pre_state_expanded], @@ -150,7 +147,7 @@ def decoder_decode(context): def set_init_lod(data, lod, place): - res = core.LoDTensor() + res = fluid.LoDTensor() res.set(data, place) res.set_lod(lod) return res @@ -165,15 +162,19 @@ def to_lodtensor(data, place): lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = core.LoDTensor() + res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res -def train_main(): - context = encoder() - rnn_out = decoder_train(context) +def train_main(use_cuda, is_sparse): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + + context = encoder(is_sparse) + rnn_out = decoder_train(context, is_sparse) label = pd.data( name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) cost = pd.cross_entropy(input=rnn_out, label=label) @@ -212,9 +213,13 @@ def train_main(): batch_id += 1 -def decode_main(): - context = encoder() - translation_ids, translation_scores = decoder_decode(context) +def decode_main(use_cuda, is_sparse): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() + + context = encoder(is_sparse) + translation_ids, translation_scores = decoder_decode(context, is_sparse) exe = Executor(place) exe.run(framework.default_startup_program()) @@ -250,6 +255,60 @@ def decode_main(): break +class TestMachineTranslation(unittest.TestCase): + pass + + +@contextlib.contextmanager +def scope_prog_guard(): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + yield + + +def inject_test_train(use_cuda, is_sparse): + f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse' + if is_sparse else 'dense') + + def f(*args): + with scope_prog_guard(): + train_main(use_cuda, is_sparse) + + setattr(TestMachineTranslation, f_name, f) + + +def inject_test_decode(use_cuda, is_sparse, decorator=None): + f_name = 'test_{0}_{1}_decode'.format('cuda' + if use_cuda else 'cpu', 'sparse' + if is_sparse else 'dense') + + def f(*args): + with scope_prog_guard(): + decode_main(use_cuda, is_sparse) + + if decorator is not None: + f = decorator(f) + + setattr(TestMachineTranslation, f_name, f) + + +for _use_cuda_ in (False, True): + for _is_sparse_ in (False, True): + inject_test_train(_use_cuda_, _is_sparse_) + +for _use_cuda_ in (False, True): + for _is_sparse_ in (False, True): + + _decorator_ = None + if _use_cuda_: + _decorator_ = unittest.skip( + reason='Beam Search does not support CUDA!') + + inject_test_decode( + is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_) + if __name__ == '__main__': - # train_main() - decode_main() + unittest.main() diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits.py index b4b6020f58e7538dfe0f98c17d61f3614c3c6fc4..fb6b1f7192d51dcd654543e4c4ae5ee0c6fe060f 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits.py @@ -17,6 +17,7 @@ import paddle.v2.fluid as fluid import paddle.v2 as paddle import sys import numpy +import unittest def parse_arg(): @@ -74,18 +75,18 @@ def conv_net(img, label): return loss_net(conv_pool_2, label) -def train(args, save_dirname=None): - print("recognize digits with args: {0}".format(" ".join(sys.argv[1:]))) - +def train(nn_type, use_cuda, parallel, save_dirname): + if use_cuda and not fluid.core.is_compiled_with_cuda(): + return img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') - if args.nn_type == 'mlp': + if nn_type == 'mlp': net_conf = mlp else: net_conf = conv_net - if args.parallel: + if parallel: places = fluid.layers.get_places() pd = fluid.layers.ParallelDo(places) with pd.do(): @@ -107,7 +108,7 @@ def train(args, save_dirname=None): optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer.minimize(avg_loss) - place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) @@ -147,13 +148,14 @@ def train(args, save_dirname=None): 'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'. format(pass_id, batch_id + 1, float(avg_loss_val), float(acc_val))) + raise AssertionError("Loss of recognize digits is too large") -def infer(args, save_dirname=None): +def infer(use_cuda, save_dirname=None): if save_dirname is None: return - place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) # Use fluid.io.load_inference_model to obtain the inference program desc, @@ -164,7 +166,9 @@ def infer(args, save_dirname=None): fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) # The input's dimension of conv should be 4-D or 5-D. - tensor_img = numpy.random.rand(1, 1, 28, 28).astype("float32") + # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0]. + tensor_img = numpy.random.uniform(-1.0, 1.0, + [1, 1, 28, 28]).astype("float32") # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. @@ -174,11 +178,48 @@ def infer(args, save_dirname=None): print("infer results: ", results[0]) -if __name__ == '__main__': - args = parse_arg() - if not args.use_cuda and not args.parallel: - save_dirname = "recognize_digits_" + args.nn_type + ".inference.model" +def main(use_cuda, parallel, nn_type): + if not use_cuda and not parallel: + save_dirname = "recognize_digits_" + nn_type + ".inference.model" else: save_dirname = None - train(args, save_dirname) - infer(args, save_dirname) + + train( + nn_type=nn_type, + use_cuda=use_cuda, + parallel=parallel, + save_dirname=save_dirname) + infer(use_cuda=use_cuda, save_dirname=save_dirname) + + +class TestRecognizeDigits(unittest.TestCase): + pass + + +def inject_test_method(use_cuda, parallel, nn_type): + def __impl__(self): + prog = fluid.Program() + startup_prog = fluid.Program() + scope = fluid.core.Scope() + with fluid.scope_guard(scope): + with fluid.program_guard(prog, startup_prog): + main(use_cuda, parallel, nn_type) + + fn = 'test_{0}_{1}_{2}'.format(nn_type, 'cuda' + if use_cuda else 'cpu', 'parallel' + if parallel else 'normal') + + setattr(TestRecognizeDigits, fn, __impl__) + + +def inject_all_tests(): + for use_cuda in (False, True): + for parallel in (False, True): + for nn_type in ('mlp', 'conv'): + inject_test_method(use_cuda, parallel, nn_type) + + +inject_all_tests() + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_bipartite_match_op.py b/python/paddle/v2/fluid/tests/test_bipartite_match_op.py index 74138298978c7c18936f53761b313887f07aea81..4943bbb3388c3a476596b2fd4dd28605ee7be9e0 100644 --- a/python/paddle/v2/fluid/tests/test_bipartite_match_op.py +++ b/python/paddle/v2/fluid/tests/test_bipartite_match_op.py @@ -62,7 +62,7 @@ def batch_bipartite_match(distance, lod): return match_indices, match_dist -class TestBipartiteMatchOpForWithLoD(OpTest): +class TestBipartiteMatchOpWithLoD(OpTest): def setUp(self): self.op_type = 'bipartite_match' lod = [[0, 5, 11, 23]] @@ -72,7 +72,7 @@ class TestBipartiteMatchOpForWithLoD(OpTest): self.inputs = {'DistMat': (dist, lod)} self.outputs = { 'ColToRowMatchIndices': (match_indices), - 'ColToRowMatchDis': (match_dist), + 'ColToRowMatchDist': (match_dist), } def test_check_output(self): @@ -89,7 +89,7 @@ class TestBipartiteMatchOpWithoutLoD(OpTest): self.inputs = {'DistMat': dist} self.outputs = { 'ColToRowMatchIndices': match_indices, - 'ColToRowMatchDis': match_dist, + 'ColToRowMatchDist': match_dist, } def test_check_output(self): diff --git a/python/paddle/v2/fluid/tests/test_box_coder_op.py b/python/paddle/v2/fluid/tests/test_box_coder_op.py