提交 005f1923 编写于 作者: Q Qiao Longfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into optimize-sum-seq-pooling-op

......@@ -25,5 +25,6 @@ third_party/
bazel-*
third_party/
build_*
# clion workspace.
cmake-build-*
......@@ -72,6 +72,7 @@ option(WITH_INFERENCE "Compile fluid inference library" ON)
option(WITH_INFERENCE_API_TEST "Test fluid inference high-level api interface" OFF)
option(WITH_SYSTEM_BLAS "Use system blas library" OFF)
option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VERSION})
option(WITH_FAST_MATH "Make use of fast math library, might affect the precision to some extent" ON)
# PY_VERSION
if(NOT PY_VERSION)
......
......@@ -40,7 +40,7 @@ set(OPENBLAS_LIB_SEARCH_PATHS
/usr/local/opt/openblas/lib)
find_path(OPENBLAS_INC_DIR NAMES cblas.h
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS} NO_DEFAULT_PATH)
find_path(OPENBLAS_LAPACKE_INC_DIR NAMES lapacke.h
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
find_library(OPENBLAS_LIB NAMES openblas
......
......@@ -175,7 +175,10 @@ list(APPEND CUDA_NVCC_FLAGS "-std=c++11")
list(APPEND CUDA_NVCC_FLAGS "-Xcompiler -fPIC")
endif(NOT WIN32)
list(APPEND CUDA_NVCC_FLAGS "--use_fast_math")
if(WITH_FAST_MATH)
# Make use of fast math library. https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
list(APPEND CUDA_NVCC_FLAGS "--use_fast_math")
endif()
# in cuda9, suppress cuda warning on eigen
list(APPEND CUDA_NVCC_FLAGS "-w")
# Set :expt-relaxed-constexpr to suppress Eigen warnings
......
......@@ -3,6 +3,14 @@ INCLUDE(ExternalProject)
SET(EIGEN_SOURCE_DIR ${THIRD_PARTY_PATH}/eigen3)
SET(EIGEN_INCLUDE_DIR ${EIGEN_SOURCE_DIR}/src/extern_eigen3)
INCLUDE_DIRECTORIES(${EIGEN_INCLUDE_DIR})
if(NOT WITH_FAST_MATH)
# EIGEN_FAST_MATH: https://eigen.tuxfamily.org/dox/TopicPreprocessorDirectives.html
# enables some optimizations which might affect the accuracy of the result.
# This currently enables the SSE vectorization of sin() and cos(),
# and speedups sqrt() for single precision.
# Defined to 1 by default. Define it to 0 to disable.
add_definitions(-DEIGEN_FAST_MATH=0)
endif()
if(WITH_AMD_GPU)
ExternalProject_Add(
......
......@@ -27,7 +27,7 @@ IF(NOT ${CBLAS_FOUND})
SET(CBLAS_SOURCES_DIR ${THIRD_PARTY_PATH}/openblas)
SET(CBLAS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/openblas)
SET(CBLAS_INCLUDE_DIR "${CBLAS_INSTALL_DIR}/include" CACHE PATH "openblas include directory." FORCE)
SET(CBLAS_INC_DIR "${CBLAS_INSTALL_DIR}/include" CACHE PATH "openblas include directory." FORCE)
SET(CBLAS_LIBRARIES
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
......@@ -96,7 +96,7 @@ IF(NOT ${CBLAS_FOUND})
ENDIF(NOT WIN32)
SET(CBLAS_PROVIDER openblas)
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INCLUDE_DIR} DESTINATION third_party/openblas)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
# install the whole directory.
IF(ANDROID)
......@@ -117,8 +117,8 @@ IF(NOT ${CBLAS_FOUND})
ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
MESSAGE(STATUS "BLAS Include: ${CBLAS_INCLUDE_DIR}")
INCLUDE_DIRECTORIES(${CBLAS_INCLUDE_DIR})
MESSAGE(STATUS "BLAS Include: ${CBLAS_INC_DIR}")
INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
......
......@@ -157,6 +157,8 @@ if (APPLE)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif()
# On Mac OS X register class specifier is deprecated and will cause warning error on latest clang 10.0
set (COMMON_FLAGS -Wno-deprecated-register)
endif(APPLE)
if(LINUX)
......
......@@ -198,6 +198,9 @@ paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None
paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.has_inf ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.has_nan ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.isfinite ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'is_test', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
......
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
function(windows_symbolic TARGET)
......@@ -9,10 +10,22 @@ function(windows_symbolic TARGET)
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc OR NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
# only copy the xx.cu to .xx.cu when the content are modified
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu TARGET_STR)
if (SOURCE_STR STREQUAL TARGET_STR)
set(copy_flag 0)
endif()
endif()
if (copy_flag)
add_custom_command(OUTPUT .${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc" "${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
endif(copy_flag)
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endforeach()
endfunction()
......@@ -81,6 +94,8 @@ nv_test(data_device_transform_test SRCS data_device_transform_test.cu
if(WITH_GPU)
if (WIN32)
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
windows_symbolic(hidden_file SRCS data_type_transform.cu)
nv_library(data_type_transform SRCS .data_type_transform.cu DEPS tensor)
add_dependencies(data_type_transform hidden_file)
......@@ -149,7 +164,7 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass elementwise_add_op)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
if (NOT WIN32)
......
......@@ -17,7 +17,6 @@ limitations under the License. */
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
......
......@@ -38,6 +38,7 @@ pass_library(fc_lstm_fuse_pass inference)
pass_library(embedding_fc_lstm_fuse_pass inference)
pass_library(fc_gru_fuse_pass inference)
pass_library(seq_concat_fc_fuse_pass inference)
pass_library(conv_bn_fuse_pass inference)
cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector )
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace ir {
#define GET_CONV_BN_NODES(pattern_name) \
/* OPERATORS */ \
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \
/* CONV inputs */ \
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
/* CONV outputs */ \
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
/* BN inputs */ \
GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \
/* BN outputs */ \
GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */ \
GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template <typename UnaryOperation>
LoDTensor tensor_apply(const LoDTensor& vec, UnaryOperation f) {
LoDTensor vec_y;
vec_y.Resize(vec.dims());
const float* x = vec.data<float>();
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
for (int64_t i = 0; i < vec.numel(); i++) {
y[i] = f(x[i]);
}
return vec_y;
}
void tensor_apply_inplace(LoDTensor* vec, float (*f)(float)) {
float* data = vec->mutable_data<float>(platform::CPUPlace());
for (int64_t i = 0; i < vec->numel(); i++) {
data[i] = f(data[i]);
}
}
template <typename BinaryOperation>
LoDTensor tensor_apply_eltwise(const LoDTensor& vec_a, const LoDTensor& vec_b,
BinaryOperation f) {
PADDLE_ENFORCE_EQ(vec_a.dims(), vec_b.dims());
LoDTensor vec_y;
vec_y.Resize(vec_a.dims());
const float* a = vec_a.data<float>();
const float* b = vec_b.data<float>();
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
for (int64_t i = 0; i < vec_a.numel(); i++) {
y[i] = f(a[i], b[i]);
}
return vec_y;
}
template <typename BinaryOperation>
LoDTensor tensor_apply_eltwise_broadcast(const LoDTensor& vec_a,
const LoDTensor& vec_b,
BinaryOperation f) {
PADDLE_ENFORCE_EQ(vec_a.dims().size(), 2);
PADDLE_ENFORCE_EQ(vec_b.dims().size(), 2);
PADDLE_ENFORCE_EQ(vec_a.dims()[0], vec_b.dims()[0]);
PADDLE_ENFORCE_EQ(vec_b.dims()[1], 1);
LoDTensor vec_y;
vec_y.Resize(vec_a.dims());
const float* a = vec_a.data<float>();
const float* b = vec_b.data<float>();
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
size_t a_height = vec_a.dims()[0];
size_t a_width = vec_a.dims()[1];
for (size_t h = 0; h < a_height; h++) {
for (size_t w = 0; w < a_width; ++w) {
*(y++) = f(*(a++), b[h]);
}
}
return vec_y;
}
// reshape to two dimensions {A, B * C * ...}
void make_tensor_2d(LoDTensor* tensor_to_reshape) {
auto dims_count = tensor_to_reshape->dims().size();
PADDLE_ENFORCE_GT(dims_count, 0);
int size2 = 1;
for (int i = 1; i < dims_count; i++) {
size2 *= tensor_to_reshape->dims()[i];
}
tensor_to_reshape->Resize(make_ddim({tensor_to_reshape->dims()[0], size2}));
}
void recompute_conv_weights(LoDTensor* weights, LoDTensor* tmp) {
// remember the weights tensor shape {A, B, C, ...}
auto weights_shape = weights->dims();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d(weights);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d(tmp);
*weights =
tensor_apply_eltwise_broadcast(*weights, *tmp, std::multiplies<float>());
// reshape weights to the original dims {A, B, C, ...}
weights->Resize(weights_shape);
}
void recompute_bias_and_weights(const Scope* scope,
ir::Node* conv_weight, //
const ir::Node& bn_scale, //
const LoDTensor& bn_bias_tensor, //
const ir::Node& bn_mean, //
const ir::Node& bn_variance, //
LoDTensor* eltwise_y_in_tensor, //
float epsilon) {
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());
auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
auto* variance_tensor =
scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();
auto std_tensor = LoDTensor();
std_tensor.Resize(bn_bias_tensor.dims());
std_tensor =
tensor_apply(*variance_tensor, [&](float x) { return x + epsilon; });
using EigenVectorArrayMap =
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
EigenVectorArrayMap std_vec(
std_tensor.mutable_data<float>(platform::CPUPlace()), std_tensor.numel(),
1);
std_vec = std_vec.sqrt();
auto tmp_tensor =
tensor_apply_eltwise(*scale_tensor, std_tensor, std::divides<float>());
auto tensor_minus = tensor_apply_eltwise(*eltwise_y_in_tensor, *mean_tensor,
std::minus<float>());
auto tensor_mul =
tensor_apply_eltwise(tensor_minus, tmp_tensor, std::multiplies<float>());
*eltwise_y_in_tensor =
tensor_apply_eltwise(tensor_mul, bn_bias_tensor, std::plus<float>());
// Re-compute weight of conv2d from BN
auto* current_param =
scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
recompute_conv_weights(current_param, &tmp_tensor);
}
std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init(name_scope_, graph.get());
auto* scope = param_scope();
PADDLE_ENFORCE(scope);
GraphPatternDetector gpd;
auto* conv_input =
gpd.mutable_pattern()
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
->AsInput()
->assert_is_op_input("conv2d", "Input");
patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
conv_bn_pattern(conv_input, false /*with_eltwise_add*/);
int found_conv_bn_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle ConvBN fuse";
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
GET_CONV_BN_NODES(conv_bn_pattern);
// Create eltwise_y (conv bias) variable
VarDesc eltwise_y_in_desc(
patterns::PDNodeName(name_scope_, "eltwise_y_in"));
auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
auto* eltwise_y_in_tensor =
scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();
// Get batch norm bias
auto* bn_bias_tensor =
scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();
// Initialize eltwise_y
eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
eltwise_y_in_tensor->numel(), 0.0f);
// update weights and biases
float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
*bn_mean, *bn_variance, eltwise_y_in_tensor,
epsilon);
// Create an elementwise add node
OpDesc desc;
desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
desc.SetType("elementwise_add");
desc.SetAttr("axis", 1);
bool a = boost::get<bool>(conv->Op()->GetAttr("use_mkldnn"));
desc.SetAttr("use_mkldnn", a);
auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance,
batch_norm, bn_mean_out, bn_variance_out,
bn_saved_mean, bn_saved_variance});
PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(conv_out, eltwise_op);
IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
IR_NODE_LINK_TO(eltwise_op, bn_out);
found_conv_bn_count++;
};
gpd(graph.get(), handler);
AddStatis(found_conv_bn_count);
return graph;
}
std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init(name_scope_, graph.get());
auto* scope = param_scope();
PADDLE_ENFORCE(scope);
GraphPatternDetector gpd;
auto* conv_input =
gpd.mutable_pattern()
->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
->AsInput()
->assert_is_op_input("conv2d", "Input");
patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
conv_bn_pattern(conv_input, true /*with_eltwise_add*/);
int found_conv_bn_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle ConvBN fuse";
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
GET_CONV_BN_NODES(conv_bn_pattern);
// OPERATORS
GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
// BIAS inputs
GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
// BIAS outputs
GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);
// Get eltwise_y (conv bias) variable
auto* eltwise_y_in_tensor =
scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();
// Get batch norm bias
auto* bn_bias_tensor =
scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();
// update weights and biases
float epsilon = boost::get<float>(batch_norm->Op()->GetAttr("epsilon"));
recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
*bn_mean, *bn_variance, eltwise_y_in_tensor,
epsilon);
// Update the elementwise_add node
eltwise->Op()->SetAttr("axis", 1);
eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
GraphSafeRemoveNodes(
graph.get(),
{bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});
PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(eltwise, bn_out);
found_conv_bn_count++;
};
gpd(graph.get(), handler);
AddStatis(found_conv_bn_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
paddle::framework::ir::ConvEltwiseAddBNFusePass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* Fuse the Conv and BatchNorm to a ConvBNMKLDNNOp.
*/
class ConvBNFusePass : public FusePassBase {
public:
virtual ~ConvBNFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"conv_bn_fuse"};
};
class ConvEltwiseAddBNFusePass : public FusePassBase {
public:
virtual ~ConvEltwiseAddBNFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"conv_eltwiseadd_bn_fuse"};
};
} // namespace ir
} // namespace framework
} // namespace paddle
......@@ -626,6 +626,112 @@ bool VarLinksFromOp(Node *node, const std::string &op_type) {
return false;
}
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
bool with_eltwise_add) {
// Create Operators
conv_input->assert_is_op_input("conv2d", "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
PDNode *eltwise_op = nullptr;
if (with_eltwise_add) {
eltwise_op =
pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
}
auto *batch_norm_op =
pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
// Create variables
// Conv Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Filter");
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("conv2d");
PDNode *eltwise_y_in_var = nullptr;
PDNode *eltwise_out_var = nullptr;
if (with_eltwise_add) {
// Conv output as Bias input
conv_out_var->assert_is_op_input("elementwise_add", "X");
// Bias
eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
eltwise_out_var = pattern->NewNode(eltwise_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("elementwise_add");
} else {
// Conv output as BN input
conv_out_var->assert_is_op_input("batch_norm", "X");
}
// BN Scale
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Scale");
// BN Bias
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Bias");
// BN Mean
auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Mean");
// BN Variance
auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Variance");
// BN output
auto *bn_out_var = pattern->NewNode(bn_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm");
auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "MeanOut");
auto *bn_variance_out_var =
pattern->NewNode(bn_variance_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "VarianceOut");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "SavedMean");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "SavedVariance");
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
if (with_eltwise_add) {
eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
.LinksTo({eltwise_out_var});
batch_norm_op
->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
bn_variance_var})
.LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
bn_saved_mean_var, bn_saved_variance_var});
} else {
batch_norm_op
->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
bn_variance_var})
.LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
bn_saved_mean_var, bn_saved_variance_var});
}
return bn_out_var;
}
PDNode *patterns::ConvReLU::operator()(
paddle::framework::ir::PDNode *conv_input) {
// Create Operators
......
