Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
0025e0d8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0025e0d8
编写于
10月 10, 2020
作者:
Z
zhupengyang
提交者:
GitHub
10月 10, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine APIs: brelu, hardsigmoid, hardswish, maxout (#27658)
上级
5098891f
变更
10
展开全部
显示空白变更内容
内联
并排
Showing
10 changed file
with
685 addition
and
260 deletion
+685
-260
paddle/fluid/operators/maxout_op.cc
paddle/fluid/operators/maxout_op.cc
+12
-0
paddle/fluid/operators/maxout_op.h
paddle/fluid/operators/maxout_op.h
+7
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-35
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+169
-88
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+0
-29
python/paddle/fluid/tests/unittests/test_maxout_op.py
python/paddle/fluid/tests/unittests/test_maxout_op.py
+94
-59
python/paddle/nn/__init__.py
python/paddle/nn/__init__.py
+3
-0
python/paddle/nn/functional/__init__.py
python/paddle/nn/functional/__init__.py
+2
-3
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+193
-20
python/paddle/nn/layer/activation.py
python/paddle/nn/layer/activation.py
+183
-26
未找到文件。
paddle/fluid/operators/maxout_op.cc
浏览文件 @
0025e0d8
...
...
@@ -83,6 +83,18 @@ class MaxOutOp : public framework::OperatorWithKernel {
"Attr(groups) of Op(maxout) should be "
"larger than 1. But received %d."
,
groups
));
PADDLE_ENFORCE_EQ
(
axis
==
1
||
axis
==
-
1
||
axis
==
3
,
true
,
platform
::
errors
::
InvalidArgument
(
"axis only supported 1, -1 or 3, but recevied axis is: %d"
,
axis
));
PADDLE_ENFORCE_EQ
(
in_x_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"x's dims should be 4, but received x's dims is: %d"
,
in_x_dims
.
size
()));
if
(
axis
<
0
)
{
axis
+=
in_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
in_x_dims
[
axis
]
%
groups
,
0
,
platform
::
errors
::
InvalidArgument
(
...
...
paddle/fluid/operators/maxout_op.h
浏览文件 @
0025e0d8
...
...
@@ -31,6 +31,9 @@ class MaxOutKernel : public framework::OpKernel<T> {
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
math
::
MaxOutFunctor
<
DeviceContext
,
T
>
maxout_forward
;
maxout_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
out
,
...
...
@@ -49,6 +52,10 @@ class MaxOutGradKernel : public framework::OpKernel<T> {
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
groups
=
context
.
template
Attr
<
int
>(
"groups"
);
int
axis
=
context
.
template
Attr
<
int
>(
"axis"
);
if
(
axis
<
0
)
{
axis
+=
in_x
->
dims
().
size
();
}
auto
&
device_ctx
=
context
.
template
device_context
<
DeviceContext
>();
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
if
(
in_x_grad
)
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0025e0d8
...
...
@@ -9592,10 +9592,6 @@ def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
"""
:alias_main: paddle.nn.functional.hard_sigmoid
:alias: paddle.nn.functional.hard_sigmoid,paddle.nn.functional.activation.hard_sigmoid
:old_api: paddle.fluid.layers.hard_sigmoid
${comment}
Parameters:
x (${x_type}): ${x_comment}
...
...
@@ -9613,9 +9609,15 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
"""
if in_dygraph_mode():
return core.ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'hard_sigmoid')
...
...
@@ -9802,10 +9804,6 @@ def prelu(x, mode, param_attr=None, name=None):
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
"""
:alias_main: paddle.nn.functional.brelu
:alias: paddle.nn.functional.brelu,paddle.nn.functional.activation.brelu
:old_api: paddle.fluid.layers.brelu
${comment}
Args:
x(${x_type}): ${x_comment}
...
...
@@ -9821,7 +9819,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
.. code-block:: python
import paddle.fluid as fluid
import paddle
import numpy as np
paddle.enable_static()
input_brelu = np.array([[-1,6],[1,15.6]])
with fluid.dygraph.guard():
...
...
@@ -9831,6 +9831,9 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
#[[ 1. 6.]
#[ 1. 10.]]
