api_gen_utils.cc 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_gen_utils.h"
W
wanghuancoder 已提交
16 17 18 19 20
#include "gflags/gflags.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/strided_copy_kernel.h"

DECLARE_bool(use_stride_kernel);
21

22 23 24 25 26 27 28
#include "glog/logging.h"

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h"
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif

29 30 31 32 33
namespace paddle {
namespace experimental {

/* ------------------ for input ----------------------- */

34
std::shared_ptr<phi::DenseTensor> TensorToDenseTensor(const Tensor& tensor) {
Z
zyfncg 已提交
35
  return std::static_pointer_cast<phi::DenseTensor>(tensor.impl());
36 37
}

38 39
paddle::optional<phi::DenseTensor> TensorToDenseTensor(
    const paddle::optional<Tensor>& tensor) {
40
  if (tensor) {
41
    return {*std::static_pointer_cast<phi::DenseTensor>(tensor->impl())};
42 43 44 45
  }
  return nullptr;
}

46
std::unique_ptr<std::vector<phi::DenseTensor*>> TensorToDenseTensor(
47
    const std::vector<Tensor>& tensors) {
48
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor*>>();
49 50 51 52
  pt_tensors->reserve(tensors.size());

  for (const auto& t : tensors) {
    pt_tensors->push_back(
53
        std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()).get());
54 55
  }

56
  return pt_tensors;
57 58
}

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
std::vector<const phi::DenseTensor*> TensorToConstDenseTensorPtr(
    const std::vector<Tensor>& tensors) {
  std::vector<const phi::DenseTensor*> pt_tensors(tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    pt_tensors[i] = static_cast<phi::DenseTensor*>(tensors[i].impl().get());
  }

  return pt_tensors;
}

paddle::optional<std::vector<const phi::DenseTensor*>>
TensorToConstDenseTensorPtr(
    const paddle::optional<std::vector<Tensor>>& tensors) {
  paddle::optional<std::vector<const phi::DenseTensor*>> pt_tensors;

  if (tensors) {
    pt_tensors =
        paddle::optional<std::vector<const phi::DenseTensor*>>(tensors->size());
    for (size_t i = 0; i < tensors->size(); ++i) {
      pt_tensors->at(i) =
          static_cast<phi::DenseTensor*>(tensors->at(i).impl().get());
    }
  }

  return pt_tensors;
}

87
std::shared_ptr<phi::SelectedRows> TensorToSelectedRows(const Tensor& tensor) {
Z
zyfncg 已提交
88
  return std::static_pointer_cast<phi::SelectedRows>(tensor.impl());
89 90
}

91 92
paddle::optional<phi::SelectedRows> TensorToSelectedRows(
    const paddle::optional<Tensor>& tensor) {
93
  if (tensor) {
94
    return {*std::static_pointer_cast<phi::SelectedRows>(tensor->impl())};
95 96 97 98
  }
  return nullptr;
}

J
Jack Zhou 已提交
99 100 101 102
std::shared_ptr<phi::StringTensor> TensorToStringTensor(const Tensor& tensor) {
  return std::dynamic_pointer_cast<phi::StringTensor>(tensor.impl());
}

Z
zhangkaihuo 已提交
103 104 105 106
std::shared_ptr<phi::SparseCooTensor> TensorToSparseCooTensor(
    const Tensor& tensor) {
  return std::static_pointer_cast<phi::SparseCooTensor>(tensor.impl());
}
107 108
/* ----------------- for infer_meta --------------------- */

109
phi::MetaTensor MakeMetaTensor(const phi::TensorBase& tensor) {
110 111 112
  return phi::MetaTensor(tensor);
}

Y
YuanRisheng 已提交
113 114 115 116 117 118 119 120 121 122
std::vector<phi::MetaTensor> MakeMetaTensor(
    const std::vector<const phi::TensorBase*>& tensors) {
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
  for (const auto* t : tensors) {
    meta_tensors.emplace_back(*t);
  }
  return meta_tensors;
}

123 124
phi::MetaTensor MakeMetaTensor(
    const paddle::optional<phi::DenseTensor>& tensor) {
Z
zyfncg 已提交
125 126 127
  if (tensor) {
    return {phi::MetaTensor(*tensor)};
  }
128
  return phi::MetaTensor();
Z
zyfncg 已提交
129 130
}

131
std::vector<phi::MetaTensor> MakeMetaTensor(
132
    const std::vector<const phi::DenseTensor*>& tensors) {
133 134
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
135 136
  for (const auto* t : tensors) {
    meta_tensors.emplace_back(*t);
137 138 139 140
  }
  return meta_tensors;
}

