the_one_ps.py 63.2 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
W
wangguanqun 已提交
26 27
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
28
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
29 30
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
31
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
32

Z
ziyoujiyi 已提交
33 34 35 36
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
37 38


W
wangguanqun 已提交
39 40 41 42
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
43 44
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
45 46 47


def parse_table_class(varname, program_id, context):
48
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
49
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
62
def check_embedding_dim(accessor_proto, varname, program_id, context):
63
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
64
    embedding_dim = 0
W
wangguanqun 已提交
65
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
66 67
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
68 69
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
70
            break
71

Z
ziyoujiyi 已提交
72
    fea_dim = accessor_proto.fea_dim
73 74 75
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
76 77
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
78 79 80
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
81 82
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
83

Z
ziyoujiyi 已提交
84
    embedx_dim = accessor_proto.embedx_dim
85 86 87
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
88 89
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
90 91 92
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
93 94
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
95 96


Z
ziyoujiyi 已提交
97
class Service:
98

Z
ziyoujiyi 已提交
99 100 101 102 103 104 105 106 107 108 109 110
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
111

Z
ziyoujiyi 已提交
112
    def __init__(self):
113
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
114 115 116 117 118 119

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
120
class Accessor:
121

Z
ziyoujiyi 已提交
122 123 124
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
125 126
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
127

Z
ziyoujiyi 已提交
128
    # TableAccessorParameter accessor
129 130
    def _set(self, accessor_proto, varname, program_id, context,
             common_accessor):
131 132
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
133 134 135 136 137
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
138

Z
ziyoujiyi 已提交
139
        if not accessor_proto.HasField("accessor_class"):
140
            # DownpourSparseValueAccessor
141
            if context['use_ps_gpu']:
142
                accessor_proto.accessor_class = "CtrDymfAccessor"
143 144
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
145
        if not accessor_proto.HasField("fea_dim"):
146 147 148 149
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
150
        if not accessor_proto.HasField("embedx_dim"):
151 152 153 154
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
155 156 157
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
158 159 160 161 162 163
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
164
        ctr_accessor_param = accessor_proto.ctr_accessor_param
165 166
        if accessor_proto.embedx_dim == 0:
            ctr_accessor_param.zero_init = False
Z
ziyoujiyi 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
190 191 192 193
                if common_accessor.accessor_class == "sgd":
                    sgd_param.name = "SparseNaiveSGDRule"
                if common_accessor.accessor_class == "adam":
                    sgd_param.name = "SparseAdamSGDRule"
Z
ziyoujiyi 已提交
194 195
                else:  # for fl-ps, because geo accessor is 'sum'
                    sgd_param.name = "SparseAdamSGDRule"
196

Z
ziyoujiyi 已提交
197 198 199 200 201 202 203 204 205
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
206

Z
ziyoujiyi 已提交
207 208
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
209 210 211
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.naive.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
212
                if not sgd_param.naive.HasField("initial_range"):
213 214 215
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.naive.initial_range = float(initial_range)
Z
ziyoujiyi 已提交
216 217
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
218

D
danleifeng 已提交
219
            if sgd_param.name == "SparseAdamSGDRule" or sgd_param.name == "SparseSharedAdamSGDRule":
Z
ziyoujiyi 已提交
220
                if not sgd_param.adam.HasField("learning_rate"):
221 222 223
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.adam.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
224
                if not sgd_param.adam.HasField("initial_range"):
225 226 227 228 229 230 231 232 233 234
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.adam.initial_range = float(initial_range)

                attr_list = [x.split("&") for x in common_accessor.attrs]
                if not sgd_param.adam.HasField(
                        "beta1_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta1_decay_rate = float(attr_list[0][1])
                else:
Z
ziyoujiyi 已提交
235
                    sgd_param.adam.beta1_decay_rate = 0.9
236 237 238 239 240
                if not sgd_param.adam.HasField(
                        "beta2_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta2_decay_rate = float(attr_list[1][1])
                else:
Z
ziyoujiyi 已提交
241
                    sgd_param.adam.beta2_decay_rate = 0.999
242 243 244 245 246
                if not sgd_param.adam.HasField(
                        "ada_epsilon"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.ada_epsilon = float(attr_list[2][1])
                else:
Z
ziyoujiyi 已提交
247 248 249 250 251 252
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
253

