“2be20e201ffb706d3295888a4fe2c8323eefbcd5”上不存在“tools/git@gitcode.net:paddlepaddle/Paddle.git”
test_fleet_base.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import os


class TestFleetBase(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
                       "127.0.0.1:36001,127.0.0.2:36001"

    def test_init(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)

    def test_is_first_worker(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_first_worker():
            print("test fleet first worker done.")

    def test_worker_index(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_index())

    def test_worker_num(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_num())

    def test_is_worker(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            print("test fleet is worker")

    def test_worker_endpoints(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        print(fleet.worker_endpoints(to_string=True))

    def test_server_num(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server num: {}".format(fleet.server_num()))

    def test_server_index(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(fleet.server_index()))

    def test_server_endpoints(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("fleet server index: {}".format(
                fleet.server_endpoints(to_string=True)))

    def test_is_server(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_server():
            print("test fleet is server")

    def test_util(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        self.assertEqual(fleet.util, None)

    def test_barrier_worker(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.barrier_worker()

    def test_init_worker(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.init_worker()

    def test_run_server(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.run_worker()

    def test_stop_worker(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        if fleet.is_worker():
            fleet.stop_worker()

    def test_distributed_optimizer(self):
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        strategy = fleet.DistributedStrategy()
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

    def test_minimize(self):
        import paddle
        import paddle.fleet as fleet
        import paddle.fluid.incubate.fleet.base.role_maker as role_maker

        input_x = paddle.fluid.layers.data(
            name="x", shape=[32], dtype='float32')
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

        fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
        fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
        prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
        cost = paddle.fluid.layers.cross_entropy(
            input=prediction, label=input_y)
        avg_cost = paddle.fluid.layers.mean(x=cost)

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        strategy = fleet.DistributedStrategy()
        optimizer = paddle.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)


if __name__ == "__main__":
    unittest.main()