Y
YuanRisheng 已提交
141 142 143 144 145 146 147 148 149 150
std::vector<phi::MetaTensor> MakeMetaTensor(
    const std::vector<const phi::SelectedRows*>& tensors) {
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
  for (const auto* t : tensors) {
    meta_tensors.emplace_back(*t);
  }
  return meta_tensors;
}

151 152 153 154 155 156 157 158 159 160
std::vector<phi::MetaTensor> MakeMetaTensor(
    const std::vector<phi::DenseTensor*>& tensors) {
  std::vector<phi::MetaTensor> meta_tensors;
  meta_tensors.reserve(tensors.size());
  for (auto* t : tensors) {
    meta_tensors.emplace_back(*t);
  }
  return meta_tensors;
}

161 162
phi::MetaTensor MakeMetaTensor(
    const paddle::optional<phi::SelectedRows>& tensor) {
Z
zyfncg 已提交
163 164 165
  if (tensor) {
    return {phi::MetaTensor(*tensor)};
  }
166
  return phi::MetaTensor();
Z
zyfncg 已提交
167 168
}

Z
zhangkaihuo 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
phi::MetaTensor MakeMetaTensor(
    const paddle::optional<phi::SparseCooTensor>& tensor) {
  if (tensor) {
    return {phi::MetaTensor(*tensor)};
  }
  return phi::MetaTensor();
}

phi::MetaTensor MakeMetaTensor(
    const paddle::optional<phi::SparseCsrTensor>& tensor) {
  if (tensor) {
    return {phi::MetaTensor(*tensor)};
  }
  return phi::MetaTensor();
}

185 186 187 188 189 190 191 192 193 194 195 196
std::vector<phi::MetaTensor> MakeMetaTensor(
    const paddle::optional<std::vector<const phi::DenseTensor*>>& tensors) {
  std::vector<phi::MetaTensor> meta_tensors;
  if (tensors) {
    meta_tensors.reserve(tensors->size());
    for (auto* t : tensors.get()) {
      meta_tensors.emplace_back(*t);
    }
  }
  return meta_tensors;
}

197 198
/* ------------------ for output ----------------------- */

Z
zyfncg 已提交
199
phi::DenseTensor* SetKernelOutput(Tensor* out) {
200 201 202 203 204
  if (out) {
    if (out->impl() == nullptr) {
      out->set_impl(std::make_shared<phi::DenseTensor>());
    }
    return static_cast<phi::DenseTensor*>(out->impl().get());
205
  }
206
  return nullptr;
207 208
}

209 210
std::vector<phi::DenseTensor*> SetKernelOutput(size_t out_size,
                                               std::vector<Tensor>* out) {
211 212 213
  out->reserve(out_size);
  std::vector<phi::DenseTensor*> results(out_size);
  for (size_t i = 0; i < out_size; ++i) {
214
    auto tensor_ptr = std::make_shared<phi::DenseTensor>();
215 216 217 218 219 220 221
    results[i] = tensor_ptr.get();
    out->emplace_back();
    out->back().set_impl(tensor_ptr);
  }
  return results;
}

222
std::vector<phi::DenseTensor*> SetInplaceVectorKernelOutput(
Z
zyfncg 已提交
223
    size_t out_size, std::vector<Tensor>* out) {
224 225 226 227 228 229 230 231
  std::vector<phi::DenseTensor*> results(out->size(), nullptr);
  for (size_t i = 0; i < out->size(); ++i) {
    results[i] = static_cast<phi::DenseTensor*>(out->at(i).impl().get());
  }
  return results;
}

std::vector<phi::DenseTensor*> SetInplaceOptionalVectorKernelOutput(
Z
zyfncg 已提交
232
    size_t out_size, const paddle::optional<std::vector<Tensor>>& out) {
233 234 235 236 237 238 239 240 241 242
  std::vector<phi::DenseTensor*> results;
  if (out) {
    results = std::vector<phi::DenseTensor*>(out->size(), nullptr);
    for (size_t i = 0; i < out->size(); ++i) {
      results[i] = static_cast<phi::DenseTensor*>(out->at(i).impl().get());
    }
  }
  return results;
}

243 244 245 246 247 248 249 250 251 252 253 254
std::vector<phi::DenseTensor*> SetKernelOutput(std::vector<Tensor*>* out) {
  std::vector<phi::DenseTensor*> results(out->size(), nullptr);
  for (size_t i = 0; i < out->size(); ++i) {
    if (out->at(i)) {
      auto tensor_ptr = std::make_shared<phi::DenseTensor>();
      results[i] = tensor_ptr.get();
      (*out)[i]->set_impl(tensor_ptr);
    }
  }
  return results;
}