"""
if in_dygraph_mode():
return core.ops.brelu(x, 't_min', t_min, 't_max', t_max)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu')
helper = LayerHelper('brelu', **locals())
...
...
@@ -12564,13 +12567,10 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout")
@templatedoc()
def maxout(x, groups, name=None, axis=1):
"""
:alias_main: paddle.nn.functional.maxout
:alias: paddle.nn.functional.maxout,paddle.nn.functional.activation.maxout
:old_api: paddle.fluid.layers.maxout
${comment}
Args:
...
...
@@ -12592,31 +12592,16 @@ def maxout(x, groups, name=None, axis=1):
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
input = fluid.data(
name='data',
shape=[None, 256, 32, 32],
dtype='float32')
out = fluid.layers.maxout(input, groups=2)
"""
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
helper = LayerHelper("maxout", **locals())
if axis not in [1, -1, 3]:
raise ValueError(
"Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
"Attr(axis): %s." % str(axis))
if axis == -1:
axis = 3
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="maxout",
inputs={"X": x},
attrs={"groups": groups,
"axis": axis},
outputs={"Out": out})
return out
return paddle.nn.functional.maxout(**locals())
def space_to_depth(x, blocksize, name=None):
...
...
@@ -14877,10 +14862,6 @@ def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
"""
:alias_main: paddle.nn.functional.hard_swish
:alias: paddle.nn.functional.hard_swish,paddle.nn.functional.activation.hard_swish
:old_api: paddle.fluid.layers.hard_swish
This operator implements the hard_swish activation function.
Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
...
...
@@ -14911,7 +14892,9 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
.. code-block:: python
import paddle.fluid as fluid
import paddle
import numpy as np
paddle.enable_static()
DATATYPE='float32'
...
...
@@ -14926,6 +14909,10 @@ def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
print(out) # [[0.66666667, 1.66666667,3., 4.]]
"""
if in_dygraph_mode():
return core.ops.hard_swish(x, 'threshold', threshold, 'scale', scale,
'offset', offset)
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
'hard_swish')
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
0025e0d8
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
0025e0d8
...
...
@@ -1657,21 +1657,6 @@ class TestLayer(LayerTest):
with
self
.
assertRaises
(
TypeError
):
layers
.
eye
(
num_rows
=
3
,
batch_shape
=
[
-
1
])
def
test_hard_swish
(
self
):
with
self
.
static_graph
():
t
=
layers
.
data
(
name
=
't'
,
shape
=
[
3
,
3
],
dtype
=
'float32'
)
ret
=
layers
.
hard_swish
(
t
)
static_ret
=
self
.
get_static_graph_result
(
feed
=
{
't'
:
np
.
ones
(
[
3
,
3
],
dtype
=
'float32'
)},
fetch_list
=
[
ret
])[
0
]
with
self
.
dynamic_graph
():
t
=
np
.
ones
([
3
,
3
],
dtype
=
'float32'
)
dy_ret
=
layers
.
hard_swish
(
base
.
to_variable
(
t
))
dy_ret_rlt
=
dy_ret
.
numpy
()
self
.
assertTrue
(
np
.
allclose
(
static_ret
,
dy_ret_rlt
))
def
test_while_loop
(
self
):
with
self
.
static_graph
():
i
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'int64'
,
value
=
0
)
...
...
@@ -2563,13 +2548,6 @@ class TestBook(LayerTest):
output
=
layers
.
l2_normalize
(
x
,
axis
=
1
)
return
output
def
make_maxout
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
data
=
self
.
_get_data
(
name
=
'x'
,
shape
=
[
8
,
6
,
6
],
dtype
=
"float32"
)
output
=
layers
.
maxout
(
x
=
data
,
groups
=
2
)
return
(
output
)
def
make_crop
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
...
...
@@ -2656,13 +2634,6 @@ class TestBook(LayerTest):
name
=
'prelu'
)
return
(
out
)
def
make_brelu
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
input
=
self
.
_get_data
(
name
=
"input"
,
shape
=
[
16
],
dtype
=
"float32"
)
out
=
layers
.
brelu
(
input
,
t_min
=
1.0
,
t_max
=
20.0
,
name
=
'brelu'
)
return
(
out
)
def
make_soft_relu
(
self
):
with
program_guard
(
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()):
...