Z
ziyoujiyi 已提交
254
    def __init__(self):
Z
ziyoujiyi 已提交
255 256 257
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
258 259 260 261
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
262
        self.sync = False
Z
ziyoujiyi 已提交
263 264 265 266 267 268 269 270 271 272 273 274
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
275 276 277 278 279
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
280 281 282
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
283
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
284 285 286 287 288 289 290 291 292

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
293
        opt_attr_map["summary"] = [("summary_decay_rate", "f")]
Z
ziyoujiyi 已提交
294 295 296 297 298 299 300 301 302 303 304

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
305
    def parse_entry(self, varname, program_id, context):
306 307
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
308
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
338
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
339 340 341 342
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
343
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
344
                for attr in self.opt_init_map[op.type]:
345
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
346
                    init_attr.append(str(op.attr(attr)))
347
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
348 349 350 351
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
352 353 354 355 356 357
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
358 359
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
360

361 362
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
363 364 365
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
366 367
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
368 369 370 371
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
372 373
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
374 375 376 377 378 379 380 381 382 383 384 385
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
386 387
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
401 402 403 404 405
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
406 407 408 409
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
410 411 412
            if oop.type != 'sgd' and oop.type != 'adam':
                raise ValueError(
                    "The dense optimizer in PS is only supported SGD or Adam!")
Z
ziyoujiyi 已提交
413 414 415 416 417 418 419 420 421 422
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
423
                        shape = single_dim
Z
ziyoujiyi 已提交
424
                    else:
W
wangguanqun 已提交
425
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
426 427 428 429 430 431 432
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
433 434
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
435 436
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
437
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
438

439 440
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
441 442 443 444 445 446 447 448 449
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

464 465
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
466
                elif formal_name == "SummaryDecayRate":
467
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
468 469 470
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
471 472 473 474 475 476 477 478
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
479 480
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
481 482
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
483
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
484 485 486

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
487
                            shape = single_dim
Z
ziyoujiyi 已提交
488
                        else:
W
wangguanqun 已提交
489
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
490 491 492
                                                   pserver_id)
                    dims.append(shape)

493 494
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
495 496
                    initializers.append(initializer)

497 498 499 500 501 502 503 504 505
        if self.accessor_class == 'summary':
            datanorm_ops = get_datanorm_ops(main_program)
            for op in datanorm_ops:
                if ("BatchSize" in op.input_names) and (
                        op.input("BatchSize")[0]
                        == context['grad_name_to_param_name'][grad_name]):
                    oop = op
                    break

Z
ziyoujiyi 已提交
506 507
        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
508
            attrs.append("&".join([attr_varname, str(value)]))
Z
ziyoujiyi 已提交
509 510 511 512 513 514

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
515 516 517 518 519 520 521 522 523 524 525 526
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
527
        proto.attr = "#".join(self.attrs)
Z
ziyoujiyi 已提交
528 529 530


class Tensor:
531

Z
ziyoujiyi 已提交
532 533 534 535
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
536 537
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
538 539 540 541 542 543
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
544 545 546


class Table:
547

Z
ziyoujiyi 已提交
548 549 550 551
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
552 553 554
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
555 556
        self.tensor = None

Z
ziyoujiyi 已提交
557 558
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
559 560


Z
ziyoujiyi 已提交
561
class BarrierTable(Table):
562

Z
ziyoujiyi 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
580
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
595 596


Z
ziyoujiyi 已提交
597
class TensorTable(Table):
598

Z
ziyoujiyi 已提交
599 600 601 602 603
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
604

Z
ziyoujiyi 已提交
605 606
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
607
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
608
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
609

Z
ziyoujiyi 已提交
610
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
611

612 613
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
614
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
615

Z
ziyoujiyi 已提交
616 617
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
618 619


Z
ziyoujiyi 已提交
620
class SparseTable(Table):
621

Z
ziyoujiyi 已提交
622 623 624 625 626 627 628
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
629

Z
ziyoujiyi 已提交
630 631
    def _set(self, table_proto):
        ctx = self.ctx
632 633
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
634 635 636
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
637
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
638
        table_proto.shard_num = self.shard_num
639 640 641 642
        if table_proto.sparse_table_cache_file_num > len(
                get_ps_endpoints(self.context['role_maker'])):
            table_proto.sparse_table_cache_file_num = len(
                get_ps_endpoints(self.context['role_maker']))
Z
ziyoujiyi 已提交
643 644 645 646

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

647 648 649 650 651 652 653
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)