Z
zyfncg 已提交
255
phi::SelectedRows* SetSelectedRowsKernelOutput(Tensor* out) {
256 257 258 259 260 261 262 263
  if (!out->initialized()) {
    auto select_rows = std::make_shared<phi::SelectedRows>();
    out->set_impl(select_rows);
    return select_rows.get();
  }
  return static_cast<phi::SelectedRows*>(out->impl().get());
}

264
phi::TensorBase* SetSparseKernelOutput(Tensor* out, TensorType type) {
Z
zhangkaihuo 已提交
265 266 267
  if (!out) {
    return nullptr;
  }
268 269 270 271 272 273 274 275 276 277 278
  if (!out->initialized()) {
    if (type == TensorType::SPARSE_COO) {
      auto sparse_tensor = std::make_shared<phi::SparseCooTensor>(
          phi::DenseTensor(), phi::DenseTensor(), phi::DDim{-1});
      out->set_impl(sparse_tensor);
      return sparse_tensor.get();
    } else if (type == TensorType::SPARSE_CSR) {
      auto sparse_tensor =
          std::make_shared<phi::SparseCsrTensor>(phi::DenseTensor(),
                                                 phi::DenseTensor(),
                                                 phi::DenseTensor(),
T
tiancaishaonvjituizi 已提交
279
                                                 phi::DDim{-1, -1});
280 281 282 283 284 285 286 287 288 289 290
      out->set_impl(sparse_tensor);
      return sparse_tensor.get();
    } else {
      auto dense_tensor = std::make_shared<phi::DenseTensor>();
      out->set_impl(dense_tensor);
      return dense_tensor.get();
    }
  }
  return out->impl().get();
}

Z
zyfncg 已提交
291
phi::TensorBase* SetStringsKernelOutput(Tensor* out, TensorType type) {
J
Jack Zhou 已提交
292 293 294 295 296 297 298 299 300 301 302 303
  if (!out->initialized()) {
    if (type == TensorType::STRING_TENSOR) {
      if (out->impl() == nullptr) {
        auto strings_tensor = std::make_shared<phi::StringTensor>();
        out->set_impl(strings_tensor);
      }
      return out->impl().get();
    }
  }
  return out->impl().get();
}

W
wanghuancoder 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
phi::DenseTensor* ProcessStrideBackup(phi::DenseTensor** tensor) {
  if (!FLAGS_use_stride_kernel || *tensor == nullptr ||
      !(*tensor)->IsInitialized() || (*tensor)->meta().is_contiguous()) {
    return nullptr;
  } else {
    phi::DenseTensor* backup = *tensor;
    *tensor = new phi::DenseTensor();
    return backup;
  }
}

std::vector<phi::DenseTensor*> ProcessStrideBackup(
    std::vector<phi::DenseTensor*>* tensor) {
  std::vector<phi::DenseTensor*> backup;
  backup.reserve(tensor->size());
  for (auto& t : *tensor) {
    if (!FLAGS_use_stride_kernel || t == nullptr || !t->IsInitialized() ||
        t->meta().is_contiguous()) {
      backup.emplace_back(nullptr);
    } else {
      backup.emplace_back(t);
      t = new phi::DenseTensor();
    }
  }
  return backup;
}

phi::SelectedRows* ProcessStrideBackup(phi::SelectedRows** tensor) {
  return nullptr;
}

template <typename Context>
void TransStride(const Context& dev_ctx,
                 phi::DenseTensor* from,
                 phi::DenseTensor* to) {
  if (to) {
    PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                         phi::StridedCopyKernel<data_t, Context>(
                             dev_ctx,
                             *from,
                             phi::vectorize<int64_t>(to->dims()),
                             phi::vectorize<int64_t>(to->strides()),
                             to->offset(),
                             to);
                       }));
    delete from;
  }
}

template <typename Context>
void TransStride(const Context& dev_ctx,
                 const std::vector<phi::DenseTensor*>& from,
                 const std::vector<phi::DenseTensor*>& to) {
  for (size_t i = 0; i < to.size(); i++) {
    if (to[i]) {
      PD_VISIT_ALL_TYPES(to[i]->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, Context>(
                               dev_ctx,
                               *from[i],
                               phi::vectorize<int64_t>(to[i]->dims()),
                               phi::vectorize<int64_t>(to[i]->strides()),
                               to[i]->offset(),
                               to[i]);
                         }));
      delete from[i];
    }
  }
}