...
python/paddle/fluid/tests/unittests/test_maxout_op.py
浏览文件 @
0025e0d8
...
...
@@ -16,32 +16,43 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
import
paddle.fluid.core
as
core
import
paddle.nn.functional
as
F
from
op_test
import
OpTest
paddle
.
enable_static
()
np
.
random
.
seed
(
1
)
def
maxout_forward_naive
(
input
,
groups
,
channel_axis
):
s0
,
s1
,
s2
,
s3
=
input
.
shape
if
channel_axis
==
3
:
return
np
.
ndarray
([
s0
,
s1
,
s2
,
s3
//
groups
,
groups
],
\
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
4
))
def
maxout_forward_naive
(
x
,
groups
,
channel_axis
):
s0
,
s1
,
s2
,
s3
=
x
.
shape
if
channel_axis
==
1
:
return
np
.
ndarray
([
s0
,
s1
//
groups
,
groups
,
s2
,
s3
],
\
buffer
=
input
,
dtype
=
input
.
dtype
).
max
(
axis
=
(
2
))
buffer
=
x
,
dtype
=
x
.
dtype
).
max
(
axis
=
2
)
return
np
.
ndarray
([
s0
,
s1
,
s2
,
s3
//
groups
,
groups
],
\
buffer
=
x
,
dtype
=
x
.
dtype
).
max
(
axis
=
4
)
class
TestMaxOutOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"maxout"
self
.
init_test_case
()
input
=
np
.
random
.
random
(
self
.
shape
)
output
=
self
.
MaxOut_forward_naive
(
input
,
self
.
groups
,
self
.
axis
)
self
.
dtype
=
'float64'
self
.
shape
=
[
3
,
6
,
2
,
4
]
self
.
groups
=
2
self
.
axis
=
1
self
.
set_attrs
()
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
maxout_forward_naive
(
x
,
self
.
groups
,
self
.
axis
)
self
.
inputs
=
{
'X'
:
input
}
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'groups'
:
self
.
groups
,
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
outputs
=
{
'Out'
:
output
}
def
set_attrs
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -49,65 +60,89 @@ class TestMaxOutOp(OpTest):
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
init_test_case
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
shape
=
[
100
,
6
,
2
,
2
]
self
.
groups
=
2
self
.
axis
=
1
class
TestMaxOutOpAxis
(
TestMaxOutOp
):
def
init_test_case
(
self
):
self
.
MaxOut_forward_naive
=
maxout_forward_naive
self
.
shape
=
[
100
,
2
,
2
,
6
]
# NHWC format
self
.
groups
=
2
self
.
axis
=
3
class
TestMaxOutOpAxis0
(
TestMaxOutOp
):
def
set_attrs
(
self
):
self
.
axis
=
-
1
class
TestMaxOutOpAxisAPI
(
unittest
.
TestCase
):
def
test_axis
(
self
):
data1
=
fluid
.
data
(
name
=
'data1'
,
shape
=
[
3
,
6
,
2
,
2
],
dtype
=
'float32'
)
data2
=
fluid
.
data
(
name
=
'data2'
,
shape
=
[
3
,
2
,
2
,
6
],
dtype
=
'float32'
)
out1
=
fluid
.
layers
.
maxout
(
data1
,
groups
=
2
,
axis
=
1
)
out2
=
fluid
.
layers
.
maxout
(
data2
,
groups
=
2
,
axis
=-
1
)
data1_np
=
np
.
random
.
random
((
3
,
6
,
2
,
2
)).
astype
(
"float32"
)
data2_np
=
np
.
transpose
(
data1_np
,
[
0
,
2
,
3
,
1
])
class
TestMaxOutOpAxis1
(
TestMaxOutOp
):
def
set_attrs
(
self
):
self
.
axis
=
3
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
else
:
place
=
core
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
results
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"data1"
:
data1_np
,
"data2"
:
data2_np
},
fetch_list
=
[
out1
,
out2
],
return_numpy
=
True
)
self
.
assertTrue
(
np
.
allclose
(
results
[
0
],
np
.