......@@ -375,6 +375,44 @@ struct PatternBase {
size_t id_;
};
// Conv with batch norm
// op: conv + (elementwise_add +) batch_norm
// named nodes:
// conv_weight, conv_out, conv,
// bn_x, bn_scale, bn_bias, bn_mean, bn_variance,
// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out,
// bn_saved_mean, bn_saved_variance
struct ConvBN : public PatternBase {
ConvBN(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "conv_bn") {}
PDNode* operator()(PDNode* conv_input, bool with_eltwise_add);
// declare operator node's name
PATTERN_DECL_NODE(conv);
PATTERN_DECL_NODE(batch_norm);
PATTERN_DECL_NODE(eltwise); // ELEMENTWISE_ADD
// CONV inputs
PATTERN_DECL_NODE(conv_weight); // Filter
// CONV outputs
PATTERN_DECL_NODE(conv_out); // tmp
// ELTWISE inputs
PATTERN_DECL_NODE(eltwise_y_in);
// ELTWISE outputs
PATTERN_DECL_NODE(eltwise_out); // tmp
// BN inputs
PATTERN_DECL_NODE(bn_scale);
PATTERN_DECL_NODE(bn_bias);
PATTERN_DECL_NODE(bn_mean);
PATTERN_DECL_NODE(bn_variance);
// BN outputs
PATTERN_DECL_NODE(bn_out); // Out
PATTERN_DECL_NODE(bn_mean_out);
PATTERN_DECL_NODE(bn_variance_out);
PATTERN_DECL_NODE(bn_saved_mean);
PATTERN_DECL_NODE(bn_saved_variance);
};
// CONV with ReLU
// op: conv + relu
// named nodes:
......
......@@ -146,5 +146,22 @@ void NaiveExecutor::CleanFeedFetchOps() {
ops_.swap(ops);
}
void NaiveExecutor::EnableMKLDNN(const ProgramDesc &program) {
#ifdef PADDLE_WITH_MKLDNN
VLOG(3) << "use_mkldnn=True";
for (size_t block_id = 0; block_id < program.Size(); ++block_id) {
auto *block = const_cast<ProgramDesc &>(program).MutableBlock(block_id);
for (auto *op : block->AllOps()) {
if (op->HasAttr("use_mkldnn")) {
op->SetAttr("use_mkldnn", true);
}
}
}
#else
LOG(WARNING)
<< "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
#endif
}
} // namespace framework
} // namespace paddle
......@@ -14,6 +14,8 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
......@@ -46,6 +48,8 @@ class NaiveExecutor {
void CleanFeedFetchOps();
void EnableMKLDNN(const ProgramDesc& program);
protected:
void CreateVariables(const ProgramDesc& desc, Scope* scope, int block_id);
......
......@@ -50,6 +50,27 @@ class CompileTimeInferShapeContext : public InferShapeContext {
const std::vector<std::string> &Outputs(
const std::string &name) const override;
void ShareDim(const std::string &in, const std::string &out, size_t i = 0,
size_t j = 0) override {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
PADDLE_ENFORCE_LT(j, Outputs(out).size());
const std::string &input_n = Inputs(in)[i];
const std::string &output_n = Outputs(out)[j];
PADDLE_ENFORCE(input_n != framework::kEmptyVarName, "The %s[%d] is @EMPTY@",
in, i);
PADDLE_ENFORCE(output_n != framework::kEmptyVarName,
"The %s[%d] is @EMPTY@", out, j);
auto *in_var = block_.FindVarRecursive(input_n);
auto *out_var = block_.FindVarRecursive(output_n);
PADDLE_ENFORCE(in_var->GetType() == out_var->GetType(),
"The type of %s and %s is not the same.", input_n, output_n);
SetDim(output_n, GetDim(input_n));
}
void ShareLoD(const std::string &in, const std::string &out, size_t i = 0,
size_t j = 0) const override {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
......
......@@ -542,13 +542,45 @@ class RuntimeInferShapeContext : public InferShapeContext {
return op_.Outputs(name);
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const override {
void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) override {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
PADDLE_ENFORCE_LT(j, Outputs(out).size());
Variable* in_var = scope_.FindVar(Inputs(in)[i]);
Variable* out_var = scope_.FindVar(Outputs(out)[j]);
const std::string& input_n = Inputs(in)[i];
const std::string& output_n = Outputs(out)[j];
Variable* in_var = scope_.FindVar(input_n);
Variable* out_var = scope_.FindVar(output_n);
PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
"The type of %s and %s is not the same.", output_n,
GetDim(input_n));
if (in_var->IsType<framework::SelectedRows>()) {
auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
out_sele_rows->set_rows(in_sele_rows.rows());
out_sele_rows->set_height(in_sele_rows.height());
} else if (in_var->IsType<framework::LoDTensor>()) {
auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
out_lod_tensor->Resize(in_lod_tensor.dims());
} else {
PADDLE_THROW(
"Currently, the input type of ShareDim only can be LoDTensor "
"or SelectedRows.");
}
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const override {
const std::vector<std::string>& inputs = Inputs(in);
const std::vector<std::string>& outputs = Outputs(out);
PADDLE_ENFORCE_LT(i, inputs.size());
PADDLE_ENFORCE_LT(j, outputs.size());
Variable* in_var = scope_.FindVar(inputs.at(i));
if (!in_var->IsType<LoDTensor>()) return;
Variable* out_var = scope_.FindVar(outputs.at(j));
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
......@@ -576,20 +608,6 @@ class RuntimeInferShapeContext : public InferShapeContext {
out_tensor->set_layout(in_tensor.layout());
}
void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, Inputs(in).size());
PADDLE_ENFORCE_LT(j, Outputs(out).size());
Variable* in_var = scope_.FindVar(Inputs(in)[i]);
Variable* out_var = scope_.FindVar(Outputs(out)[j]);
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_layout(in_tensor.layout());
}
bool IsRuntime() const override { return true; }
protected:
......
......@@ -46,6 +46,7 @@ struct RWLock {
private:
pthread_rwlock_t lock_;
};
// TODO(paddle-dev): Support RWLock for WIN32 for correctness.
#else
// https://stackoverflow.com/questions/7125250/making-pthread-rwlock-wrlock-recursive
// In windows, rw_lock seems like a hack. Use empty object and do nothing.
......
......@@ -46,16 +46,6 @@ std::vector<DDim> InferShapeContext::GetReaderDims(
return this->GetRepeatedDims(arg_names[0]);
}
void InferShapeContext::ShareLoDs(const std::string &in,
const std::string &out) const {
PADDLE_ENFORCE_EQ(Inputs(in).size(), Outputs(out).size(),
"The number of arguments in %s and %s is not equal.", in,
out);
for (size_t i = 0; i < in.size(); ++i) {
ShareLoD(in, out, i, i);
}
}
DDim InferShapeContext::GetInputsElementDim(const std::string &name,
int idx) const {
const std::vector<std::string> &names = Inputs(name);
......
......@@ -56,7 +56,8 @@ class InferShapeContext {
virtual const std::vector<std::string> &Outputs(
const std::string &name) const = 0;
void ShareLoDs(const std::string &in, const std::string &out) const;
virtual void ShareDim(const std::string &in, const std::string &out,
size_t i = 0, size_t j = 0) = 0;
virtual void ShareLoD(const std::string &in, const std::string &out,
size_t i = 0, size_t j = 0) const = 0;
......
......@@ -165,10 +165,12 @@ inline void AnyImpl(Predicate predicate, const framework::Tensor& tensor,
}
template <typename Predicate>
struct AnyVisitor : public boost::static_visitor<bool> {
class AnyVisitor : public boost::static_visitor<bool> {
private:
const framework::Tensor& tensor_;
Predicate predicate_;
public:
AnyVisitor(const framework::Tensor& tensor, Predicate predicate)
: tensor_(tensor), predicate_(std::move(predicate)) {}
......@@ -206,6 +208,27 @@ struct AnyVisitor : public boost::static_visitor<bool> {
}
};
template <typename Predicate>
class AnyOutVisitor : public boost::static_visitor<> {
private:
const framework::Tensor& tensor_;
mutable framework::Tensor* out_;
Predicate predicate_;
public:
AnyOutVisitor(const framework::Tensor& tensor, Predicate predicate,
framework::Tensor* out)
: tensor_(tensor), out_(out), predicate_(std::move(predicate)) {}
template <typename Place>
void operator()(const Place& place) const {
auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(place);
out_->Resize({1});
out_->mutable_data<bool>(place);
AnyImpl(predicate_, tensor_, *ctx, out_);
}
};
template <typename Predicate>
inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
AnyVisitor<Predicate> visitor(tensor, predicate);
......@@ -213,6 +236,14 @@ inline bool Any(const framework::Tensor& tensor, Predicate predicate) {
return platform::VisitPlace(place, visitor);
}
template <typename Predicate>
inline void Any(const framework::Tensor& tensor, Predicate predicate,
framework::Tensor* out) {
AnyOutVisitor<Predicate> visitor(tensor, predicate, out);
auto place = tensor.place();
platform::VisitPlace(place, visitor);
}
struct ContainsNANPredicate {
template <typename T>
auto operator()(const T& eigen_vec) const
......@@ -227,6 +258,12 @@ bool TensorContainsNAN(const framework::Tensor& tensor) {
return Any(tensor, predicate);
}
void TensorContainsNAN(const framework::Tensor& tensor,
framework::Tensor* out) {
ContainsNANPredicate predicate;
Any(tensor, predicate, out);
}
struct ContainsInfPredicate {
template <typename T>
auto operator()(const T& eigen_vec) const
......@@ -241,6 +278,71 @@ bool TensorContainsInf(const framework::Tensor& tensor) {
return Any(tensor, predicate);
}
void TensorContainsInf(const framework::Tensor& tensor,
framework::Tensor* out) {
ContainsInfPredicate predicate;
Any(tensor, predicate, out);
}
// NOTE(dzhwinter):
// Isfinite need a AllVisitor to loop through all the elements.
// We choose two cuda call instead of one allvisitor. The AllVisitor
// should be implemented if the performance hurts.
bool TensorIsfinite(const framework::Tensor& tensor) {
ContainsInfPredicate pred_inf;
ContainsNANPredicate pred_nan;
return !Any(tensor, pred_inf) && !Any(tensor, pred_nan);
}
#ifdef PADDLE_WITH_CUDA
template <typename T>
static inline void __global__ BothFalse(const T* cmp, T* out) {
out[0] = (!cmp[0]) && (!out[0]);
}
#endif
struct BothFalseVisitor : public boost::static_visitor<> {
const framework::Tensor& in_;
mutable framework::Tensor* out_;
BothFalseVisitor(const framework::Tensor& in, framework::Tensor* out)
: in_(in), out_(out) {}
template <typename Place>
void operator()(const Place& place) const {
VisitorImpl(place);
}
void VisitorImpl(const platform::CUDAPlace& gpu) const {
#ifdef PADDLE_WITH_CUDA
auto* ctx = platform::DeviceContextPool::Instance().GetByPlace(gpu);
BothFalse<bool><<<1, 1, 0, ctx->stream()>>>(in_.data<bool>(),
out_->mutable_data<bool>(gpu));
#endif
}
void VisitorImpl(const platform::CPUPlace& cpu) const {
bool lhs = !in_.data<bool>()[0];
bool rhs = !out_->mutable_data<bool>(cpu)[0];
out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
}
void VisitorImpl(
const platform::CUDAPinnedPlace& cpu /* equals to cpu*/) const {
bool lhs = !in_.data<bool>()[0];
bool rhs = !out_->mutable_data<bool>(cpu)[0];
out_->mutable_data<bool>(cpu)[0] = lhs && rhs;
}
};
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out) {
framework::Tensor tmp;
TensorContainsInf(tensor, &tmp);
TensorContainsNAN(tensor, out);
BothFalseVisitor visitor(tmp, out);
auto place = tensor.place();
platform::VisitPlace(place, visitor);
}
void TensorToStream(std::ostream& os, const Tensor& tensor,
const platform::DeviceContext& dev_ctx) {
{ // the 1st field, uint32_t version
......
......@@ -57,8 +57,15 @@ void TensorToVector(const Tensor& src, const platform::DeviceContext& ctx,
template <typename T>
void TesnorToVector(const Tensor& src, std::vector<T>* dst);
// copy the result bool to cpu
bool TensorContainsNAN(const framework::Tensor& tensor);
bool TensorContainsInf(const framework::Tensor& tensor);
bool TensorIsfinite(const framework::Tensor& tensor);
// store the result bool in gpu tensor, async operation. Faster than above ones.
void TensorContainsNAN(const framework::Tensor& tensor, framework::Tensor* out);
void TensorContainsInf(const framework::Tensor& tensor, framework::Tensor* out);
void TensorIsfinite(const framework::Tensor& tensor, framework::Tensor* out);
void TensorToStream(std::ostream& os, const Tensor& tensor,
const platform::DeviceContext& dev_ctx);
......