void TransStride(phi::DeviceContext* dev_ctx,
                 phi::DenseTensor* from,
                 phi::DenseTensor* to) {
  if (to) {
    auto* cpu_ctx = dynamic_cast<phi::CPUContext*>(dev_ctx);
    if (cpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::CPUContext>(
                               *cpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      delete from;
      return;
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    auto* gpu_ctx = dynamic_cast<phi::GPUContext*>(dev_ctx);
    if (gpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::GPUContext>(
                               *gpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      delete from;
      return;
    }
#endif
#ifdef PADDLE_WITH_XPU
    auto* xpu_ctx = dynamic_cast<phi::XPUContext*>(dev_ctx);
    if (xpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::XPUContext>(
                               *xpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      delete from;
      return;
    }
#endif
  }
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void TransStrideLegacy(phi::DeviceContext* dev_ctx,
                       phi::DenseTensor* from,
                       phi::DenseTensor* to) {
  if (to) {
    auto* cpu_ctx = dynamic_cast<phi::CPUContext*>(dev_ctx);
    if (cpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::CPUContext>(
                               *cpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      return;
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    auto* gpu_ctx = dynamic_cast<phi::GPUContext*>(dev_ctx);
    if (gpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::GPUContext>(
                               *gpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      return;
    }
#endif
#ifdef PADDLE_WITH_XPU
    auto* xpu_ctx = dynamic_cast<phi::XPUContext*>(dev_ctx);
    if (xpu_ctx) {
      PD_VISIT_ALL_TYPES(to->dtype(), "StridedCopyKernel", ([&] {
                           phi::StridedCopyKernel<data_t, phi::XPUContext>(
                               *xpu_ctx,
                               *from,
                               phi::vectorize<int64_t>(to->dims()),
                               phi::vectorize<int64_t>(to->strides()),
                               to->offset(),
                               to);
                         }));
      return;
    }
#endif
  }
}

W
wanghuancoder 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
void TransStride(phi::DeviceContext* dev_ctx,
                 const std::vector<phi::DenseTensor*>& from,
                 const std::vector<phi::DenseTensor*>& to) {
  for (size_t i = 0; i < to.size(); i++) {
    if (to[i]) {
      auto* cpu_ctx = dynamic_cast<phi::CPUContext*>(dev_ctx);
      if (cpu_ctx) {
        PD_VISIT_ALL_TYPES(to[i]->dtype(), "StridedCopyKernel", ([&] {
                             phi::StridedCopyKernel<data_t, phi::CPUContext>(
                                 *cpu_ctx,
                                 *from[i],
                                 phi::vectorize<int64_t>(to[i]->dims()),
                                 phi::vectorize<int64_t>(to[i]->strides()),
                                 to[i]->offset(),
                                 to[i]);
                           }));
        delete from[i];
        continue;
      }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      auto* gpu_ctx = dynamic_cast<phi::GPUContext*>(dev_ctx);
      if (gpu_ctx) {
        PD_VISIT_ALL_TYPES(to[i]->dtype(), "StridedCopyKernel", ([&] {
                             phi::StridedCopyKernel<data_t, phi::GPUContext>(
                                 *gpu_ctx,
                                 *from[i],
                                 phi::vectorize<int64_t>(to[i]->dims()),
                                 phi::vectorize<int64_t>(to[i]->strides()),
                                 to[i]->offset(),
                                 to[i]);
                           }));
        delete from[i];
        continue;
      }
#endif
#ifdef PADDLE_WITH_XPU
      auto* xpu_ctx = dynamic_cast<phi::XPUContext*>(dev_ctx);
      if (xpu_ctx) {
        PD_VISIT_ALL_TYPES(to[i]->dtype(), "StridedCopyKernel", ([&] {
                             phi::StridedCopyKernel<data_t, phi::XPUContext>(
                                 *xpu_ctx,
                                 *from[i],
                                 phi::vectorize<int64_t>(to[i]->dims()),
                                 phi::vectorize<int64_t>(to[i]->strides()),
                                 to[i]->offset(),
                                 to[i]);
                           }));
        delete from[i];
        continue;
      }
#endif
    }
  }
}

void TransStride(phi::DeviceContext* dev_ctx,
                 phi::SelectedRows* from,
                 phi::SelectedRows* to) {}

535 536 537 538 539 540 541 542 543
#ifdef PADDLE_WITH_DISTRIBUTE
/* ------------------ for auto parallel ----------------------- */

phi::distributed::DistTensor* SetKernelDistOutput(Tensor* out) {
  if (out) {
    // TODO(chenweihang): now all dist case are nullptr
    if (out->impl() == nullptr) {
      auto dense_t = std::make_shared<phi::DenseTensor>();
      // TODO(chenweihang): polish code, dist_attr is null now
544
      auto dist_attr = std::make_shared<phi::distributed::TensorDistAttr>();
545 546 547 548 549 550 551 552 553 554
      auto dist_t = std::make_shared<phi::distributed::DistTensor>(
          dense_t, phi::DenseTensorMeta(), dist_attr);
      out->set_impl(dist_t);
    }
    return static_cast<phi::distributed::DistTensor*>(out->impl().get());
  }
  return nullptr;
}
#endif

555 556
}  // namespace experimental
}  // namespace paddle