transpose
(
results
[
1
],
(
0
,
3
,
1
,
2
))))
class
TestMaxOutOpFP32
(
TestMaxOutOp
):
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
def
test_exception
(
self
):
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
2
,
4
,
6
,
6
],
dtype
=
"float32"
)
def
_attr_axis
():
out
=
fluid
.
layers
.
maxout
(
input
,
groups
=
2
,
axis
=
2
)
class
TestMaxOutOpGroups
(
TestMaxOutOp
):
def
set_attrs
(
self
):
self
.
groups
=
3
self
.
assertRaises
(
ValueError
,
_attr_axis
)
class
TestMaxoutAPI
(
unittest
.
TestCase
):
# test paddle.nn.Maxout, paddle.nn.functional.maxout
def
setUp
(
self
):
self
.
x_np
=
np
.
random
.
uniform
(
-
1
,
1
,
[
2
,
6
,
5
,
4
]).
astype
(
np
.
float64
)
self
.
groups
=
2
self
.
axis
=
1
self
.
place
=
paddle
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
test_static_api
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
m
=
paddle
.
nn
.
Maxout
(
self
.
groups
,
self
.
axis
)
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
for
r
in
res
:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
))
def
test_dygraph_api
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
F
.
maxout
(
x
,
self
.
groups
,
self
.
axis
)
m
=
paddle
.
nn
.
Maxout
(
self
.
groups
,
self
.
axis
)
out2
=
m
(
x
)
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
for
r
in
[
out1
,
out2
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
r
.
numpy
()))
out3
=
F
.
maxout
(
x
,
self
.
groups
,
-
1
)
out3_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
-
1
)
self
.
assertTrue
(
np
.
allclose
(
out3_ref
,
out3
.
numpy
()))
paddle
.
enable_static
()
def
test_fluid_api
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x
=
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
out
=
fluid
.
layers
.
maxout
(
x
,
groups
=
self
.
groups
,
axis
=
self
.
axis
)
exe
=
fluid
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out
])
out_ref
=
maxout_forward_naive
(
self
.
x_np
,
self
.
groups
,
self
.
axis
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
res
[
0
]))
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out
=
paddle
.
fluid
.
layers
.
maxout
(
x
,
groups
=
self
.
groups
,
axis
=
self
.
axis
)
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
.
numpy
()))
paddle
.
enable_static
()
class
TestMaxOutOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
p
rogram_guard
(
Program
()):
with
p
addle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
maxout
,
1
,
2
)
self
.
assertRaises
(
TypeError
,
F
.
maxout
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
maxout
,
x_int32
,
2
)
# support the input dtype is float32
x_fp32
=
fluid
.
data
(
name
=
'x_fp32'
,
shape
=
[
12
,
10
],
dtype
=
'float32'
)
fluid
.
layers
.
maxout
(
x_fp32
,
2
)
x_int32
=
paddle
.
data
(
name
=
'x_int32'
,
shape
=
[
2
,
4
,
6
,
8
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
F
.
maxout
,
x_int32
)
x_float32
=
paddle
.
data
(
name
=
'x_float32'
,
shape
=
[
2
,
4
,
6
,
8
])
self
.
assertRaises
(
ValueError
,
F
.
maxout
,
x_float32
,
2
,
2
)
if
__name__
==
'__main__'
:
...
...
python/paddle/nn/__init__.py
浏览文件 @
0025e0d8
...
...
@@ -55,6 +55,7 @@ from .layer.activation import ELU #DEFINE_ALIAS
from
.layer.activation
import
GELU
#DEFINE_ALIAS
from
.layer.activation
import
Tanh
#DEFINE_ALIAS
from
.layer.activation
import
Hardshrink
#DEFINE_ALIAS
from
.layer.activation
import
Hardswish
#DEFINE_ALIAS
from
.layer.activation
import
Hardtanh
#DEFINE_ALIAS
from
.layer.activation
import
PReLU
#DEFINE_ALIAS
from
.layer.activation
import
ReLU
#DEFINE_ALIAS
...
...