......@@ -36,7 +36,7 @@ TEST(TensorCopy, Tensor) {
TensorCopy(src_tensor, *cpu_place, &dst_tensor);
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, dst_ptr);
EXPECT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
}
......@@ -47,7 +47,7 @@ TEST(TensorCopy, Tensor) {
TensorCopy(slice_tensor, *cpu_place, &dst_tensor);
const int* slice_ptr = slice_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(dst_ptr, slice_ptr);
EXPECT_NE(dst_ptr, slice_ptr);
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
}
......@@ -77,7 +77,7 @@ TEST(TensorCopy, Tensor) {
// Sync before Compare Tensors
gpu_ctx.Wait();
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, dst_ptr);
EXPECT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
}
......@@ -94,7 +94,7 @@ TEST(TensorCopy, Tensor) {
gpu_ctx.Wait();
const int* slice_ptr = slice_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(dst_ptr, slice_ptr);
EXPECT_NE(dst_ptr, slice_ptr);
for (size_t i = 0; i < 3; ++i) {
EXPECT_EQ(dst_ptr[i], slice_ptr[i]);
}
......@@ -117,7 +117,7 @@ TEST(TensorFromVector, Tensor) {
// Compare Tensors
const int* cpu_ptr = cpu_tensor.data<int>();
const int* src_ptr = src_vec.data();
ASSERT_NE(src_ptr, cpu_ptr);
EXPECT_NE(src_ptr, cpu_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
}
......@@ -127,7 +127,7 @@ TEST(TensorFromVector, Tensor) {
paddle::framework::TensorFromVector<int>(src_vec, &cpu_tensor);
cpu_ptr = cpu_tensor.data<int>();
src_ptr = src_vec.data();
ASSERT_NE(src_ptr, cpu_ptr);
EXPECT_NE(src_ptr, cpu_ptr);
for (size_t i = 0; i < 5; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
}
......@@ -161,8 +161,8 @@ TEST(TensorFromVector, Tensor) {
const int* src_ptr = src_vec.data();
const int* cpu_ptr = cpu_tensor.data<int>();
const int* dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, cpu_ptr);
ASSERT_NE(src_ptr, dst_ptr);
EXPECT_NE(src_ptr, cpu_ptr);
EXPECT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
......@@ -181,8 +181,8 @@ TEST(TensorFromVector, Tensor) {
src_ptr = src_vec.data();
cpu_ptr = cpu_tensor.data<int>();
dst_ptr = dst_tensor.data<int>();
ASSERT_NE(src_ptr, cpu_ptr);
ASSERT_NE(src_ptr, dst_ptr);
EXPECT_NE(src_ptr, cpu_ptr);
EXPECT_NE(src_ptr, dst_ptr);
for (size_t i = 0; i < 5; ++i) {
EXPECT_EQ(src_ptr[i], cpu_ptr[i]);
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
......@@ -235,9 +235,9 @@ TEST(TensorContainsNAN, CPU) {
buf[0] = 0.0;
buf[1] = NAN;
buf[2] = 0.0;
ASSERT_TRUE(paddle::framework::TensorContainsNAN(src));
EXPECT_TRUE(paddle::framework::TensorContainsNAN(src));
buf[1] = 0.0;
ASSERT_FALSE(paddle::framework::TensorContainsNAN(src));
EXPECT_FALSE(paddle::framework::TensorContainsNAN(src));
}
{
......@@ -248,9 +248,9 @@ TEST(TensorContainsNAN, CPU) {
buf[0] = 0.0;
buf[1].x = 0x7fff;
buf[2] = 0.0;
ASSERT_TRUE(paddle::framework::TensorContainsNAN(src));
EXPECT_TRUE(paddle::framework::TensorContainsNAN(src));
buf[1] = 0.0;
ASSERT_FALSE(paddle::framework::TensorContainsNAN(src));
EXPECT_FALSE(paddle::framework::TensorContainsNAN(src));
}
}
......@@ -261,9 +261,9 @@ TEST(TensorContainsInf, CPU) {
buf[0] = 1.0;
buf[1] = INFINITY;
buf[2] = 0.0;
ASSERT_TRUE(paddle::framework::TensorContainsInf(src));
EXPECT_TRUE(paddle::framework::TensorContainsInf(src));
buf[1] = 1.0;
ASSERT_FALSE(paddle::framework::TensorContainsInf(src));
EXPECT_FALSE(paddle::framework::TensorContainsInf(src));
}
{
......@@ -274,9 +274,55 @@ TEST(TensorContainsInf, CPU) {
buf[0] = 1.0;
buf[1].x = 0x7c00;
buf[2] = 0.0;
ASSERT_TRUE(paddle::framework::TensorContainsInf(src));
EXPECT_TRUE(paddle::framework::TensorContainsInf(src));
buf[1] = 1.0;
ASSERT_FALSE(paddle::framework::TensorContainsInf(src));
EXPECT_FALSE(paddle::framework::TensorContainsInf(src));
}
}
TEST(TensorIsfinite, CPU) {
{
paddle::framework::Tensor src, out;
double* buf = src.mutable_data<double>({3}, paddle::platform::CPUPlace());
buf[0] = 1.0;
buf[1] = INFINITY;
buf[2] = 0.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], false);
buf[1] = 1.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], true);
}
{
paddle::framework::Tensor src, out;
double* buf = src.mutable_data<double>({3}, paddle::platform::CPUPlace());
buf[0] = 1.0;
buf[1] = NAN;
buf[2] = 0.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], false);
buf[1] = 1.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], true);
}
{
paddle::framework::Tensor src, out;
paddle::platform::float16* buf =
src.mutable_data<paddle::platform::float16>(
{3}, paddle::platform::CPUPlace());
buf[0] = 1.0;
buf[1].x = 0x7c00;
buf[2] = 0.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], false);
buf[1] = 1.0;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], true);
buf[1].x = 0x7fff;
paddle::framework::TensorIsfinite(src, &out);
EXPECT_EQ(out.data<bool>()[0], false);
}
}
......@@ -299,9 +345,9 @@ TEST(Tensor, FromAndToStream) {
TensorFromStream(iss, &dst_tensor, cpu_ctx);
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 5; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
EXPECT_EQ(dst_ptr[i], array[i]);
}
ASSERT_EQ(dst_tensor.dims(), src_tensor.dims());
EXPECT_EQ(dst_tensor.dims(), src_tensor.dims());
delete place;
}
#ifdef PADDLE_WITH_CUDA
......@@ -323,7 +369,7 @@ TEST(Tensor, FromAndToStream) {
int* dst_ptr = dst_tensor.mutable_data<int>(platform::CPUPlace());
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
EXPECT_EQ(dst_ptr[i], array[i]);
}
delete gpu_place;
}
......
......@@ -27,9 +27,9 @@ static __global__ void FillNAN(float* buf) {
}
static __global__ void FillInf(float* buf) {
buf[0] = 0.0;
buf[1] = INFINITY;
buf[2] = 0.5;
buf[0] = INFINITY;
buf[1] = 0.1;
buf[2] = 0.2;
}
static __global__ void FillNAN(platform::float16* buf) {
......@@ -44,6 +44,18 @@ static __global__ void FillInf(platform::float16* buf) {
buf[2] = 0.5;
}
static __global__ void FillFinite(float* buf) {
buf[0] = 0.0;
buf[1] = 0.1;
buf[2] = 0.2;
}
static __global__ void FillFinite(platform::float16* buf) {
buf[0] = 0.0;
buf[1] = 0.1;
buf[2] = 0.2;
}
TEST(TensorContainsNAN, GPU) {
paddle::platform::CUDAPlace gpu(0);
auto& pool = paddle::platform::DeviceContextPool::Instance();
......@@ -86,5 +98,163 @@ TEST(TensorContainsInf, GPU) {
}
}
TEST(TensorIsfinite, GPU) {
paddle::platform::CUDAPlace gpu(0);
using paddle::platform::float16;
auto& pool = paddle::platform::DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
// contains inf
{
Tensor tensor;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(!TensorIsfinite(tensor));
}
{
Tensor tensor;
float16* buf = tensor.mutable_data<float16>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(!TensorIsfinite(tensor));
}
// contains nan
{
Tensor tensor;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(!TensorIsfinite(tensor));
}
{
Tensor tensor;
float16* buf = tensor.mutable_data<float16>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(!TensorIsfinite(tensor));
}
// all element are finite
{
Tensor tensor;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillFinite<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(TensorIsfinite(tensor));
}
{
Tensor tensor;
float16* buf = tensor.mutable_data<float16>({3}, gpu);
FillFinite<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
EXPECT_TRUE(TensorIsfinite(tensor));
}
}
TEST(TensorContainsInf, GPUWithoutWait) {
paddle::platform::CUDAPlace gpu(0);
auto& pool = paddle::platform::DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
{
Tensor tensor, out;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorContainsInf(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
ASSERT_EQ(tmp.data<bool>()[0], true);
}
{
Tensor tensor, out;
paddle::platform::float16* buf =
tensor.mutable_data<paddle::platform::float16>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorContainsInf(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
ASSERT_EQ(tmp.data<bool>()[0], true);
}
}
TEST(TensorContainsNAN, GPUWithoutWait) {
paddle::platform::CUDAPlace gpu(0);
auto& pool = paddle::platform::DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
{
Tensor tensor, out;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorContainsNAN(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
ASSERT_EQ(tmp.data<bool>()[0], true);
}
{
Tensor tensor, out;
paddle::platform::float16* buf =
tensor.mutable_data<paddle::platform::float16>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorContainsNAN(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
ASSERT_EQ(tmp.data<bool>()[0], true);
}
}
TEST(TensorIsfinite, GPUWithoutWait) {
paddle::platform::CUDAPlace gpu(0);
auto& pool = paddle::platform::DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
{
Tensor tensor, out;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorIsfinite(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
EXPECT_EQ(tmp.data<bool>()[0], false);
}
{
Tensor tensor, out;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorIsfinite(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
EXPECT_EQ(tmp.data<bool>()[0], false);
}
{
Tensor tensor, out;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillFinite<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
TensorIsfinite(tensor, &out);
platform::CPUPlace cpu;
Tensor tmp;
TensorCopy(out, cpu, *cuda_ctx, &tmp);
cuda_ctx->Wait();
EXPECT_EQ(tmp.data<bool>()[0], true);
}
}
} // namespace framework
} // namespace paddle
......@@ -19,9 +19,19 @@ cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
add_subdirectory(api)
set(STATIC_INFERENCE_APIS paddle_fluid_api paddle_inference_api analysis_predictor)
set(SHARED_INFERENCE_SRCS
io.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api_impl.cc
${CMAKE_CURRENT_SOURCE_DIR}/api/analysis_predictor.cc
${CMAKE_CURRENT_SOURCE_DIR}/api/details/zero_copy_tensor.cc)
if (WITH_GPU AND TENSORRT_FOUND)
set(STATIC_INFERENCE_APIS ${STATIC_INFERENCE_APIS} paddle_inference_tensorrt_subgraph_engine)
set(SHARED_INFERENCE_SRCS ${SHARED_INFERENCE_SRCS} ${CMAKE_CURRENT_SOURCE_DIR}/api/api_tensorrt_subgraph_engine.cc)
endif()
# Create static library
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api paddle_inference_api
analysis_predictor zero_copy_tensor)
cc_library(paddle_fluid DEPS ${fluid_modules} ${STATIC_INFERENCE_APIS} zero_copy_tensor)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_fluid.sym")
......@@ -29,10 +39,7 @@ if(NOT APPLE)
endif()
# Create shared library
cc_library(paddle_fluid_shared SHARED
SRCS io.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api_impl.cc
${CMAKE_CURRENT_SOURCE_DIR}/api/analysis_predictor.cc
${CMAKE_CURRENT_SOURCE_DIR}/api/details/zero_copy_tensor.cc
cc_library(paddle_fluid_shared SHARED SRCS ${SHARED_INFERENCE_SRCS}
DEPS ${fluid_modules} paddle_fluid_api)
set_target_properties(paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid)
......
......@@ -20,8 +20,6 @@ cc_test(test_node SRCS node_tester.cc DEPS analysis)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis paddle_fluid)
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
function (inference_analysis_test TARGET)
if(WITH_TESTING)
set(options "")
......
......@@ -73,6 +73,8 @@ class Analyzer : public OrderedRegistry<PassManager> {
"mul_gru_fuse_pass", //
"seq_concat_fc_fuse_pass", //
"fc_fuse_pass", //
"conv_bn_fuse_pass", //
"conv_eltwiseadd_bn_fuse_pass", //
#ifdef PADDLE_WITH_MKLDNN
"conv_relu_mkldnn_fuse_pass", //
#endif
......
......@@ -31,7 +31,6 @@ function(inference_api_test TARGET_NAME)
set(multiValueArgs ARGS)
cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
cc_test(${TARGET_NAME}
SRCS ${inference_test_SRC}
DEPS "${inference_deps}"
......
......@@ -71,6 +71,11 @@ bool AnalysisPredictor::Init(
} else {
inference_program_ = program;
}
if (config_._use_mkldnn) {
executor_->EnableMKLDNN(*inference_program_);
}
executor_->Prepare(scope_.get(), *inference_program_, 0,
config_.use_feed_fetch_ops);
......@@ -92,6 +97,7 @@ bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
LOG(ERROR) << "fail to set feed";
return false;
}
// Run the inference program
// if share variables, we need not create variables
executor_->Run();
......
......@@ -3,6 +3,7 @@ project(cpp_inference_demo CXX C)
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
option(USE_TENSORRT "Compile demo with TensorRT." OFF)
macro(safe_set_static_flag)
foreach(flag_var
......@@ -60,6 +61,13 @@ endif(NOT WIN32)
include_directories("${PADDLE_LIB}/third_party/boost")
include_directories("${PADDLE_LIB}/third_party/eigen3")
if (NOT WIN32)
if (USE_TENSORRT AND WITH_GPU)
include_directories("${TENSORRT_INCLUDE_DIR}")
link_directories("${TENSORRT_LIB_DIR}")
endif()
endif(NOT WIN32)
if (NOT WIN32)
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
......@@ -112,6 +120,10 @@ endif(NOT WIN32)
if(WITH_GPU)
if(NOT WIN32)
if (USE_TENSORRT)
set(DEPS ${DEPS} ${TENSORRT_LIB_DIR}/libnvinfer${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${TENSORRT_LIB_DIR}/libnvinfer_plugin${CMAKE_STATIC_LIBRARY_SUFFIX})
endif()
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX})
else()
set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} )
......
......@@ -3,6 +3,9 @@ PADDLE_ROOT=$1
TURN_ON_MKL=$2 # use MKL or Openblas
TEST_GPU_CPU=$3 # test both GPU/CPU mode or only CPU mode
DATA_DIR=$4 # dataset
TENSORRT_INCLUDE_DIR=$5 # TensorRT header file dir, defalut to /usr/local/TensorRT/include
TENSORRT_LIB_DIR=$6 # TensorRT lib file dir, default to /usr/local/TensorRT/lib
cd `dirname $0`
current_dir=`pwd`
if [ $2 == ON ]; then
......@@ -16,6 +19,11 @@ else
use_gpu_list='false'
fi
USE_TENSORRT=OFF
if [ [-d"$TENSORRT_INCLUDE_DIR"] -a [-d"$TENSORRT_LIB_DIR"] ]; then
USE_TENSORRT=ON
fi
PREFIX=inference-vis-demos%2F
URL_ROOT=http://paddlemodels.cdn.bcebos.com/${PREFIX}
......@@ -86,5 +94,23 @@ for WITH_STATIC_LIB in ON OFF; do
fi
done
done
# --------tensorrt mobilenet------
if [ $USE_TENSORRT == ON -a $TEST_GPU_CPU == ON ]; then
rm -rf *
cmake .. -DPADDLE_LIB=${PADDLE_ROOT}/build/fluid_install_dir/ \
-DWITH_MKL=$TURN_ON_MKL \
-DDEMO_NAME=trt_mobilenet_demo \
-DWITH_GPU=$TEST_GPU_CPU \
-DWITH_STATIC_LIB=$WITH_STATIC_LIB \
-DUSE_TENSORRT=$USE_TENSORRT \
-DTENSORRT_INCLUDE_DIR=$TENSORRT_INCLUDE_DIR \
-DTENSORRT_LIB_DIR=$TENSORRT_LIB_DIR
make -j
./trt_mobilenet_demo \
--modeldir=$DATA_DIR/mobilenet/model \
--data=$DATA_DIR/mobilenet/data.txt \
--refer=$DATA_DIR/mobilenet/result.txt
fi
done
set +x
......@@ -22,8 +22,8 @@ limitations under the License. */
#include <algorithm>
#include <memory>
#include <thread> //NOLINT
#include "paddle/fluid/inference/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
......@@ -62,17 +62,17 @@ void Main(bool use_gpu) {
CHECK(predictor->Run(slots, &outputs));
//# 4. Get output.