new file mode 100644 index 0000000000000000000000000000000000000000..0dc18476fd5dce7cd293f6cb85f419be7d88ec95 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_box_coder_op.py @@ -0,0 +1,127 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +import sys +import math +from op_test import OpTest + + +def box_coder(target_box, prior_box, prior_box_var, output_box, code_type): + prior_box_x = ( + (prior_box[:, 2] + prior_box[:, 0]) / 2).reshape(1, prior_box.shape[0]) + prior_box_y = ( + (prior_box[:, 3] + prior_box[:, 1]) / 2).reshape(1, prior_box.shape[0]) + prior_box_width = ( + (prior_box[:, 2] - prior_box[:, 0])).reshape(1, prior_box.shape[0]) + prior_box_height = ( + (prior_box[:, 3] - prior_box[:, 1])).reshape(1, prior_box.shape[0]) + prior_box_var = prior_box_var.reshape(1, prior_box_var.shape[0], + prior_box_var.shape[1]) + + if (code_type == "EncodeCenterSize"): + target_box_x = ((target_box[:, 2] + target_box[:, 0]) / 2).reshape( + target_box.shape[0], 1) + target_box_y = ((target_box[:, 3] + target_box[:, 1]) / 2).reshape( + target_box.shape[0], 1) + target_box_width = ((target_box[:, 2] - target_box[:, 0])).reshape( + target_box.shape[0], 1) + target_box_height = ((target_box[:, 3] - target_box[:, 1])).reshape( + target_box.shape[0], 1) + + output_box[:,:,0] = (target_box_x - prior_box_x) / prior_box_width / \ + prior_box_var[:,:,0] + output_box[:,:,1] = (target_box_y - prior_box_y) / prior_box_height / \ + prior_box_var[:,:,1] + output_box[:,:,2] = np.log(np.fabs(target_box_width / prior_box_width)) / \ + prior_box_var[:,:,2] + output_box[:,:,3] = np.log(np.fabs(target_box_height / prior_box_height)) / \ + prior_box_var[:,:,3] + + elif (code_type == "DecodeCenterSize"): + target_box = target_box.reshape(target_box.shape[0], 1, + target_box.shape[1]) + target_box_x = prior_box_var[:,:,0] * target_box[:,:,0] * \ + prior_box_width + prior_box_x + target_box_y = prior_box_var[:,:,1] * target_box[:,:,1] * \ + prior_box_height + prior_box_y + target_box_width = np.exp(prior_box_var[:,:,2] * target_box[:,:,2]) * \ + prior_box_width + target_box_height = np.exp(prior_box_var[:,:,3] * target_box[:,:,3]) * \ + prior_box_height + output_box[:, :, 0] = target_box_x - target_box_width / 2 + output_box[:, :, 1] = target_box_y - target_box_height / 2 + output_box[:, :, 2] = target_box_x + target_box_width / 2 + output_box[:, :, 3] = target_box_y + target_box_height / 2 + + +def batch_box_coder(prior_box, prior_box_var, target_box, lod, code_type): + n = target_box.shape[0] + m = prior_box.shape[0] + output_box = np.zeros((n, m, 4), dtype=np.float32) + for i in range(len(lod) - 1): + box_coder(target_box[lod[i]:lod[i + 1], :], prior_box, prior_box_var, + output_box[lod[i]:lod[i + 1], :, :], code_type) + return output_box + + +class TestBoxCoderOp(OpTest): + def test_check_output(self): + self.check_output() + + def setUp(self): + self.op_type = "box_coder" + lod = [[0, 20]] + prior_box = np.random.random((10, 4)).astype('float32') + prior_box_var = np.random.random((10, 4)).astype('float32') + target_box = np.random.random((20, 4)).astype('float32') + code_type = "DecodeCenterSize" + output_box = batch_box_coder(prior_box, prior_box_var, target_box, + lod[0], code_type) + + self.inputs = { + 'PriorBox': prior_box, + 'PriorBoxVar': prior_box_var, + 'TargetBox': target_box, + } + self.attrs = {'code_type': 'decode_center_size'} + self.outputs = {'OutputBox': output_box} + + +class TestBoxCoderOpWithLoD(OpTest): + def test_check_output(self): + self.check_output() + + def setUp(self): + self.op_type = "box_coder" + lod = [[0, 4, 12, 20]] + prior_box = np.random.random((10, 4)).astype('float32') + prior_box_var = np.random.random((10, 4)).astype('float32') + target_box = np.random.random((20, 4)).astype('float32') + code_type = "EncodeCenterSize" + output_box = batch_box_coder(prior_box, prior_box_var, target_box, + lod[0], code_type) + + self.inputs = { + 'PriorBox': prior_box, + 'PriorBoxVar': prior_box_var, + 'TargetBox': (target_box, lod), + } + self.attrs = {'code_type': 'encode_center_size'} + self.outputs = {'OutputBox': output_box} + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv2d_op.py b/python/paddle/v2/fluid/tests/test_conv2d_op.py index 24de74d730eedbccb4837598bd6d2eb92da59e0d..7512ea333e37d5f4f0102531d8d13f8c2a744b8d 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_op.py @@ -241,6 +241,30 @@ class TestCUDNNWith1x1(TestWith1x1): self.op_type = "conv2d" +class TestDepthwiseConv(TestConv2dOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [2, 2] + self.input_size = [2, 3, 5, 5] # NCHW + self.groups = 3 + assert np.mod(self.input_size[1], self.groups) == 0 + f_c = self.input_size[1] / self.groups + self.filter_size = [6, f_c, 3, 3] + self.op_type = "depthwise_conv2d" + + +class TestDepthwiseConv2(TestConv2dOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + self.groups = 3 + assert np.mod(self.input_size[1], self.groups) == 0 + f_c = self.input_size[1] / self.groups + self.filter_size = [6, f_c, 3, 3] + self.op_type = "depthwise_conv2d" + + # cudnn v5 does not support dilation conv. # class TestCUDNNWithDilation(TestWithDilation): # def init_op_type(self): diff --git a/python/paddle/v2/fluid/tests/test_fetch_var.py b/python/paddle/v2/fluid/tests/test_fetch_var.py new file mode 100644 index 0000000000000000000000000000000000000000..ed75a350b0bcb220c8435d60e1978c27da84a24c --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_fetch_var.py @@ -0,0 +1,37 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle.v2.fluid as fluid +import paddle.v2.fluid.layers as layers +import op_test +import numpy +import unittest + + +class TestFetchVar(op_test.OpTest): + def test_fetch_var(self): + val = numpy.array([1, 3, 5]).astype(numpy.int32) + x = layers.create_tensor(dtype="int32", persistable=True, name="x") + layers.assign(input=val, output=x) + exe = fluid.Executor(fluid.CPUPlace()) + exe.run(fluid.default_main_program(), feed={}, fetch_list=[]) + fetched_x = fluid.fetch_var("x") + self.assertTrue( + numpy.array_equal(fetched_x, val), + "fetch_x=%s val=%s" % (fetched_x, val)) + self.assertEqual(fetched_x.dtype, val.dtype) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py index 3f54e28defb76d3430a82e791578e20b84833f16..aea43c2517a02c72c1ee3307afdd3b21910f0064 100644 --- a/python/paddle/v2/fluid/tests/test_layers.py +++ b/python/paddle/v2/fluid/tests/test_layers.py @@ -223,6 +223,14 @@ class TestBook(unittest.TestCase): self.assertIsNotNone(layers.sequence_softmax(x=seq)) print(str(program)) + def test_softmax(self): + program = Program() + with program_guard(program): + data = layers.data(name='data', shape=[10], dtype='float32') + hid = layers.fc(input=data, size=20) + self.assertIsNotNone(layers.softmax(x=hid)) + print(str(program)) + def test_get_places(self): program = Program() with program_guard(program): diff --git a/python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py b/python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py new file mode 100755 index 0000000000000000000000000000000000000000..c27573c3d69037bc48e0b6a90636b3f027f15a41 