@@ -62,6 +63,7 @@ from .layer.activation import ReLU6 #DEFINE_ALIAS
from
.layer.activation
import
SELU
#DEFINE_ALIAS
from
.layer.activation
import
LeakyReLU
#DEFINE_ALIAS
from
.layer.activation
import
Sigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Hardsigmoid
#DEFINE_ALIAS
from
.layer.activation
import
LogSigmoid
from
.layer.activation
import
Softmax
#DEFINE_ALIAS
from
.layer.activation
import
Softplus
#DEFINE_ALIAS
...
...
@@ -70,6 +72,7 @@ from .layer.activation import Softsign #DEFINE_ALIAS
from
.layer.activation
import
Tanhshrink
#DEFINE_ALIAS
from
.layer.activation
import
LogSoftmax
#DEFINE_ALIAS
from
.layer.activation
import
HSigmoid
#DEFINE_ALIAS
from
.layer.activation
import
Maxout
#DEFINE_ALIAS
from
.layer.common
import
BilinearTensorProduct
#DEFINE_ALIAS
from
.layer.common
import
Pool2D
#DEFINE_ALIAS
from
.layer.common
import
Pad2D
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/__init__.py
浏览文件 @
0025e0d8
...
...
@@ -29,14 +29,13 @@ from . import pooling
__all__
+=
pooling
.
__all__
from
.
import
loss
__all__
+=
loss
.
__all__
from
.activation
import
brelu
#DEFINE_ALIAS
from
.activation
import
elu
#DEFINE_ALIAS
from
.activation
import
erf
#DEFINE_ALIAS
from
.activation
import
gelu
#DEFINE_ALIAS
from
.activation
import
hardshrink
#DEFINE_ALIAS
from
.activation
import
hardtanh
#DEFINE_ALIAS
from
.activation
import
hard
_
sigmoid
#DEFINE_ALIAS
from
.activation
import
hard
_
swish
#DEFINE_ALIAS
from
.activation
import
hardsigmoid
#DEFINE_ALIAS
from
.activation
import
hardswish
#DEFINE_ALIAS
from
.activation
import
hsigmoid
#DEFINE_ALIAS
from
.activation
import
leaky_relu
#DEFINE_ALIAS
from
.activation
import
log_sigmoid
#DEFINE_ALIAS
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
0025e0d8
...
...
@@ -13,11 +13,7 @@
# limitations under the License.
# TODO: define activation functions of neural network
from
...fluid.layers
import
brelu
#DEFINE_ALIAS
from
...fluid.layers
import
erf
#DEFINE_ALIAS
from
...fluid.layers
import
hard_sigmoid
#DEFINE_ALIAS
from
...fluid.layers
import
hard_swish
#DEFINE_ALIAS
from
...fluid.layers
import
maxout
#DEFINE_ALIAS
from
...fluid.layers
import
soft_relu
#DEFINE_ALIAS
from
...fluid.layers
import
swish
#DEFINE_ALIAS
from
...fluid.layers
import
sigmoid
#DEFINE_ALIAS
...
...
@@ -25,14 +21,13 @@ from ...fluid.layers import thresholded_relu #DEFINE_ALIAS
from
...tensor.math
import
tanh
#DEFINE_ALIAS
__all__
=
[
'brelu'
,
'elu'
,
'erf'
,
'gelu'
,
'hardshrink'
,
'hardtanh'
,
'hard
_
sigmoid'
,
'hard
_
swish'
,
'hardsigmoid'
,
'hardswish'
,
'hsigmoid'
,
'leaky_relu'
,
'log_sigmoid'
,
...
...
@@ -265,6 +260,109 @@ def hardtanh(x, min=-1.0, max=1.0, name=None):
return
out
def
hardsigmoid
(
x
,
name
=
None
):
"""
hardsigmoid activation.