PADDLE_ENFORCE(outputs.size(), 1UL);
CHECK_EQ(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
CHECK_EQ(outputs.front().data.length(), 33168UL);
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(static_cast<size_t>(5), num_elements);
i++) {
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
CHECK_NEAR(static_cast<float*>(outputs.front().data.data())[i], result[i],
0.001);
}
}
}
......@@ -108,9 +108,9 @@ void MainThreads(int num_threads, bool use_gpu) {
CHECK(predictor->Run(inputs, &outputs));
// 4. Get output.
PADDLE_ENFORCE(outputs.size(), 1UL);
CHECK_EQ(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
CHECK_EQ(outputs.front().data.length(), 33168UL);
float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
0.000932706};
const size_t num_elements =
......@@ -118,8 +118,8 @@ void MainThreads(int num_threads, bool use_gpu) {
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(static_cast<size_t>(5), num_elements);
i++) {
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
CHECK_NEAR(static_cast<float*>(outputs.front().data.data())[i],
result[i], 0.001);
}
}
});
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/*
* This file contains demo of mobilenet for tensorrt.
*/
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
#include "paddle/fluid/inference/demo_ci/utils.h"
DECLARE_double(fraction_of_gpu_memory_to_use);
DEFINE_string(modeldir, "", "Directory of the inference model.");
DEFINE_string(refer, "", "path to reference result for comparison.");
DEFINE_string(
data, "",
"path of data; each line is a record, format is "
"'<space splitted floats as data>\t<space splitted ints as shape'");
namespace paddle {
namespace demo {
/*
* Use the tensorrt fluid engine to inference the demo.
*/
void Main() {
std::unique_ptr<PaddlePredictor> predictor;
paddle::contrib::MixedRTConfig config;
config.param_file = FLAGS_modeldir + "/__params__";
config.prog_file = FLAGS_modeldir + "/__model__";
config.use_gpu = true;
config.device = 0;
config.max_batch_size = 1;
config.fraction_of_gpu_memory = 0.1; // set by yourself
predictor = CreatePaddlePredictor<paddle::contrib::MixedRTConfig>(config);
VLOG(3) << "begin to process data";
// Just a single batch of data.
std::string line;
std::ifstream file(FLAGS_data);
std::getline(file, line);
auto record = ProcessALine(line);
file.close();
// Inference.
PaddleTensor input;
input.shape = record.shape;
input.data =
PaddleBuf(record.data.data(), record.data.size() * sizeof(float));
input.dtype = PaddleDType::FLOAT32;
VLOG(3) << "run executor";
std::vector<PaddleTensor> output;
predictor->Run({input}, &output, 1);
VLOG(3) << "output.size " << output.size();
auto& tensor = output.front();
VLOG(3) << "output: " << SummaryTensor(tensor);
// compare with reference result
CheckOutput(FLAGS_refer, tensor);
}
} // namespace demo
} // namespace paddle
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::Main();
return 0;
}
......@@ -14,6 +14,8 @@
#pragma once
#include <algorithm>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "paddle/fluid/inference/paddle_inference_api.h"
......@@ -21,6 +23,11 @@
namespace paddle {
namespace demo {
struct Record {
std::vector<float> data;
std::vector<int32_t> shape;
};
static void split(const std::string& str, char sep,
std::vector<std::string>* pieces) {
pieces->clear();
......@@ -39,6 +46,58 @@ static void split(const std::string& str, char sep,
}
}
Record ProcessALine(const std::string& line) {
VLOG(3) << "process a line";
std::vector<std::string> columns;
split(line, '\t', &columns);
CHECK_EQ(columns.size(), 2UL)
<< "data format error, should be <data>\t<shape>";
Record record;
std::vector<std::string> data_strs;
split(columns[0], ' ', &data_strs);
for (auto& d : data_strs) {
record.data.push_back(std::stof(d));
}
std::vector<std::string> shape_strs;
split(columns[1], ' ', &shape_strs);
for (auto& s : shape_strs) {
record.shape.push_back(std::stoi(s));
}
VLOG(3) << "data size " << record.data.size();
VLOG(3) << "data shape size " << record.shape.size();
return record;
}
void CheckOutput(const std::string& referfile, const PaddleTensor& output) {
std::string line;
std::ifstream file(referfile);
std::getline(file, line);
auto refer = ProcessALine(line);
file.close();
size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
VLOG(3) << "predictor output numel " << numel;
VLOG(3) << "reference output numel " << refer.data.size();
CHECK_EQ(numel, refer.data.size());
switch (output.dtype) {
case PaddleDType::INT64: {
for (size_t i = 0; i < numel; ++i) {
CHECK_EQ(static_cast<int64_t*>(output.data.data())[i], refer.data[i]);
}
break;
}
case PaddleDType::FLOAT32:
for (size_t i = 0; i < numel; ++i) {
CHECK_LT(
fabs(static_cast<float*>(output.data.data())[i] - refer.data[i]),
1e-5);
}
break;
}
}
/*
* Get a summary of a PaddleTensor content.
*/
......
......@@ -17,11 +17,8 @@ limitations under the License. */
*/
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <fstream>
#include <iostream>
#include <glog/logging.h> // use glog instead of CHECK to avoid importing other paddle header files.
#include "paddle/fluid/inference/demo_ci/utils.h"
#include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_CUDA
DECLARE_double(fraction_of_gpu_memory_to_use);
......@@ -37,70 +34,11 @@ DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
struct Record {
std::vector<float> data;
std::vector<int32_t> shape;
};
void split(const std::string& str, char sep, std::vector<std::string>* pieces);
Record ProcessALine(const std::string& line) {
VLOG(3) << "process a line";
std::vector<std::string> columns;
split(line, '\t', &columns);
CHECK_EQ(columns.size(), 2UL)
<< "data format error, should be <data>\t<shape>";
Record record;
std::vector<std::string> data_strs;
split(columns[0], ' ', &data_strs);
for (auto& d : data_strs) {
record.data.push_back(std::stof(d));
}
std::vector<std::string> shape_strs;
split(columns[1], ' ', &shape_strs);
for (auto& s : shape_strs) {
record.shape.push_back(std::stoi(s));
}
VLOG(3) << "data size " << record.data.size();
VLOG(3) << "data shape size " << record.shape.size();
return record;
}
void CheckOutput(const std::string& referfile, const PaddleTensor& output) {
std::string line;
std::ifstream file(referfile);
std::getline(file, line);
auto refer = ProcessALine(line);
file.close();
size_t numel = output.data.length() / PaddleDtypeSize(output.dtype);
VLOG(3) << "predictor output numel " << numel;
VLOG(3) << "reference output numel " << refer.data.size();
PADDLE_ENFORCE_EQ(numel, refer.data.size());
switch (output.dtype) {
case PaddleDType::INT64: {
for (size_t i = 0; i < numel; ++i) {
PADDLE_ENFORCE_EQ(static_cast<int64_t*>(output.data.data())[i],
refer.data[i]);
}
break;
}
case PaddleDType::FLOAT32:
for (size_t i = 0; i < numel; ++i) {
PADDLE_ENFORCE_LT(
fabs(static_cast<float*>(output.data.data())[i] - refer.data[i]),
1e-5);
}
break;
}
}
/*
* Use the native fluid engine to inference the demo.
*/
void Main(bool use_gpu) {
std::unique_ptr<PaddlePredictor> predictor;
NativeConfig config;
config.param_file = FLAGS_modeldir + "/__params__";
config.prog_file = FLAGS_modeldir + "/__model__";
......@@ -111,7 +49,7 @@ void Main(bool use_gpu) {
}
VLOG(3) << "init predictor";
auto predictor =
predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
VLOG(3) << "begin to process data";
......@@ -131,7 +69,7 @@ void Main(bool use_gpu) {
VLOG(3) << "run executor";
std::vector<PaddleTensor> output;
predictor->Run({input}, &output);
predictor->Run({input}, &output, 1);
VLOG(3) << "output.size " << output.size();
auto& tensor = output.front();
......@@ -146,9 +84,10 @@ void Main(bool use_gpu) {
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::Main(false /* use_gpu*/);
if (FLAGS_use_gpu) {
paddle::demo::Main(true /*use_gpu*/);
} else {
paddle::demo::Main(false /*use_gpu*/);
}
return 0;
}
......@@ -70,6 +70,14 @@ if (NOT EXISTS ${OCR_INSTALL_DIR})
endif()
inference_analysis_api_test(test_analyzer_ocr ${OCR_INSTALL_DIR} analyzer_vis_tester.cc)
# resnet50
set(RESNET50_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/resnet50")
if (NOT EXISTS ${RESNET50_INSTALL_DIR})
inference_download_and_uncompress(${RESNET50_INSTALL_DIR} ${INFERENCE_URL} "resnet50_model.tar.gz")
endif()
inference_analysis_test(test_analyzer_resnet50 SRCS analyzer_resnet50_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} ARGS --infer_model=${RESNET50_INSTALL_DIR}/model)
# anakin
if (WITH_ANAKIN AND WITH_MKL) # only needed in CI
# anakin rnn1
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace paddle {
namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params";
cfg->prog_file = FLAGS_infer_model + "/model";
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
PaddleTensor input;
// channel=3, height/width=318
std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
input.shape = shape;
input.dtype = PaddleDType::FLOAT32;
// fill input data, for profile easily, do not use random data here.
size_t size = FLAGS_batch_size * 3 * 318 * 318;
input.data.Resize(size * sizeof(float));
float *input_data = static_cast<float *>(input.data.data());
for (size_t i = 0; i < size; i++) {
*(input_data + i) = static_cast<float>(i) / size;
}
std::vector<PaddleTensor> input_slots;
input_slots.assign({input});
(*inputs).emplace_back(input_slots);
}
// Easy for profiling independently.
TEST(Analyzer_resnet50, profile) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
size_t size = GetSize(outputs[0]);
// output is a 512-dimension feature
EXPECT_EQ(size, 512 * FLAGS_batch_size);
}
}
// Check the fuse status
TEST(Analyzer_resnet50, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
}
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_resnet50, compare) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareNativeAndAnalysis(cfg, input_slots_all);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -270,10 +270,11 @@ TEST(Analyzer_rnn1, multi_thread) {
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
TestPrediction(cfg, input_slots_all, &outputs, 4 /* multi_thread */);
}
bool CompareTensors(framework::Scope &a_scope, framework::Scope &b_scope,
bool CompareTensors(const framework::Scope &a_scope,
const framework::Scope &b_scope,
const std::vector<std::string> &tensors) {
for (auto &x : tensors) {
auto *a_var = a_scope.FindVar(x);
......
......@@ -61,8 +61,6 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->ir_passes.push_back("fc_gru_fuse_pass");
#ifdef PADDLE_WITH_MKLDNN
cfg->_use_mkldnn = true;
// disable mkldnn fuse since it should have some bugs
cfg->ir_passes.push_back("conv_relu_mkldnn_fuse_pass");
#endif
}
......
......@@ -4,7 +4,6 @@ function(inference_test TARGET_NAME)
set(multiValueArgs ARGS)
cmake_parse_arguments(inference_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
set(arg_list "")
if(inference_test_ARGS)
foreach(arg ${inference_test_ARGS})
......
......@@ -268,6 +268,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
else()
set(DEPS_OPS ${DEPS_OPS} tensorrt_engine_op)
endif()
op_library(clip_by_norm_op DEPS selected_rows_functor selected_rows)
op_library(sum_op DEPS selected_rows_functor)
op_library(sgd_op DEPS selected_rows_functor)
op_library(print_op DEPS lod_tensor)
......
......@@ -80,7 +80,7 @@ class ActivationOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
......@@ -91,12 +91,26 @@ class ActivationOp : public framework::OperatorWithKernel {
}
};
class ActivationOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
auto x_name = op_desc.Input("X")[0];
auto out_name = op_desc.Output("Out")[0];
auto& x = block->FindRecursiveOrCreateVar(x_name);
auto& out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(x.GetType());
out.SetDataType(x.GetDataType());
}
};
class ActivationOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out"));
ctx->ShareDim("Out", framework::GradVarName("X"));
ctx->ShareLoD("Out", framework::GradVarName("X"));
}
protected:
......@@ -525,12 +539,14 @@ namespace ops = paddle::operators;
#define REGISTER_INPLACE_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::operators::OP_NAME##GradMaker); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
#define REGISTER_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
......
......@@ -42,8 +42,8 @@ class ArgsortOp : public framework::OperatorWithKernel {
"-rank(Input(X)) (%d).",
axis, num_dims);
ctx->SetOutputDim("Out", in_dims);
ctx->SetOutputDim("Indices", in_dims);
ctx->ShareDim("X", "Out");
ctx->ShareDim("X", "Indices");
ctx->ShareLoD("X", "Out");
ctx->ShareLoD("X", "Indices");
}
......
......@@ -16,12 +16,15 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using SelectedRows = framework::SelectedRows;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
......@@ -31,9 +34,40 @@ class ClipByNormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto max_norm = context.Attr<T>("max_norm");
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
auto in_var = context.InputVar("X");
Tensor* output = nullptr;
const Tensor* input = nullptr;
if (in_var->IsType<framework::LoDTensor>()) {
input = context.Input<Tensor>("X");
output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
} else if (in_var->IsType<SelectedRows>()) {
auto* x = context.Input<SelectedRows>("X");
// merge ids in selected rows first
math::scatter::MergeAdd<DeviceContext, T> merge_func;
SelectedRows* merged_input =
const_cast<framework::Scope&>(context.scope())
.Var()
->GetMutable<SelectedRows>();
merge_func(context.template device_context<DeviceContext>(), *x,
merged_input);
input = &(merged_input->value());
SelectedRows* output_selected_rows = context.Output<SelectedRows>("Out");
output_selected_rows->set_rows(merged_input->rows());
output_selected_rows->set_height(merged_input->height());
output = output_selected_rows->mutable_value();
output->Resize(merged_input->value().dims());
output->mutable_data<T>(context.GetPlace());
} else {
PADDLE_THROW("Unexpected branch, input variable type is %s",
in_var->Type().name());
}
PADDLE_ENFORCE_NOT_NULL(input);
auto x = EigenVector<T>::Flatten(*input);
auto out = EigenVector<T>::Flatten(*output);
......
......@@ -44,7 +44,7 @@ class ConvShiftOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LE(y_dims[1], x_dims[1],
"The 2nd dimension of Input(Y) should be less than or "
"equal to the 2nd dimension of Input(X).");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
......
......@@ -22,6 +22,7 @@
#include <cub/cub.cuh> // NOLINT
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
namespace paddle {
namespace operators {
......@@ -293,7 +294,12 @@ void TensorReduce(const framework::Tensor& x, framework::Tensor* y,
}
auto x_data = x.data<Tx>();
auto y_data = y->mutable_data<Ty>(x.place());
if (reduce_num == 1) return;
if (reduce_num == 1) {
auto out_dims = y->dims();
framework::TensorCopy(x, y->place(), y);
y->Resize(out_dims);
return;
}
#define CUB_BLOCK_DIM_CASE(block_dim) \
case block_dim: { \
......