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_mine_hard_examples_op.py @@ -0,0 +1,100 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import numpy as np +import sys +import math +from op_test import OpTest + + +class TestMineHardExamplesOp(OpTest): + def set_data(self): + self.init_test_data() + self.inputs = { + 'ClsLoss': self.cls_loss, + 'LocLoss': self.loc_loss, + 'MatchIndices': self.match_indices, + 'MatchDist': self.match_dis + } + + self.attrs = { + 'neg_pos_ratio': self.neg_pos_ratio, + 'neg_overlap': self.neg_overlap, + 'sample_size': self.sample_size, + 'mining_type': self.mining_type + } + + self.outputs = { + 'NegIndices': (self.neg_indices, self.neg_indices_lod), + 'UpdatedMatchIndices': self.updated_match_indices + } + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + return + + def setUp(self): + self.op_type = "mine_hard_examples" + self.set_data() + + def init_test_data(self): + self.neg_pos_ratio = 1.0 + self.neg_overlap = 0.5 + self.sample_size = 0 + self.mining_type = "max_negative" + self.cls_loss = np.array([[0.1, 0.1, 0.3], + [0.3, 0.1, 0.1]]).astype('float32') + + self.loc_loss = np.array([[0.1, 0.2, 0.3], + [0.3, 0.4, 0.1]]).astype('float32') + + self.match_dis = np.array([[0.2, 0.4, 0.8], + [0.1, 0.9, 0.3]]).astype('float32') + + self.match_indices = np.array([[0, -1, -1], + [-1, 0, -1]]).astype('int32') + + self.updated_match_indices = self.match_indices + + self.neg_indices_lod = [[0, 1, 2]] + self.neg_indices = np.array([[1], [0]]).astype('int32') + + +class TestMineHardExamplesOpHardExample(TestMineHardExamplesOp): + def init_test_data(self): + super(TestMineHardExamplesOpHardExample, self).init_test_data() + self.mining_type = "hard_example" + self.sample_size = 2 + + self.cls_loss = np.array([[0.5, 0.1, 0.3], + [0.3, 0.1, 0.1]]).astype('float32') + + self.loc_loss = np.array([[0.2, 0.2, 0.3], + [0.3, 0.1, 0.2]]).astype('float32') + + self.match_indices = np.array([[0, -1, -1], + [-1, 0, -1]]).astype('int32') + + self.updated_match_indices = np.array([[0, -1, -1], + [-1, -1, -1]]).astype('int32') + + self.neg_indices_lod = [[0, 1, 3]] + self.neg_indices = np.array([[2], [0], [2]]).astype('int32') + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_multiclass_nms_op.py b/python/paddle/v2/fluid/tests/test_multiclass_nms_op.py new file mode 100644 index 0000000000000000000000000000000000000000..3b80d2359b083d30f9a5a7b8cc18aaf1ca5146c1 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_multiclass_nms_op.py @@ -0,0 +1,226 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +import unittest +import numpy as np +import copy +from op_test import OpTest + + +def iou(box_a, box_b): + """Apply intersection-over-union overlap between box_a and box_b + """ + xmin_a = min(box_a[0], box_a[2]) + ymin_a = min(box_a[1], box_a[3]) + xmax_a = max(box_a[0], box_a[2]) + ymax_a = max(box_a[1], box_a[3]) + + xmin_b = min(box_b[0], box_b[2]) + ymin_b = min(box_b[1], box_b[3]) + xmax_b = max(box_b[0], box_b[2]) + ymax_b = max(box_b[1], box_b[3]) + + area_a = (ymax_a - ymin_a) * (xmax_a - xmin_a) + area_b = (ymax_b - ymin_b) * (xmax_b - xmin_b) + if area_a <= 0 and area_b <= 0: + return 0.0 + + xa = max(xmin_a, xmin_b) + ya = max(ymin_a, ymin_b) + xb = min(xmax_a, xmax_b) + yb = min(ymax_a, ymax_b) + + inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0) + + box_a_area = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1]) + box_b_area = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1]) + + iou_ratio = inter_area / (area_a + area_b - inter_area) + + return iou_ratio + + +def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0): + """Apply non-maximum suppression at test time to avoid detecting too many + overlapping bounding boxes for a given object. + Args: + boxes: (tensor) The location preds for the img, Shape: [num_priors,4]. + scores: (tensor) The class predscores for the img, Shape:[num_priors]. + score_threshold: (float) The confidence thresh for filtering low + confidence boxes. + nms_threshold: (float) The overlap thresh for suppressing unnecessary + boxes. + top_k: (int) The maximum number of box preds to consider. + eta: (float) The parameter for adaptive NMS. + Return: + The indices of the kept boxes with respect to num_priors. + """ + all_scores = copy.deepcopy(scores) + all_scores = all_scores.flatten() + selected_indices = np.argwhere(all_scores > score_threshold) + selected_indices = selected_indices.flatten() + all_scores = all_scores[selected_indices] + + sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort') + sorted_scores = all_scores[sorted_indices] + if top_k > -1 and top_k < sorted_indices.shape[0]: + sorted_indices = sorted_indices[:top_k] + sorted_scores = sorted_scores[:top_k] + + selected_indices = [] + adaptive_threshold = nms_threshold + for i in range(sorted_scores.shape[0]): + idx = sorted_indices[i] + keep = True + for k in range(len(selected_indices)): + if keep: + kept_idx = selected_indices[k] + overlap = iou(boxes[idx], boxes[kept_idx]) + keep = True if overlap <= adaptive_threshold else False + else: + break + if keep: + selected_indices.append(idx) + if keep and eta < 1 and adaptive_threshold > 0.5: + adaptive_threshold *= eta + return selected_indices + + +def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold, + nms_top_k, keep_top_k): + class_num = scores.shape[0] + priorbox_num = scores.shape[1] + + selected_indices = {} + num_det = 0 + for c in range(class_num): + if c == background: continue + indices = nms(boxes, scores[c], score_threshold, nms_threshold, + nms_top_k) + selected_indices[c] = indices + num_det += len(indices) + + if keep_top_k > -1 and num_det > keep_top_k: + score_index = [] + for c, indices in selected_indices.iteritems(): + for idx in indices: + score_index.append((scores[c][idx], c, idx)) + + sorted_score_index = sorted( + score_index, key=lambda tup: tup[0], reverse=True) + sorted_score_index = sorted_score_index[:keep_top_k] + selected_indices = {} + + for _, c, _ in sorted_score_index: + selected_indices[c] = [] + for s, c, idx in sorted_score_index: + selected_indices[c].append(idx) + num_det = keep_top_k + + return selected_indices, num_det + + +def batched_multiclass_nms(boxes, scores, background, score_threshold, + nms_threshold, nms_top_k, keep_top_k): + batch_size = scores.shape[0] + + det_outs = [] + lod = [0] + for n in range(batch_size): + nmsed_outs, nmsed_num = multiclass_nms(boxes, scores[n], background, + score_threshold, nms_threshold, + nms_top_k, keep_top_k) + lod.append(lod[-1] + nmsed_num) + if nmsed_num == 0: continue + + for c, indices in nmsed_outs.iteritems(): + for idx in indices: + xmin, ymin, xmax, ymax = boxes[idx][:] + det_outs.append([c, scores[n][c][idx], xmin, ymin, xmax, ymax]) + + return det_outs, lod + + +class TestMulticlassNMSOp(OpTest): + def set_argument(self): + self.score_threshold = 0.01 + + def setUp(self): + self.set_argument() + N = 7 + M = 1200 + C = 21 + BOX_SIZE = 4 + + background = 0 + nms_threshold = 0.3 + nms_top_k = 400 + keep_top_k = 200 + score_threshold = self.score_threshold + + scores = np.random.random((N * M, C)).astype('float32') + + def softmax(x): + shiftx = x - np.max(x).clip(-64.) + exps = np.exp(shiftx) + return exps / np.sum(exps) + + scores = np.apply_along_axis(softmax, 1, scores) + scores = np.reshape(scores, (N, M, C)) + scores = np.transpose(scores, (0, 2, 1)) + + boxes = np.random.random((M, BOX_SIZE)).astype('float32') + boxes[:, 0:2] = boxes[:, 0:2] * 0.5 + boxes[:, 2:4] = boxes[:, 2:4] * 0.5 + 0.5 + + nmsed_outs, lod = batched_multiclass_nms(boxes, scores, background, + score_threshold, nms_threshold, + nms_top_k, keep_top_k) + nmsed_outs = [-1] if not nmsed_outs else nmsed_outs + nmsed_outs = np.array(nmsed_outs).astype('float32') + + self.op_type = 'multiclass_nms' + self.inputs = {'BBoxes': boxes, 'Scores': scores} + self.outputs = {'Out': (nmsed_outs, [lod])} + self.attrs = { + 'background_label': 0, + 'nms_threshold': nms_threshold, + 'nms_top_k': nms_top_k, + 'keep_top_k': keep_top_k, + 'score_threshold': score_threshold, + 'nms_eta': 1.0, + } + + def test_check_output(self): + self.check_output() + + +class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp): + def set_argument(self): + # Here set 2.0 to test the case there is no outputs. + # In practical use, 0.0 < score_threshold < 1.0 + self.score_threshold = 2.0 + + +class TestIOU(unittest.TestCase): + def test_iou(self): + box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32') + box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32') + + expt_output = np.array([2.0 / 16.0]).astype('float32') + calc_output = np.array([iou(box1, box2)]).astype('float32') + self.assertTrue(np.allclose(calc_output, expt_output)) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_protobuf_descs.py b/python/paddle/v2/fluid/tests/test_protobuf_descs.py index 9034b2f4ef1c983ef224b14b8f602f87e6ce94b0..8f335d13db3ddb999058a58cadc57ff23ff1fbc5 100644 --- a/python/paddle/v2/fluid/tests/test_protobuf_descs.py +++ b/python/paddle/v2/fluid/tests/test_protobuf_descs.py @@ -115,6 +115,18 @@ class TestVarDesc(unittest.TestCase): self.assertEqual(src_shape, res_shape) self.assertEqual(core.VarDesc.VarType.SELECTED_ROWS, var.type()) + def test_multiple_shape(self): + program_desc = core.ProgramDesc() + block = program_desc.block(0) + var = block.var('my_reader') + var.set_type(core.VarDesc.VarType.READER) + var.set_tensor_num(3) + src_shapes = [[2, 3, 3], [4, 5], [6, 7, 8, 9]] + var.set_shapes(src_shapes) + res_shapes = var.shapes() + self.assertEqual(src_shapes, res_shapes) + self.assertEqual(core.VarDesc.VarType.READER, var.type()) + def test_dtype(self): program_desc = core.ProgramDesc() block = program_desc.block(0) @@ -124,6 +136,30 @@ class TestVarDesc(unittest.TestCase): self.assertEqual(core.DataType.INT32, var.dtype()) self.assertEqual(core.VarDesc.VarType.LOD_TENSOR, var.type()) + def test_multiple_dtype(self): + program_desc = core.ProgramDesc() + block = program_desc.block(0) + var = block.var('my_reader') + var.set_type(core.VarDesc.VarType.READER) + var.set_tensor_num(3) + src_types = [ + core.DataType.INT32, core.DataType.FP64, core.DataType.FP32 + ] + var.set_dtypes(src_types) + self.assertEqual(src_types, var.dtypes()) + self.assertEqual(core.VarDesc.VarType.READER, var.type()) + + def test_multiple_lod_level(self): + program_desc = core.ProgramDesc() + block = program_desc.block(0) + var = block.var('my_reader') + var.set_type(core.VarDesc.VarType.READER) + var.set_tensor_num(3) + src_types = [3, 1, 2] + var.set_lod_levels(src_types) + self.assertEqual(src_types, var.lod_levels()) + self.assertEqual(core.VarDesc.VarType.READER, var.type()) + class TestBlockDesc(unittest.TestCase): def test_add_var(self):