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
.. math::
hardsigmoid(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&1, & &
\\
text{if } x
\\
geq 3
\\\\
&x/6 + 1/2, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([-4., 5., 1.])
out = F.hardsigmoid(x) # [0., 1., 0.666667]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
hard_sigmoid
(
x
,
'slope'
,
0.1666666666666667
,
'offset'
,
0.5
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'hardsigmoid'
)
helper
=
LayerHelper
(
'hardsigmoid'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_sigmoid'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
0.1666666666666667
,
'offset'
:
0.5
})
return
out
def
hardswish
(
x
,
name
=
None
):
"""
hardswish activation
hardswish is proposed in MobileNetV3, and performs better in computational stability
and efficiency compared to swish function. For more details please refer
to: https://arxiv.org/pdf/1905.02244.pdf
.. math::
hardswish(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&x, & &
\\
text{if } x
\\
geq 3
\\\\
&
\\
frac{x(x+3)}{6}, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
x (Tensor): The input Tensor with data type float32, float64.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type and shape as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.to_tensor([-4., 5., 1.])
out = F.hardswish(x) # [0., 5., 0.666667]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
hard_swish
(
x
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'hardswish'
)
helper
=
LayerHelper
(
'hardswish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
})
return
out
def
hsigmoid
(
input
,
label
,
weight
,
...
...
@@ -591,6 +689,81 @@ def log_sigmoid(x, name=None):
return
out
def
maxout
(
x
,
groups
,
axis
=
1
,
name
=
None
):
"""
maxout activation.
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then Co = Ci/groups and the operator formula is as follows:
.. math::
&out_{si+j} =
\\
max_{k} x_{gsi + sk + j}
\\\\
&g = groups
\\\\
&s =
\\
frac{input.size}{num
\\
_channels}
\\\\
&0
\\
le i <
\\
frac{num
\\
_channels}{groups}
\\\\
&0
\\
le j < s
\\\\
&0
\\
le k < groups
Parameters:
x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
of input is float32 or float64.
groups (int, optional): The groups number of maxout. `groups` specifies the
index of channel dimension where maxout will be performed. This must be
a factor of number of features. Default is 1.
axis (int, optional): The axis along which to perform maxout calculations.
It should be 1 when data format is NCHW, be -1 or 3 when data format
is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
A Tensor with the same data type as ``x`` .
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.rand([1, 2, 3, 4])
# [[[[0.5002636 0.22272532 0.17402348 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.02879342 0.88725346 0.61093384 0.38833922]]
# [[0.5231306 0.03807496 0.91661984 0.15602879]
# [0.666127 0.616567 0.30741522 0.24044901]
# [0.7142536 0.7351477 0.31588817 0.23782359]]]]
out = F.maxout(x, groups=2)
# [[[[0.5231306 0.22272532 0.91661984 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
"""
if
in_dygraph_mode
():
return
core
.
ops
.
maxout
(
x
,
'groups'
,
groups
,
'axis'
,
axis
)
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'maxout'
)
if
axis
not
in
[
1
,
-
1
,
3
]:
raise
ValueError
(
"Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
"Attr(axis): %s."
%
str
(
axis
))
if
axis
==
-
1
:
axis
=
3
helper
=
LayerHelper
(
'maxout'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
helper
.
append_op
(
type
=
'maxout'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'groups'
:
groups
,
'axis'
:
axis
})
return
out
def
relu6
(
x
,
name
=
None
):
"""
relu6 activation
...
...
python/paddle/nn/layer/activation.py
浏览文件 @
0025e0d8
...
...
@@ -18,6 +18,7 @@ __all__ = [
'ELU'
,
'GELU'
,
'Hardshrink'
,
'Hardswish'
,
'Tanh'
,
'Hardtanh'
,
'PReLU'
,
...
...
@@ -26,6 +27,7 @@ __all__ = [
'SELU'
,
'LeakyReLU'
,
'Sigmoid'
,
'Hardsigmoid'
,
'Softmax'
,
'Softplus'
,
'Softshrink'
,
...
...
@@ -33,6 +35,7 @@ __all__ = [
'Tanhshrink'
,
'LogSigmoid'
,
'LogSoftmax'
,
'Maxout'
,
'HSigmoid'
,
]
...
...
@@ -184,6 +187,52 @@ class Hardshrink(layers.Layer):
return
F
.
hardshrink
(
x
,
self
.
_threshold
,
self
.
_name
)
class
Hardswish
(
layers
.