......@@ -41,7 +41,8 @@ class ElementwiseOp : public framework::OperatorWithKernel {
auto y_dim = ctx->GetInputDim("Y");
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.");
ctx->SetOutputDim("Out", x_dim);
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
......@@ -70,6 +71,7 @@ class ElementwiseOpInferVarType : public framework::VarTypeInference {
auto& x = block->FindRecursiveOrCreateVar(x_name);
auto& out = block->FindRecursiveOrCreateVar(out_name);
out.SetType(x.GetType());
out.SetDataType(x.GetDataType());
}
};
......@@ -157,10 +159,12 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
ctx->ShareDim("X", /*->*/ x_grad_name);
ctx->ShareLoD("X", /*->*/ x_grad_name);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->SetOutputDim(y_grad_name, y_dims);
ctx->ShareDim("Y", /*->*/ y_grad_name);
ctx->ShareLoD("Y", /*->*/ y_grad_name);
}
}
......@@ -193,14 +197,15 @@ class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(x_grad_name, out_dims);
ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
}
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(y_grad_name)) {
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
auto y_dims = ctx->GetInputDim("Y");
ctx->SetOutputDim(y_grad_name, y_dims);
ctx->ShareDim("Y", /*->*/ y_grad_name);
ctx->ShareLoD("Y", /*->*/ y_grad_name);
}
}
};
......
......@@ -48,7 +48,8 @@ class FakeDequantizeMaxAbsOp : public framework::OperatorWithKernel {
"Input(X) of FakeDequantizeMaxAbsOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of FakeDequantizeMaxAbsOp should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
......
......@@ -93,11 +93,7 @@ void FusedEmbeddingFCLSTMOp::InferShape(
ctx->SetOutputDim("Cell", out_dims);
ctx->ShareLoD("Ids", "Hidden");
ctx->ShareLoD("Ids", "Cell");
int xx_width;
if (ctx->Attrs().Get<bool>("use_seq")) {
xx_width = wh_dims[1];
} else {
xx_width = x_dims[1] > wh_dims[1] ? wh_dims[1] : x_dims[1];
if (!ctx->Attrs().Get<bool>("use_seq")) {
PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
"Assert only one Output(BatchedInput) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
......@@ -112,7 +108,7 @@ void FusedEmbeddingFCLSTMOp::InferShape(
ctx->SetOutputDim("BatchedHidden", out_dims);
ctx->SetOutputDim("BatchedCell", out_dims);
}
ctx->SetOutputDim("XX", {x_dims[0], xx_width});
ctx->SetOutputDim("XX", {x_dims[0], wh_dims[1]});
ctx->ShareLoD("Ids", "XX");
}
......@@ -435,8 +431,6 @@ class FusedEmbeddingFCLSTMKernel : public framework::OpKernel<T> {
INIT_VEC_FUNC
INIT_BASE_INPUT_DATAS
// std::cout << "===> Batch Compute" << std::endl;
auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/isfinite_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
class OverflowOp : public framework::OperatorWithKernel {
public:
OverflowOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of OverflowOp should not be null.");
ctx->SetOutputDim("Out", {1});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
int dtype = -1;
auto *x_var = ctx.InputVar("X");
if (x_var->IsType<framework::LoDTensor>()) {
dtype = framework::ToDataType(x_var->Get<framework::LoDTensor>().type());
} else if (x_var->IsType<framework::SelectedRows>()) {
dtype = framework::ToDataType(
x_var->Get<framework::SelectedRows>().value().type());
} else {
PADDLE_THROW("Cannot find the input data type by all input data");
}
return framework::OpKernelType(framework::proto::VarType::Type(dtype),
ctx.GetPlace());
}
};
class OverflowOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) The input tensors of overflow operator.");
AddOutput("Out",
"(Tensor) 1-dim tensor, contains a bool scalar. The output "
"tensor of overflow operator.");
AddComment(string::Sprintf(R"DOC(
Overflow operator.
$$Out = any(X)$$
If any X contains Inf or Nan, the Out will generate a indicator.
Out = Inf if any X contains Inf,
Out = Nan if any X contains Nan,
Out = 0 if no Inf/Nan detected.
If X contains both Inf/Nan, it will return the first indicator it meeted.
)DOC",
GetName(), GetComments()));
}
protected:
virtual std::string GetName() const = 0;
virtual std::string GetComments() const = 0;
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
#define REGISTER_OP_MAKER(op_type, comment) \
namespace paddle { \
namespace operators { \
class _##op_type##OverflowOpMaker \
: public ::paddle::operators::OverflowOpMaker { \
protected: \
std::string GetName() const { return #op_type; } \
std::string GetComments() const { return comment; } \
}; \
} \
} \
REGISTER_OPERATOR(op_type, ops::OverflowOp, \
ops::_##op_type##OverflowOpMaker, \
paddle::framework::EmptyGradOpMaker)
#define REGISTER_OVERFLOW_CPU_KERNEL(op_type, functor) \
REGISTER_OP_CPU_KERNEL( \
op_type, ops::OverflowKernel<paddle::platform::CPUDeviceContext, int, \
ops::functor>, \
ops::OverflowKernel<paddle::platform::CPUDeviceContext, float, \
ops::functor>, \
ops::OverflowKernel<paddle::platform::CPUDeviceContext, double, \
ops::functor>);
REGISTER_OP_MAKER(isinf, "isinf(X)");
REGISTER_OP_MAKER(isnan, "isnan(X)");
REGISTER_OP_MAKER(isfinite, "isfinite(X)");
FOR_EACH_KERNEL_FUNCTOR(REGISTER_OVERFLOW_CPU_KERNEL);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/isfinite_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
#define REGISTER_OVERFLOW_CUDA_KERNEL(op_type, functor) \
REGISTER_OP_CUDA_KERNEL( \
op_type, ops::OverflowKernel<paddle::platform::CUDADeviceContext, int, \
ops::functor>, \
ops::OverflowKernel<paddle::platform::CUDADeviceContext, float, \
ops::functor>, \
ops::OverflowKernel<paddle::platform::CUDADeviceContext, double, \
ops::functor>, \
ops::OverflowKernel<paddle::platform::CUDADeviceContext, plat::float16, \
ops::functor>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_OVERFLOW_CUDA_KERNEL);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
struct InfinityFunctor {
void operator()(const framework::Tensor& tensor, framework::Tensor* out) {
framework::TensorContainsInf(tensor, out);
}
};
struct NANFunctor {
void operator()(const framework::Tensor& tensor, framework::Tensor* out) {
framework::TensorContainsNAN(tensor, out);
}
};
struct IsfiniteFunctor {
void operator()(const framework::Tensor& tensor, framework::Tensor* out) {
framework::TensorIsfinite(tensor, out);
}
};
template <typename DeviceContext, typename T, typename Functor>
class OverflowKernel : public framework::OpKernel<T> {
public:
virtual void Compute(const framework::ExecutionContext& ctx) const {
auto* x = ctx.InputVar("X");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
Functor functor;
if (x->IsType<framework::LoDTensor>()) {
auto* in = ctx.Input<framework::Tensor>("X");
functor(*in, out);
} else if (x->IsType<framework::SelectedRows>()) {
auto& in = ctx.Input<framework::SelectedRows>("X")->value();
functor(in, out);
} else {
PADDLE_THROW("Unsupported input type.");
}
}
};
} // namespace operators
} // namespace paddle
#define FOR_EACH_KERNEL_FUNCTOR(__macro) \
__macro(isinf, InfinityFunctor); \
__macro(isnan, NANFunctor); \
__macro(isfinite, IsfiniteFunctor);
......@@ -137,6 +137,7 @@ class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
<< " is set to LoDTensor";
block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
}
block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
}
};
......
......@@ -46,17 +46,20 @@ __forceinline__ __device__ unsigned warp_id() {
return ret;
}
#define ARG_DEFINE_KernelDepthwiseConv \
const T *const input_data, const T *const filter_data, const int batch_size, \
const int output_channels, const int output_height, \
const int output_width, const int input_channels, \
const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, T *const output_data
// A Cuda kernel to compute the depthwise convolution forward pass
// in NCHW format.
template <typename T>
__device__ __inline__ void KernelDepthwiseConv(
const T* const input_data, const T* const filter_data, const int batch_size,
const int output_channels, const int output_height, const int output_width,
const int input_channels, const int input_height, const int input_width,
const int filter_multiplier, const int filter_height,
const int filter_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width, const int dilate_height,
const int dilate_width, T* const output_data) {
__device__ __inline__ void KernelDepthwiseConv(ARG_DEFINE_KernelDepthwiseConv) {
for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) {
for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) {
const int batch = blockIdx.y;
......@@ -97,42 +100,105 @@ __device__ __inline__ void KernelDepthwiseConv(
}
}
template <typename T, int c_filter_multiplier, int c_stride>
__global__ void KernelDepthwiseConvSp(
const T* const input_data, const T* const filter_data, const int batch_size,
const int output_channels, const int output_height, const int output_width,
const int input_channels, const int input_height, const int input_width,
const int filter_multiplier, const int filter_height,
const int filter_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width, const int dilate_height,
const int dilate_width, T* const output_data) {
if (c_filter_multiplier == 0)
KernelDepthwiseConv<T>(input_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels,
input_height, input_width, filter_multiplier,
filter_height, filter_width, stride_height,
stride_width, padding_height, padding_width,
dilate_height, dilate_width, output_data);
template <typename T, int c_filter>
__device__ __inline__ void KernelDepthwiseConvCFilter(
ARG_DEFINE_KernelDepthwiseConv) {
const int kWeghtSize = c_filter * c_filter;
T r_weight[kWeghtSize];
const int batch = blockIdx.y;
const int c_out = blockIdx.x;
const T* weight = filter_data + c_out * c_filter * c_filter;
for (int i = 0; i < c_filter * c_filter; i++) r_weight[i] = weight[i];
for (int w_out = threadIdx.x; w_out < output_width; w_out += blockDim.x) {
for (int h_out = threadIdx.y; h_out < output_height; h_out += blockDim.y) {
const int batch = blockIdx.y;
const int c_out = blockIdx.x;
const int c_in = c_out / filter_multiplier;
T value = 0;
const int h_in_start = -padding_height + h_out * stride_height;
const int w_in_start = -padding_width + w_out * stride_width;
const int h_in_end = h_in_start + c_filter * dilate_height;
const int w_in_end = w_in_start + c_filter * dilate_width;
const int in_offset =
((batch * input_channels + c_in) * input_height) * input_width;
const int h_end = h_in_end < input_height ? h_in_end : input_height;
const int w_end = w_in_end < input_width ? w_in_end : input_width;
const int h_start = h_in_start > 0 ? h_in_start : 0;
const int w_start = w_in_start > 0 ? w_in_start : 0;
for (int h_in = h_in_start, h_f = 0; h_f < c_filter;
h_in += dilate_height, h_f++) {
for (int w_in = w_in_start, w_f = 0; w_f < c_filter;
w_in += dilate_width, w_f++) {
if (h_in >= 0 && h_in < input_height && w_in >= 0 &&
w_in < input_width) {
const int offset = in_offset + h_in * input_width + w_in;
value += r_weight[h_f * c_filter + w_f] * input_data[offset];
}
}
}
int index =
((batch * gridDim.x + c_out) * output_height + h_out) * output_width +
w_out;
output_data[index] = value;
}
}
}
template <typename T, int c_filter_multiplier, int c_stride, int c_filter>
__global__ void KernelDepthwiseConvSp(ARG_DEFINE_KernelDepthwiseConv) {
if (c_filter_multiplier == 0) {
if (c_filter == -1)
KernelDepthwiseConv<T>(
input_data, filter_data, batch_size, output_channels, output_height,
output_width, input_channels, input_height, input_width,
filter_multiplier, filter_height, filter_width, stride_height,
stride_width, padding_height, padding_width, dilate_height,
dilate_width, output_data);
else
KernelDepthwiseConv<T>(input_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels,
input_height, input_width, c_filter_multiplier,
filter_height, filter_height, c_stride, c_stride,
padding_height, padding_width, dilate_height,
KernelDepthwiseConvCFilter<T, c_filter>(
input_data, filter_data, batch_size, output_channels, output_height,
output_width, input_channels, input_height, input_width,
filter_multiplier, filter_height, filter_width, stride_height,
stride_width, padding_height, padding_width, dilate_height,
dilate_width, output_data);
} else {
if (c_filter == -1)
KernelDepthwiseConv<T>(input_data, filter_data, batch_size,
output_channels, output_height, output_width,
input_channels, input_height, input_width,
c_filter_multiplier, filter_height, filter_height,
c_stride, c_stride, padding_height, padding_width,
dilate_height, dilate_width, output_data);
else
KernelDepthwiseConvCFilter<T, c_filter>(
input_data, filter_data, batch_size, output_channels, output_height,
output_width, input_channels, input_height, input_width,
c_filter_multiplier, filter_height, filter_height, c_stride, c_stride,
padding_height, padding_width, dilate_height, dilate_width,
output_data);
}
}
// CUDA kernel to compute the depthwise convolution backprop w.r.t input.