Layer
):
"""
Hardswish activation
Hardswish is proposed in MobileNetV3, and performs better in computational stability
and efficiency compared to swish function. For more details please refer
to: https://arxiv.org/pdf/1905.02244.pdf
.. math::
Hardswish(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&x, & &
\\
text{if } x
\\
geq 3
\\\\
&
\\
frac{x(x+3)}{6}, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: Tensor with any shape.
- output: Tensor with the same shape as input.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor([-4., 5., 1.])
m = paddle.nn.Hardswish()
out = m(x) # [0., 5., 0.666667]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Hardswish
,
self
).
__init__
()
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
hardswish
(
x
,
self
.
_name
)
class
Tanh
(
layers
.
Layer
):
"""
Tanh Activation.
...
...
@@ -680,6 +729,53 @@ class Sigmoid(layers.Layer):
return
F
.
sigmoid
(
x
,
self
.
name
)
class
Hardsigmoid
(
layers
.
Layer
):
"""
This interface is used to construct a callable object of the ``Hardsigmoid`` class.
This layer calcluate the `hardsigmoid` of input x.
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
which is much faster than sigmoid.
.. math::
Hardsigmoid(x)=
\\
left
\\
{
\\
begin{aligned}
&0, & &
\\
text{if } x
\\
leq -3
\\\\
&1, & &
\\
text{if } x
\\
geq 3
\\\\
&x/6 + 1/2, & &
\\
text{otherwise}
\\
end{aligned}
\\
right.
Parameters:
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
x: N-D tensor, available dtype is float32, float64.
Returns:
A callable object of Hardsigmoid.
Examples:
.. code-block:: python
import paddle
m = paddle.nn.Sigmoid()
x = paddle.to_tensor([-4., 5., 1.])
out = m(x) # [0., 1, 0.666667]
"""
def
__init__
(
self
,
name
=
None
):
super
(
Hardsigmoid
,
self
).
__init__
()
self
.
name
=
name
def
forward
(
self
,
x
):
return
F
.
hardsigmoid
(
x
,
self
.
name
)
class
Softplus
(
layers
.
Layer
):
"""
Softplus Activation
...
...
@@ -1060,3 +1156,64 @@ class LogSoftmax(layers.Layer):
def
forward
(
self
,
x
):
return
F
.
log_softmax
(
x
,
self
.
_axis
)
class
Maxout
(
layers
.
Layer
):
"""
Maxout Activation.
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then Co = Ci/groups and the operator formula is as follows:
.. math::
&out_{si+j} = \max_{k} x_{gsi + sk + j}
\\\\
&g = groups
\\\\
&s =
\\
frac{input.size}{num
\\
_channels}
\\\\
&0
\\
le i <
\\
frac{num
\\
_channels}{groups}
\\\\
&0
\\
le j < s
\\\\
&0
\\
le k < groups
Parameters:
groups (int, optional): The groups number of maxout. `groups` specifies the
index of channel dimension where maxout will be performed. This must be
a factor of number of features. Default is 1.
axis (int, optional): The axis along which to perform maxout calculations.
It should be 1 when data format is NCHW, be -1 or 3 when data format
is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
where D is the dimensions of ``x`` . Default is 1.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Examples:
.. code-block:: python
import paddle
x = paddle.rand([1, 2, 3, 4])
# [[[[0.5002636 0.22272532 0.17402348 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.02879342 0.88725346 0.61093384 0.38833922]]
# [[0.5231306 0.03807496 0.91661984 0.15602879]
# [0.666127 0.616567 0.30741522 0.24044901]
# [0.7142536 0.7351477 0.31588817 0.23782359]]]]
m = paddle.nn.Maxout(groups=2)
out = m(x)
# [[[[0.5231306 0.22272532 0.91661984 0.2874594 ]
# [0.95313174 0.6228939 0.7129065 0.7087491 ]
# [0.7142536 0.88725346 0.61093384 0.38833922]]]]
"""
def
__init__
(
self
,
groups
,
axis
=
1
,
name
=
None
):
super
(
Maxout
,
self
).
__init__
()
self
.
_groups
=
groups
self
.
_axis
=
axis
self
.
_name
=
name
def
forward
(
self
,
x
):
return
F
.
maxout
(
x
,
self
.
_groups
,
self
.
_axis
,
self
.
_name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录