#define ARG_DEFINE_KernelDepthwiseConvInputGrad \
const T *const output_grad_data, const T *const filter_data, \
const int batch_size, const int output_channels, \
const int output_height, const int output_width, \
const int input_channels, const int input_height, const int input_width, \
const int filter_multiplier, const int filter_height, \
const int filter_width, const int stride_height, const int stride_width, \
const int padding_height, const int padding_width, \
const int dilate_height, const int dilate_width, \
T *const input_grad_data
template <typename T>
__device__ __inline__ void KernelDepthwiseConvInputGrad(
const T* const output_grad_data, const T* const filter_data,
const int batch_size, const int output_channels, const int output_height,
const int output_width, const int input_channels, const int input_height,
const int input_width, const int filter_multiplier, const int filter_height,
const int filter_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width, const int dilate_height,
const int dilate_width, T* const input_grad_data) {
ARG_DEFINE_KernelDepthwiseConvInputGrad) {
for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
const int batch = blockIdx.y;
......@@ -184,15 +250,67 @@ __device__ __inline__ void KernelDepthwiseConvInputGrad(
}
}
template <typename T, int c_filter_multiplier, int c_stride>
template <typename T, int c_filter, int c_filter_multiplier>
__device__ __inline__ void KernelDepthwiseConvInputGradCFilter(
ARG_DEFINE_KernelDepthwiseConvInputGrad) {
const int kWeghtSize = c_filter * c_filter * c_filter_multiplier + 1;
T r_weight[kWeghtSize];
const int batch = blockIdx.y;
const int c_in = blockIdx.x;
for (int c_i = 0; c_i < filter_multiplier; c_i++) {
int c_out = c_in * filter_multiplier + c_i;
const T* weight = filter_data + c_out * c_filter * c_filter;
for (int i = 0; i < c_filter * c_filter; i++)
r_weight[i + c_i * c_filter * c_filter] =
weight[c_filter * c_filter - i - 1];
}
for (int w_in = threadIdx.x; w_in < input_width; w_in += blockDim.x) {
for (int h_in = threadIdx.y; h_in < input_height; h_in += blockDim.y) {
const int batch = blockIdx.y;
const int c_in = blockIdx.x;
int h_out_start = h_in - (c_filter - 1) * dilate_height + padding_height;
int w_out_start = w_in - (c_filter - 1) * dilate_width + padding_width;
T value = 0;
for (int c_i = 0; c_i < filter_multiplier; c_i++) {
int c_out = c_in * filter_multiplier + c_i;
for (int h_out = h_out_start, h_f = 0; h_f < c_filter;
h_out += dilate_height, h_f++) {
for (int w_out = w_out_start, w_f = 0; w_f < c_filter;
w_out += dilate_width, w_f++) {
int s_h_out = h_out / stride_height;
int s_w_out = w_out / stride_width;
if (h_out % stride_height == 0 && w_out % stride_width == 0 &&
s_h_out >= 0 && s_h_out < output_height && s_w_out >= 0 &&
s_w_out < output_width) {
const int output_grad_offset =
((batch * output_channels + c_out) * output_height +
s_h_out) *
output_width +
s_w_out;
value +=
output_grad_data[output_grad_offset] *
r_weight[h_f * c_filter + w_f + c_i * c_filter * c_filter];
}
}
}
}
int index =
((batch * gridDim.x + c_in) * input_height + h_in) * input_width +
w_in;
input_grad_data[index] = value;
}
}
}
template <typename T, int c_filter_multiplier, int c_stride, int c_filter>
__global__ void KernelDepthwiseConvInputGradSp(
const T* const output_grad_data, const T* const filter_data,
const int batch_size, const int output_channels, const int output_height,
const int output_width, const int input_channels, const int input_height,
const int input_width, const int filter_multiplier, const int filter_height,
const int filter_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width, const int dilate_height,
const int dilate_width, T* const input_grad_data) {
ARG_DEFINE_KernelDepthwiseConvInputGrad) {
if (c_filter_multiplier == 0)
KernelDepthwiseConvInputGrad<T>(
output_grad_data, filter_data, batch_size, output_channels,
......@@ -200,13 +318,20 @@ __global__ void KernelDepthwiseConvInputGradSp(
filter_multiplier, filter_height, filter_width, stride_height,
stride_width, padding_height, padding_width, dilate_height,
dilate_width, input_grad_data);
else
else if (c_filter == -1)
KernelDepthwiseConvInputGrad<T>(
output_grad_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels, input_height, input_width,
c_filter_multiplier, filter_height, filter_width, c_stride, c_stride,
padding_height, padding_width, dilate_height, dilate_width,
input_grad_data);
else
KernelDepthwiseConvInputGradCFilter<T, c_filter, c_filter_multiplier>(
output_grad_data, filter_data, batch_size, output_channels,
output_height, output_width, input_channels, input_height, input_width,
c_filter_multiplier, filter_height, filter_width, c_stride, c_stride,
padding_height, padding_width, dilate_height, dilate_width,
input_grad_data);
}
// Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
......@@ -325,12 +450,14 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dim3 threads(std::min(output_width, thread), blocks, 1);
dim3 grid(output_channels, batch_size, 1);
int filter_multiplier = output_channels / input_channels;
#define check_case(c_filter_multiplier, c_stride) \
#define check_case(c_filter_multiplier, c_stride, c_filter) \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
KernelDepthwiseConvSp<T, c_filter_multiplier, \
c_stride><<<grid, threads, 0, context.stream()>>>( \
stride_height == stride_width && stride_height == c_stride && \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
KernelDepthwiseConvSp<T, c_filter_multiplier, c_stride, \
c_filter><<<grid, threads, 0, context.stream()>>>( \
input_data, filter_data, batch_size, output_channels, output_height, \
output_width, input_channels, input_height, input_width, \
filter_multiplier, ksize_height, ksize_width, stride_height, \
......@@ -338,11 +465,17 @@ class DepthwiseConvFunctor<platform::CUDADeviceContext, T> {
dilate_width, output_data); \
return; \
}
check_case(1, 1);
check_case(1, 2);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
check_case(0, 0);
check_case(1, 1, 3);
check_case(1, 1, 5);
check_case(1, 1, -1);
check_case(1, 2, 3);
check_case(1, 2, 5);
check_case(1, 2, -1);
check_case(0, 0, 3);
check_case(0, 0, 5);
check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
}
};
......@@ -384,13 +517,15 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dim3 grid(input_channels, batch_size, 1);
int filter_multiplier = output_channels / input_channels;
#define check_case(c_filter_multiplier, c_stride) \
#define check_case(c_filter_multiplier, c_stride, c_filter) \
if (c_filter_multiplier == 0 || \
filter_multiplier == c_filter_multiplier && \
stride_height == stride_width && stride_height == c_stride) { \
stride_height == stride_width && stride_height == c_stride && \
(ksize_height == ksize_width && ksize_height == c_filter || \
c_filter == -1)) { \
KernelDepthwiseConvInputGradSp< \
T, c_filter_multiplier, \
c_stride><<<grid, threads, 0, context.stream()>>>( \
T, c_filter_multiplier, c_stride, \
c_filter><<<grid, threads, 0, context.stream()>>>( \
output_grad_data, filter_data, batch_size, output_channels, \
output_height, output_width, input_channels, input_height, \
input_width, filter_multiplier, ksize_height, ksize_width, \
......@@ -398,11 +533,21 @@ class DepthwiseConvInputGradFunctor<platform::CUDADeviceContext, T> {
dilate_height, dilate_width, input_grad_data); \
return; \
}
check_case(1, 1);
check_case(1, 2);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
check_case(0, 0);
check_case(1, 1, 3);
check_case(1, 1, 5);
check_case(1, 1, -1);
check_case(1, 2, 3);
check_case(1, 2, 5);
check_case(1, 2, -1);
check_case(2, 1, 3);
check_case(2, 1, 5);
check_case(2, 1, -1);
check_case(2, 2, 3);
check_case(2, 2, 5);
check_case(2, 2, -1);
check_case(0, 0, -1);
// NOTE(liangdun): 0,0 for other case
// add other case if needed, e.g. check_case(2^n,1)
#undef check_case
}
};
......
......@@ -49,7 +49,7 @@ class PReluOp : public framework::OperatorWithKernel {
} else {
PADDLE_THROW("Unkown mode %s", mode);
}
ctx->SetOutputDim("Out", x_dim);
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
......
......@@ -54,7 +54,7 @@ class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
"Input(X) of rnn_memory_helper op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output of rnn_memory_helper op should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
......
......@@ -90,8 +90,8 @@ class SequenceConvGradOp : public framework::OperatorWithKernel {
ctx->GetInputDim("PaddingData"));
}
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareLoD("X", framework::GradVarName("X"));
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"),
......
......@@ -102,8 +102,9 @@ class SequencePoolGradOp : public framework::OperatorWithKernel {
for (int64_t i = 1; i < og_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
}
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
ctx->ShareLoD("X", framework::GradVarName("X"));
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
protected:
......
......@@ -92,7 +92,7 @@ class SequenceReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequenceReshapeGradOp should not be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
};
......
......@@ -27,7 +27,8 @@ class SequenceSoftmaxOp : public framework::OperatorWithKernel {
"Input(X) of SequenceSoftmaxOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceSoftmaxOp should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
......
......@@ -151,9 +151,9 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"));
PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
context->SetOutputDim(framework::GradVarName("X"),
context->GetInputDim("X"));
context->ShareLoD("X", framework::GradVarName("X"));
context->ShareDim("X", /*->*/ framework::GradVarName("X"));
context->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
};
......
......@@ -40,7 +40,7 @@ class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel {
"The 2nd dimension of Input(X) and Input(Label) should "
"be equal.");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
}
};
......
......@@ -256,15 +256,20 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
* 3. go to the second setp, until one thread's topk value is null;
* 4. go to the first setp, until get the topk value.
*/
template <typename T, int MaxLength, int BlockSize>
__global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
const T* src, int lds, int dim, int k) {
const T* src, int lds, int dim, int k,
int grid_dim, int num) {
__shared__ Pair<T> sh_topk[BlockSize];
__shared__ int maxid[BlockSize / 2];
const int tid = threadIdx.x;
const int warp = threadIdx.x / 32;
output += blockIdx.x * output_stride;
indices += blockIdx.x * k;
const int bid = blockIdx.x;
for (int i = bid; i < num; i += grid_dim) {
output += i * output_stride;
indices += i * k;
Pair<T> topk[MaxLength];
int beam = MaxLength;
......@@ -276,16 +281,40 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
topk[k].set(-INFINITY, -1);
}
while (k) {
ThreadGetTopK<T, MaxLength, BlockSize>(topk, &beam, k,
src + blockIdx.x * lds, &firststep,
&is_empty, &max, dim, tid);
ThreadGetTopK<T, MaxLength, BlockSize>(
topk, &beam, k, src + i * lds, &firststep, &is_empty, &max, dim, tid);
sh_topk[tid] = topk[0];
BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output,
&indices, &beam, &k, tid, warp);
}
}
}
inline static int GetDesiredBlockDim(int dim) {
if (dim > 128) {
return 256;
} else if (dim > 64) {
return 128;
} else if (dim > 32) {
return 64;
} else {
return 32;
}
}
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
case (dim): { \
constexpr auto kBlockDim = (dim); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM(...) \
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
template <typename T>
class TopkOpCUDAKernel : public framework::OpKernel<T> {
public:
......@@ -310,18 +339,26 @@ class TopkOpCUDAKernel : public framework::OpKernel<T> {
// NOTE: pass lds and dim same to input width.
// NOTE: old matrix implementation of stride is different to eigen.
// TODO(typhoonzero): refine this kernel.
dim3 threads(256, 1);
dim3 grid(input_height, 1);
const int kMaxHeight = 2048;
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
auto& dev_ctx = ctx.cuda_device_context();
KeMatrixTopK<T, 5, 256><<<
grid, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream()>>>(
output_data, output->dims()[1], indices_data, input_data, input_width,
input_width, static_cast<int>(k));
switch (GetDesiredBlockDim(input_width)) {
FIXED_BLOCK_DIM(
KeMatrixTopK<T, 5,
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
output_data, output->dims()[1], indices_data, input_data,
input_width, input_width, static_cast<int>(k), gridx,
input_height));
default:
PADDLE_THROW("Error");
}
}
};
#undef FIXED_BLOCK_DIM_BASE
#undef FIXED_BLOCK_DIM
} // namespace operators
} // namespace paddle
......
......@@ -148,7 +148,7 @@ struct TruncatedNormal {
T operator()(T value) const {
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return (std::sqrt(2.0) * Erfinv(2 * p - 1) + mean) * std;
return std::sqrt(2.0) * Erfinv(2 * p - 1) * std + mean;
}
};
......
......@@ -42,7 +42,7 @@ struct TruncatedNormal {
rng.discard(n);
T value = dist(rng);
auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
return (std::sqrt(2.0) * erfinvf(2 * p - 1) + mean) * std;
return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean;
}
};
......@@ -52,6 +52,7 @@ class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
std::random_device rd;
......
......@@ -23,14 +23,14 @@ namespace operators {
template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
framework::Tensor* tensor = nullptr;
void Compute(const framework::ExecutionContext &ctx) const override {
framework::Tensor *tensor = nullptr;
auto out_var = ctx.OutputVar("Out");
if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
} else if (out_var->IsType<framework::SelectedRows>()) {
auto shape = ctx.Attr<std::vector<int>>("shape");
auto* selected_rows = out_var->GetMutable<framework::SelectedRows>();
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
tensor = selected_rows->mutable_value();
tensor->Resize(framework::make_ddim(shape));
selected_rows->mutable_rows()->reserve(shape[0]);
......@@ -39,7 +39,7 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
"uniform_random_op's output only"
"supports SelectedRows and LoDTensor");
}
T* data = tensor->mutable_data<T>(ctx.GetPlace());
T *data = tensor->mutable_data<T>(ctx.GetPlace());
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
......@@ -60,14 +60,14 @@ class UniformRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of UniformRandomOp should not be null.");
PADDLE_ENFORCE(
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
"uniform_random's min must less then max");
auto& shape = ctx->Attrs().Get<std::vector<int>>("shape");
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
std::vector<int64_t> temp;
temp.reserve(shape.size());
for (auto dim : shape) {
......@@ -78,7 +78,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.GetPlace());
......@@ -112,17 +112,17 @@ uniform distribution. The random result is in set [min, max].
class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
auto out_var_name = op_desc.Output("Out").front();
if (block->FindRecursiveOrCreateVar(out_var_name).GetType() ==
framework::proto::VarType::SELECTED_ROWS) {
block->FindRecursiveOrCreateVar(out_var_name)
.SetType(framework::proto::VarType::SELECTED_ROWS);
} else {
block->FindRecursiveOrCreateVar(out_var_name)
.SetType(framework::proto::VarType::LOD_TENSOR);
auto var_data_type = static_cast<framework::proto::VarType::Type>(
boost::get<int>(op_desc.GetAttr("dtype")));
auto out_var = block->FindRecursiveOrCreateVar(out_var_name);
if (out_var.GetType() != framework::proto::VarType::SELECTED_ROWS) {
out_var.SetType(framework::proto::VarType::LOD_TENSOR);
}
out_var.SetDataType(var_data_type);
}
};
......
......@@ -224,10 +224,12 @@ class WhileGradOp : public framework::OperatorBase {
if (cur_scope_iter == step_scopes->rbegin()) {
auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
PADDLE_ENFORCE(var->IsType<framework::LoDTensorArray>() ||
PADDLE_ENFORCE(
var->IsType<framework::LoDTensorArray>() ||
var->IsType<LoDTensor>(),
"Currently the type of var only can be LoDTensorArray "
"or LoDTensor.");
"Currently the type of var only can be LoDTensorArray, "
"or LoDTensor, but the received var[%s] is %s.",
inside_grad_name, var->Type().name());
if (var->IsType<LoDTensor>()) {
auto &inside_tensor = var->Get<framework::LoDTensor>();
......
......@@ -20,8 +20,11 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
DEFINE_double(fraction_of_gpu_memory_to_use, 0.92,
"Default use 92% of GPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
"Allocate a trunk of gpu memory that is this fraction of the "
"total gpu memory size. Future memory usage will be allocated "
"from the trunk. If the trunk doesn't have enough gpu memory, "
"additional trunks of the same size will be requested from gpu "
"until the gpu has no memory left for another trunk.");
namespace paddle {
namespace platform {
......
......@@ -276,7 +276,7 @@ struct EventItem {
// Print results
void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
const std::string& sorted_domain, const size_t name_width,
const size_t data_width, double total) {
const size_t data_width, bool merge_thread) {
// Output header information
std::cout << "\n------------------------->"
<< " Profiling Report "
......@@ -292,6 +292,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
PADDLE_THROW("Invalid profiler state", g_state);
}
if (merge_thread) {
std::cout << "Note! This Report merge all thread info into one."
<< std::endl;
}
std::cout << "Place: " << place << std::endl;
std::cout << "Time unit: ms" << std::endl;
std::cout << "Sorted by " << sorted_domain
......@@ -312,8 +316,7 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
<< std::setw(data_width) << event_item.min_time
<< std::setw(data_width) << event_item.max_time
<< std::setw(data_width) << event_item.ave_time
<< std::setw(data_width) << event_item.total_time / total
<< std::endl;
<< std::setw(data_width) << event_item.ratio << std::endl;
}
}
std::cout << std::endl;
......@@ -321,8 +324,10 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
// Parse the event list and output the profiling report
void ParseEvents(const std::vector<std::vector<Event>>& events,
bool merge_thread,
EventSortingKey sorted_by = EventSortingKey::kDefault) {
if (g_state == ProfilerState::kDisabled) return;
if (merge_thread && events.size() < 2) return;
std::string sorted_domain;
std::function<bool(const EventItem&, const EventItem&)> sorted_func;
......@@ -361,34 +366,55 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
sorted_domain = "event first end time";
}
const std::vector<std::vector<Event>>* analyze_events;
std::vector<std::vector<Event>> merged_events_list;
if (merge_thread) {
std::vector<Event> merged_events;
for (int i = 0; i < events.size(); ++i) {
for (int j = 0; j < events[i].size(); ++j) {
merged_events.push_back(events[i][j]);
}
}
merged_events_list.push_back(merged_events);
analyze_events = &merged_events_list;
} else {
analyze_events = &events;
}
std::vector<std::vector<EventItem>> events_table;
size_t max_name_width = 0;
double total = 0.; // the total time
for (size_t i = 0; i < events.size(); i++) {
for (size_t i = 0; i < (*analyze_events).size(); i++) {
double total = 0.; // the total time in one thread
std::list<Event> pushed_events;
std::vector<EventItem> event_items;
std::unordered_map<std::string, int> event_idx;
for (size_t j = 0; j < events[i].size(); j++) {
if (events[i][j].type() == EventType::kPushRange) {
pushed_events.push_back(events[i][j]);
} else if (events[i][j].type() == EventType::kPopRange) {
for (size_t j = 0; j < (*analyze_events)[i].size(); j++) {
if ((*analyze_events)[i][j].type() == EventType::kPushRange) {
pushed_events.push_back((*analyze_events)[i][j]);
} else if ((*analyze_events)[i][j].type() == EventType::kPopRange) {
std::list<Event>::reverse_iterator rit = pushed_events.rbegin();
while (rit != pushed_events.rend() &&
rit->name() != events[i][j].name()) {
rit->name() != (*analyze_events)[i][j].name()) {
++rit;
}
if (rit != pushed_events.rend()) {
double event_time = (g_state == ProfilerState::kCUDA ||
g_state == ProfilerState::kAll)
? rit->CudaElapsedMs(events[i][j])
: rit->CpuElapsedMs(events[i][j]);
? rit->CudaElapsedMs((*analyze_events)[i][j])
: rit->CpuElapsedMs((*analyze_events)[i][j]);
total += event_time;
std::string event_name =
"thread" + std::to_string(rit->thread_id()) + "::" + rit->name();
std::string event_name;
if (merge_thread) {
event_name = rit->name();
max_name_width = std::max(max_name_width, event_name.size());
} else {
event_name = "thread" + std::to_string(rit->thread_id()) + "::" +
rit->name();
max_name_width = std::max(max_name_width, event_name.size());
}
if (event_idx.find(event_name) == event_idx.end()) {
event_idx[event_name] = event_items.size();
......@@ -413,7 +439,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
pushed_events.erase((++rit).base());
} else {
LOG(WARNING) << "Cannot find the push marker of event \'"
<< events[i][j].name()
<< (*analyze_events)[i][j].name()
<< "\', which will be ignored in profiling report.";
}
}
......@@ -421,6 +447,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
// average time
for (auto& item : event_items) {
item.ave_time = item.total_time / item.calls;
item.ratio = item.total_time / total;
}
// sort
if (sorted_by != EventSortingKey::kDefault) {
......@@ -438,7 +465,8 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
}
// Print report
PrintProfiler(events_table, sorted_domain, max_name_width + 4, 12, total);
PrintProfiler(events_table, sorted_domain, max_name_width + 4, 12,
merge_thread);
}
void DisableProfiler(EventSortingKey sorted_key,
......@@ -449,7 +477,8 @@ void DisableProfiler(EventSortingKey sorted_key,
Mark("_stop_profiler_", nullptr);
std::vector<std::vector<Event>> all_events = GetAllEvents();
ParseEvents(all_events, sorted_key);
ParseEvents(all_events, true, sorted_key);
ParseEvents(all_events, false, sorted_key);
ResetProfiler();
DeviceTracer* tracer = GetDeviceTracer();
if (tracer->IsEnabled()) {
......
......@@ -157,7 +157,50 @@ PYBIND11_PLUGIN(core) {
.def("_get_double_element", TensorGetElement<double>)
.def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
py::class_<LoDTensor, Tensor>(m, "LoDTensor")
py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
LoDTensor is a Tensor with optional LoD information.
np.array(lod_tensor) can convert LoDTensor to numpy array.
lod_tensor.lod() can retrieve the LoD information.
LoD is short for Level of Details and is usually used for varied sequence
length. You can skip the following comment if you don't need optional LoD.
For example:
A LoDTensor X can look like the example below. It contains 2 sequences.
The first has length 2 and the second has length 3, as described by x.lod.
The first tensor dimension 6=2+3 is calculated from LoD if it's available.
It means the total number of sequence element. In X, each element has 2
columns, hence [6, 2].
x.lod = [[2, 3]]
x.data = [[1, 2], [3, 4],
[5, 6], [7, 8], [9, 10], [11, 12]]
x.shape = [6, 2]
LoD can have multiple levels (for example, a paragraph can have multiple
sentences and a sentence can have multiple words). In the following
LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
first sequence length is 2 (has 2 sub-sequences), the second one's
length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
respectively. And the second sequence's 1 sub-sequence has length 3.
y.lod = [[2 1], [2 2 3]]
y.shape = [2+2+3, ...]
Note:
In above description, LoD is length-based. In Paddle internal
implementation, lod is offset-based. Hence, internally,
y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).
Sometimes LoD is called recursive_sequence_length to be more
self-explanatory. In this case, it must be length-based. Due to history
reasons. when LoD is called lod in public API, it might be offset-based.
Users should be careful about it.
)DOC")
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def("__init__",
......@@ -620,7 +663,23 @@ All parameter, weight, gradient are variables in Paddle.
// -- python binds for parallel executor.
py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
ExecutionStrategy allows the user to more preciously control how to run
the program in ParallelExecutor by setting the property.
The available properties include:
use_cuda (bool): Whether to use CUDA or not. Default True.
num_threads (int): The number of threads that used to run the
operators in ParallelExecutor. If it is not set, it will be
set in ParallelExecutor according to the device count.
Default 0.
allow_op_delay (bool): Whether to delay the communication operators
to run. Default False.
num_iteration_per_drop_scope (int): how many iterations between
the two dropping local scopes. Default 100.
)DOC");
exec_strategy.def(py::init())
.def_property(
"num_threads",
......@@ -658,7 +717,25 @@ All parameter, weight, gradient are variables in Paddle.
: ExecutionStrategy::kDefault;
});
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
BuildStrategy allows the user to more preciously control how to
build the SSA Graph in ParallelExecutor by setting the property.
The available properties include:
reduce_strategy (str): There are two reduce strategies, 'AllReduce'
and 'Reduce'. If you want that all parameters will be optimized
on all devices, you can choose 'AllReduce'; if you choose
'Reduce', all parameters will be evenly allocated to different
devices for optimization, and then broadcast the optimized
parameter to other devices. Default 'AllReduce'.
gradient_scale_strategy (str): There are two ways of defining loss@grad,
'CoeffNumDevice' and 'Customized'. By default, ParallelExecutor
sets the loss@grad according to the number of devices. If you want
to customize loss@grad, you can choose 'Customized'.
Default 'CoeffNumDevice'.
debug_graphviz_path (str): Whether to write the SSA Graph to file in the
form of graphviz. It is useful for debugging. Default "".
)DOC");
py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
.value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
......
......@@ -4,7 +4,6 @@ function(train_test TARGET_NAME)
set(multiValueArgs ARGS)
cmake_parse_arguments(train_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
set(arg_list "")
if(train_test_ARGS)
foreach(arg ${train_test_ARGS})
......
......@@ -598,9 +598,9 @@ EOF
EOF
if [[ ${WITH_GPU} == "ON" ]]; then
NCCL_DEPS="apt-get install -y --allow-downgrades libnccl2=2.2.13-1+cuda${CUDA_MAJOR} libnccl-dev=2.2.13-1+cuda${CUDA_MAJOR} &&"
NCCL_DEPS="apt-get install -y --allow-downgrades libnccl2=2.2.13-1+cuda${CUDA_MAJOR} libnccl-dev=2.2.13-1+cuda${CUDA_MAJOR} || true"
else
NCCL_DEPS=""
NCCL_DEPS="true"
fi
if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]]; then
......@@ -614,9 +614,8 @@ EOF
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
ADD python/dist/*.whl /
# run paddle version to install python packages first
RUN apt-get update &&\
${NCCL_DEPS}\
apt-get install -y wget python-pip python-opencv libgtk2.0-dev dmidecode python-tk && easy_install -U pip && \
RUN apt-get update && ${NCCL_DEPS}
RUN apt-get install -y wget python-pip python-opencv libgtk2.0-dev dmidecode python-tk && easy_install -U pip && \
pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
......@@ -684,7 +683,7 @@ function test_fluid_inference_lib() {
========================================
EOF
cd ${PADDLE_ROOT}/paddle/fluid/inference/api/demo_ci
./run.sh ${PADDLE_ROOT} ${WITH_MKL:-ON} ${WITH_GPU:-OFF} ${INFERENCE_DEMO_INSTALL_DIR}
./run.sh ${PADDLE_ROOT} ${WITH_MKL:-ON} ${WITH_GPU:-OFF} ${INFERENCE_DEMO_INSTALL_DIR} ${TENSORRT_INCLUDE_DIR:-/usr/local/TensorRT/include} ${TENSORRT_LIB_DIR:-/usr/local/TensorRT/lib}
./clean.sh
fi
}
......
......@@ -60,7 +60,7 @@ add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E remove_directory ${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib.* ${PADDLE_PYTHON_BUILD_DIR}/lib-python
DEPENDS gen_proto_py copy_paddle_pybind ${FLUID_CORE} framework_py_proto profiler_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER})
set(paddle_python_deps ${PADDLE_PYTHON_BUILD_DIR}/.timestamp ${MKL_DEPENDS})
......
......@@ -35,16 +35,15 @@ import itertools
import functools
from .common import download
import tarfile
import six
import scipy.io as scio
from paddle.dataset.image import *
from paddle.reader import *
from paddle import compat as cpt
import os
import numpy as np
from multiprocessing import cpu_count
import six
from six.moves import cPickle as pickle
from six.moves import zip
__all__ = ['train', 'test', 'valid']
DATA_URL = 'http://paddlemodels.cdn.bcebos.com/flowers/102flowers.tgz'
......@@ -126,9 +125,11 @@ def reader_creator(data_file,
batch = pickle.load(f)
else:
batch = pickle.load(f, encoding='bytes')
if six.PY3:
batch = cpt.to_text(batch)
data = batch['data']
labels = batch['label']
for sample, label in zip(data, batch['label']):
for sample, label in six.moves.zip(data, batch['label']):
yield sample, int(label) - 1
if not cycle:
break
......
......@@ -1570,6 +1570,10 @@ class DynamicRNN(object):
The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
get the output sequence.
NOTES:
Currently it is not supported that setting is_sparse to True of any
layers within DynamicRNN.
"""
BEFORE_RNN = 0
IN_RNN = 1
......
......@@ -55,7 +55,11 @@ def data(name,
Args:
name(str): The name/alias of the function
shape(list): Tuple declaring the shape.
append_batch_size(bool): Whether or not to append the data as a batch.
append_batch_size(bool):
1. If true, it prepends -1 to the shape.
For example if shape=[1], the resulting shape is [-1, 1].
2. If shape contains -1, such as shape=[1, -1],
append_batch_size will be enforced to be be False (ineffective).
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
......
......@@ -14,6 +14,8 @@
from __future__ import print_function
from .layer_function_generator import generate_layer_fn, generate_layer_fn_noattr
from .. import core
from ..framework import convert_np_dtype_to_dtype_
__activations_noattr__ = [
'sigmoid',
......@@ -58,8 +60,11 @@ _uniform_random_ = generate_layer_fn('uniform_random')
def uniform_random(shape, dtype=None, min=None, max=None, seed=None):
locals_var = locals().keys()
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......@@ -78,8 +83,9 @@ _hard_shrink_ = generate_layer_fn('hard_shrink')
def hard_shrink(x, threshold=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......@@ -99,12 +105,12 @@ _cum_sum_ = generate_layer_fn('cumsum')
def cumsum(x, axis=None, exclusive=None, reverse=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
return _cum_sum_(**kwargs)
......@@ -121,8 +127,9 @@ _thresholded_relu_ = generate_layer_fn('thresholded_relu')
def thresholded_relu(x, threshold=None):
locals_var = locals().keys()
kwargs = dict()
for name in locals():
for name in locals_var:
val = locals()[name]
if val is not None:
kwargs[name] = val
......
......@@ -24,21 +24,10 @@ from .layer_function_generator import templatedoc
import numpy
__all__ = [
'create_tensor',
'create_parameter',
'create_global_var',
'cast',
'concat',
'sums',
'assign',
'fill_constant_batch_size_like',
'fill_constant',
'argmin',
'argmax',
'argsort',
'ones',
'zeros',
'reverse',
'create_tensor', 'create_parameter', 'create_global_var', 'cast', 'concat',
'sums', 'assign', 'fill_constant_batch_size_like', 'fill_constant',
'argmin', 'argmax', 'argsort', 'ones', 'zeros', 'reverse', 'has_inf',
'has_nan', 'isfinite'
]
......@@ -111,7 +100,7 @@ def create_global_var(shape,
force_cpu=False,
name=None):
"""
Create a new variable in the global block(block 0).
Create a new tensor variable with value in the global block(block 0).
Args:
shape(list[int]): shape of the variable
......@@ -652,3 +641,52 @@ def load_combine(out, file_path):
inputs={},
output={"Out": out},
args={"file_path": file_path})
def has_inf(x):
"""
Test if any of x contains an infinity number
Args:
x(variable): The Tensor/LoDTensor to be checked.
Returns:
Variable: The tensor variable storing the output, only a bool value.
"""
helper = LayerHelper("isinf", **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
return out
def has_nan(x):
"""
Test if any of x contains a NAN
Args:
x(variable): The Tensor/LoDTensor to be checked.
Returns:
Variable: The tensor variable storing the output, only a bool value.
"""
helper = LayerHelper("isnan", **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
return out
def isfinite(x):
"""
Test if any of x contains an infinity/NAN number. If all the elements are finite,
returns true, else false.
Args:
x(variable): The Tensor/LoDTensor to be checked.
Returns:
Variable: The tensor variable storing the output, contains a bool value.
"""
helper = LayerHelper("isfinite", **locals())
out = helper.create_tmp_variable(dtype=x.dtype)
helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
return out
......@@ -74,7 +74,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
assert [
new_recursive_seq_lens
] == recursive_seq_lens, "data and recursive_seq_lens do not match"
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = np.concatenate(data, axis=0)
flattened_data = flattened_data.reshape([len(flattened_data), 1])
return create_lod_tensor(flattened_data, recursive_seq_lens, place)
elif isinstance(data, np.ndarray):
......
set(PYTHON_TESTS_DIR ${CMAKE_CURRENT_BINARY_DIR} CACHE PATH "python tests directory")
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
......
......@@ -18,6 +18,9 @@ import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
class TestClipByNormOp(OpTest):
def setUp(self):
......@@ -62,5 +65,59 @@ class TestCase3(TestClipByNormOp):
self.max_norm = 1.0
class TestClipByNormOpWithSelectedRows(OpTest):
def check_with_place(self, place):
self.config_test_case()
scope = core.Scope()
# set input
x_selected_rows = scope.var('X').get_selected_rows()
x_selected_rows.set_rows(self.grad_rows)
x_tensor = x_selected_rows.get_tensor()
x_np = np.random.random(self.grad_shape).astype("float32")
x_np[np.abs(x_np) < self.max_relative_error] = 0.5
x_tensor.set(x_np, place)
# set output
out_selected_rows = scope.var('Out').get_selected_rows()
# run clip_by_norm_op
clip_by_norm_op = fluid.op.Operator(
"clip_by_norm", max_norm=self.max_norm, X='X', Out='Out')
clip_by_norm_op.run(scope, place)
# check output
self.assertEqual(out_selected_rows.rows(), self.grad_clipped_rows)
out_tensor = out_selected_rows.get_tensor()
y_np = np.zeros(self.grad_clipped_shape)
y_np[0] = np.sum(x_np[0:2])
y_np[1] = x_np[2]
y_np[2] = x_np[3]
norm = np.sqrt(np.sum(np.square(y_np)))
if norm > self.max_norm:
output = self.max_norm * y_np / norm
else:
output = y_np
self.assertTrue(
np.allclose(
np.array(out_tensor), output, atol=1e-5, equal_nan=False))
def test_clip_by_norm_with_selected_ros(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
def config_test_case(self):
self.max_norm = 1.0
self.max_relative_error = 0.006
self.grad_shape = (4, 1)
self.grad_clipped_shape = (3, 1)
self.grad_rows = [0, 0, 1, 2]
self.grad_clipped_rows = [0, 1, 2]
if __name__ == '__main__':
unittest.main()
......@@ -16,6 +16,8 @@ from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
class ElementwiseMulOp(OpTest):
......@@ -115,5 +117,56 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
}
class TestElementWiseMulSelectedRows(OpTest):
def setUp(self):
self.rows = [0, 1, 2, 3, 4, 5, 6]
self.feature = 12
self.height = 100
self.input_shape = (len(self.rows), self.feature)
def prepare_input(self, scope, place):
self.input = {
"X": np.random.random(self.input_shape).astype("float32"),
"Y": np.random.random(self.input_shape).astype("float32")
}
def init_input(in_name):
x_selected_rows = scope.var(in_name).get_selected_rows()
x_selected_rows.set_height(self.height)
x_selected_rows.set_rows(self.rows)
x_array = self.input[in_name]
x_tensor = x_selected_rows.get_tensor()
x_tensor.set(x_array, place)
init_input("X")
init_input("Y")
def create_out_selected_row(self, scope):
return scope.var('Out').get_selected_rows()
def check_result(self, out_selected_rows):
assert out_selected_rows.height() == self.height
assert out_selected_rows.rows() == self.rows
out_tensor = np.array(out_selected_rows.get_tensor())
assert out_tensor.shape == self.input_shape
def check_with_place(self, place):
scope = core.Scope()
self.prepare_input(scope, place)
out_selected_rows = self.create_out_selected_row(scope)
out_selected_rows.set_height(0)
out_selected_rows.set_rows([])
elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out')
elementwise_mul.run(scope, place)
self.check_result(out_selected_rows)
def test_elewisemul_with_selected_rows_input(self):
places = [core.CPUPlace()]
for place in places:
self.check_with_place(place)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from test_lstm_op import lstm, ACTIVATION
def fc(x, w, b):
return np.dot(x, w) + b
def fused_embedded_fc_lstm(
ids, # T x 1
lod, # 1 x N
embeddings=None, # Dict_size x M
wx=None, # M x 4D
bx=None, # 1 x 4D
h0=None, # N x D
c0=None, # N x D
w_h=None, # D x 4D
w_b=None, # 1 x 4D
w_c=None, # 1 x 3D
is_reverse=False,
act_gate=None,
act_cell=None,
act_cand=None):
# Make a lookup for embeddings and pass result into lstm reference
T = ids.shape[0]
M = embeddings.shape[1]
x = embeddings[ids].reshape([T, M])
return lstm(
fc(x, wx, bx), lod, h0, c0, w_h, w_b, w_c, is_reverse, act_gate,
act_cell, act_cand)
class TestFusionLSTMOp(OpTest):
def set_conf(self):
pass
def setUp(self):
self.op_type = 'fused_embedding_fc_lstm'
self.lod = [[2, 3, 5, 4]]
self.M = 8 # Embedding size
self.D = 16 # Hidden size
self.dict_size = 18
self.has_initial_state = False
self.use_peepholes = False
self.is_reverse = False
self.act_gate = 'sigmoid'
self.act_cell = 'tanh'
self.act_cand = 'tanh'
self.set_conf()
T = sum(self.lod[0])
bs = len(self.lod[0])
# this is the weight of fc
wx = np.random.normal(size=(self.M, 4 * self.D)).astype('float32')
# this is the bias of fc
bx = np.random.normal(size=(1, 4 * self.D)).astype('float32')
if self.use_peepholes:
b = np.random.normal(size=(1, 7 * self.D)).astype('float32')
else:
b = np.random.normal(size=(1, 4 * self.D)).astype('float32')
w_b = np.copy(b[:, 0:4 * self.D])
w_c = b[:, 4 * self.D:] if self.use_peepholes else None
# low is 0 , high is voc_size - 1
ids = np.random.randint(
low=0, high=self.dict_size - 1, size=(T, 1)).astype("int64")
# embeddings as they were trained , so each entry is of M size
embeddings = np.random.random(
(self.dict_size, self.M)).astype("float32")
# multiply embeddings via Weights
fc_embeddings = np.dot(embeddings, wx)
# bias should be manually added into the bias of this fused embedding fc LSTM
b[0, 0:4 * self.D] += bx[0, :]
combined_biases = b[:, 0:4 * self.D]
# So let broadcast it , so they can be added
ones = np.ones([self.dict_size, 1])
broadcasted_biases = np.dot(ones, combined_biases)
# Sum biases with Wx*embeddings
fc_embeddings += broadcasted_biases
if self.has_initial_state:
h0 = np.random.normal(size=(bs, self.D)).astype('float32')
c0 = np.random.normal(size=(bs, self.D)).astype('float32')
else:
h0 = np.zeros((bs, self.D)).astype('float32')
c0 = np.zeros((bs, self.D)).astype('float32')
wh = np.random.normal(size=(self.D, 4 * self.D)).astype('float32')
h, c = fused_embedded_fc_lstm(
ids, self.lod, embeddings, wx, bx, h0, c0, wh, w_b, w_c,
self.is_reverse, ACTIVATION[self.act_gate],
ACTIVATION[self.act_cell], ACTIVATION[self.act_cand])
self.inputs = {
'Ids': (ids, self.lod),
'Embeddings': fc_embeddings,
'WeightH': wh,
'Bias': b
}
if self.has_initial_state:
self.inputs['H0'] = h0
self.inputs['C0'] = c0
self.outputs = {
'Hidden': (h, self.lod),
'Cell': (c, self.lod),
}
self.attrs = {
'use_peepholes': self.use_peepholes,
'is_reverse': self.is_reverse,
'gate_activation': self.act_gate,
'cell_activation': self.act_cell,
'candidate_activation': self.act_cand
}
def test_check_output(self):
for use_seq in {True, False}:
self.attrs['use_seq'] = use_seq
self.check_output()
class TestFusionLSTMOpInit(TestFusionLSTMOp):
def set_conf(self):
self.has_initial_state = True
class TestFusionLSTMOpReverse(TestFusionLSTMOp):
def set_conf(self):
self.is_reverse = True
class TestFusionLSTMOpInitReverse(TestFusionLSTMOp):
def set_conf(self):
self.has_initial_state = True
self.is_reverse = True
class TestFusionLSTMOpMD1(TestFusionLSTMOp):
def set_conf(self):
self.M = 36
self.D = 8
class TestFusionLSTMOpMD2(TestFusionLSTMOp):
def set_conf(self):
self.M = 8
self.D = 8
class TestFusionLSTMOpMD3(TestFusionLSTMOp):
def set_conf(self):
self.M = 15
self.D = 3
class TestFusionLSTMOpBS1(TestFusionLSTMOp):
def set_conf(self):
self.lod = [[3]]
self.D = 16
class TestFusionLSTMOpPeepholes(TestFusionLSTMOp):
def set_conf(self):
self.use_peepholes = True
class TestFusionLSTMOpPeepholesInit(TestFusionLSTMOp):
def set_conf(self):
self.use_peepholes = True
self.has_initial_state = True
class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp):
def set_conf(self):
self.use_peepholes = True
self.is_reverse = True
class TestFusionLSTMOpPeepholesInitReverse(TestFusionLSTMOp):
def set_conf(self):
self.use_peepholes = True
self.has_initial_state = True
self.is_reverse = True
class TestFusionLSTMOpPeepholesBS1(TestFusionLSTMOp):
def set_conf(self):
self.use_peepholes = True
self.lod = [[2]]
self.D = 8
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestInf(OpTest):
def setUp(self):
self.op_type = "isinf"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.inf
x[-1] = np.inf
self.inputs = {'X': x}
self.outputs = {'Out': np.array(True).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
class TestFP16Inf(TestInf):
def init_dtype(self):
self.dtype = np.float16
class TestNAN(OpTest):
def setUp(self):
self.op_type = "isnan"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.nan
x[-1] = np.nan
self.inputs = {'X': x}
self.outputs = {'Out': np.array(True).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
class TestFP16NAN(TestNAN):
def init_dtype(self):
self.dtype = np.float16
class TestIsfinite(OpTest):
def setUp(self):
self.op_type = "isfinite"
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
x[0] = np.inf
x[-1] = np.nan
out = np.isinf(x) | np.isnan(x)
self.inputs = {'X': x}
self.outputs = {'Out': np.array(False).astype(self.dtype)}
def init_dtype(self):
pass
def test_output(self):
self.check_output()
class TestFP16Isfinite(TestIsfinite):
def init_dtype(self):
self.dtype = np.float16
if __name__ == '__main__':
unittest.main()
......@@ -243,5 +243,87 @@ class TestKeepDimReduceSumMultiAxises(OpTest):
self.check_grad(['X'], 'Out')
class TestReduceSumWithDimOne(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((10, 1, 1)).astype("float64")}
self.attrs = {'dim': [1, 2], 'keep_dim': True}
self.outputs = {
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
keepdims=True)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestReduceSumWithNumelOne(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((1, 1)).astype("float64")}
self.attrs = {'dim': [1], 'keep_dim': False}
self.outputs = {
'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']),
keepdims=False)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestReduceMeanWithDimOne(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random((10, 1, 1)).astype("float64")}
self.attrs = {'dim': [1], 'keep_dim': False}
self.outputs = {
'Out': self.inputs['X'].mean(
axis=tuple(self.attrs['dim']), keepdims=False)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestReduceMeanWithNumelOne(OpTest):
def setUp(self):
self.op_type = "reduce_mean"
self.inputs = {'X': np.random.random((1, 1)).astype("float64")}
self.attrs = {'dim': [1], 'keep_dim': True}
self.outputs = {
'Out': self.inputs['X'].mean(
axis=tuple(self.attrs['dim']), keepdims=True)
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
class TestReduceAll(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((1, 1, 1)).astype("float64")}
self.attrs = {'reduce_all': True, 'keep_dim': False}
self.outputs = {'Out': self.inputs['X'].sum()}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
......@@ -788,7 +788,8 @@ in a single call.")
tuple: (main_program, startup_program), of type "Program"
"""
pserver_prog = self.get_pserver_program(endpoint)
pserver_startup = self.get_startup_program(endpoint)
pserver_startup = self.get_startup_program(
endpoint, pserver_program=pserver_prog)
return pserver_prog, pserver_startup
def get_startup_program(self,
......
......@@ -124,7 +124,7 @@ class InferenceTranspiler(object):
next_op = self.block.ops[i + 1]
if next_op.type == 'relu':
# modify bnorm OP to include relu
current_op.set_attr("fuse_relu", True)
current_op._set_attr("fuse_relu", True)
# remove relu OP
self.block._remove_op(i + 1)
i = i + 1
......@@ -454,7 +454,7 @@ class InferenceTranspiler(object):
:type eltwise_op: Operator
'''
conv_op.set_attr("fuse_eltwise", True)
conv_op._set_attr("fuse_eltwise", True)
self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0]
self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0]
......
......@@ -15,7 +15,7 @@
__all__ = [
'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
'ComposeNotAligned', 'firstn', 'xmap_readers', 'PipeReader',
'multiprocess_reader'
'multiprocess_reader', 'Fake'
]
from threading import Thread
......@@ -504,3 +504,39 @@ class PipeReader:
yield decomp_buff
else:
break
class Fake(object):
"""
fake reader will cache the first data it read and yield it out for data_num times.
It is used to cache a data from real reader and use it for speed testing.
:param reader: the origin reader
:param data_num: times that this reader will yield data.
:return: a fake reader.
Examples:
.. code-block:: python
def reader():
for i in range(10):
yield i
fake_reader = Fake()(reader, 100)
"""
def __init__(self):
self.data = None
self.yield_num = 0
def __call__(self, reader, data_num):
def fake_reader():
if self.data is None:
self.data = next(reader())
while self.yield_num < data_num:
yield self.data
self.yield_num += 1
self.yield_num = 0
return fake_reader
......@@ -203,5 +203,21 @@ class TestMultiProcessReader(unittest.TestCase):
self.reader_test(use_pipe=True)
class TestFakeReader(unittest.TestCase):
def test_fake_reader(self):
def reader():
for i in range(10):
yield i
data_num = 100
fake_reader = paddle.reader.Fake()(reader, data_num)
for _ in range(10):
i = 0
for data in fake_reader():
self.assertEqual(data, 0)
i += 1
self.assertEqual(i, data_num)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册