Z
ziyoujiyi 已提交
654 655 656 657 658 659 660 661
        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
662 663 664 665 666
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
667 668 669
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
670 671 672 673 674 675 676 677 678 679
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
680

681 682 683 684 685 686 687 688 689 690 691
        if usr_table_proto.HasField("enable_sparse_table_cache"):
            table_proto.enable_sparse_table_cache = usr_table_proto.enable_sparse_table_cache
        if usr_table_proto.HasField("sparse_table_cache_rate"):
            table_proto.sparse_table_cache_rate = usr_table_proto.sparse_table_cache_rate
        if usr_table_proto.HasField("sparse_table_cache_file_num"):
            table_proto.sparse_table_cache_file_num = usr_table_proto.sparse_table_cache_file_num
        if usr_table_proto.HasField("enable_revert"):
            table_proto.enable_revert = usr_table_proto.enable_revert
        if usr_table_proto.HasField("shard_merge_rate"):
            table_proto.shard_merge_rate = usr_table_proto.shard_merge_rate

Z
ziyoujiyi 已提交
692 693 694
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
695

Z
ziyoujiyi 已提交
696 697 698
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
699
                           ctx.program_id(), self.context, self.common)
Z
ziyoujiyi 已提交
700

Z
ziyoujiyi 已提交
701 702
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
703 704


Z
ziyoujiyi 已提交
705
class GeoSparseTable(SparseTable):
706

Z
ziyoujiyi 已提交
707 708
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
709
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
710 711 712 713 714
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
715 716
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
717 718 719
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
720
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
721 722 723 724 725 726 727 728 729
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
730 731
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
732 733 734 735 736
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
737

Z
ziyoujiyi 已提交
738 739 740 741 742
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
743

Z
ziyoujiyi 已提交
744 745
    def _set(self, table_proto):
        ctx = self.ctx
746 747
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
748 749 750 751
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
752
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
753
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
754 755 756 757 758 759 760 761
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
762 763
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
764 765 766 767 768 769
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
770

Z
ziyoujiyi 已提交
771
    def __init__(self):
Z
ziyoujiyi 已提交
772
        pass
Z
ziyoujiyi 已提交
773

Z
ziyoujiyi 已提交
774 775
    def _set(self):
        pass
Z
ziyoujiyi 已提交
776 777


Z
ziyoujiyi 已提交
778
class DownpourServer(Server):
779

Z
ziyoujiyi 已提交
780 781 782 783 784
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
785 786 787


class Worker:
788

Z
ziyoujiyi 已提交
789
    def __init__(self):
Z
ziyoujiyi 已提交
790
        pass
Z
ziyoujiyi 已提交
791

Z
ziyoujiyi 已提交
792 793
    def _set(self):
        pass
Z
ziyoujiyi 已提交
794 795


Z
ziyoujiyi 已提交
796
class DownpourWorker(Worker):
797

Z
ziyoujiyi 已提交
798 799 800 801 802
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
803 804 805


class fsClient:
806

Z
ziyoujiyi 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
820

Z
ziyoujiyi 已提交
821 822 823 824 825 826
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
827
        self.barrier_table_id = None
828

Z
ziyoujiyi 已提交
829
        self.send_ctx = get_the_one_send_context(
830
            self.context, split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
831 832 833 834 835 836 837 838 839

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
840
        self.ps_desc = the_one_ps_pb2.PSParameter()
841
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
857
            print("idx, name, ctx:", idx, name, ctx)
Z
ziyoujiyi 已提交
858 859
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
860 861 862 863 864
                    if (self.context['local_sparse']
                            and name[:-5] in self.context['local_sparse']) or (
                                not self.context['local_sparse']):
                        tables.append(globals()['GeoSparseTable'](self.context,
                                                                  ctx))
Z
ziyoujiyi 已提交
865 866 867
                    else:
                        tables.append(globals()['SparseTable'](self.context,
                                                               ctx))
Z
ziyoujiyi 已提交
868 869 870 871 872 873 874 875 876 877 878 879
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
880
        else:
Z
ziyoujiyi 已提交
881 882 883 884 885
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

886 887 888
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
889 890 891 892 893 894 895 896
    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
897 898
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
899 900
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
901
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
902 903 904
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
905
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
906 907 908 909
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
910
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
911 912 913 914 915 916 917
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
918 919 920


class TheOnePSRuntime(RuntimeBase):
921

Z
ziyoujiyi 已提交
922 923 924 925 926
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
927
        self._coordinator = None
Z
ziyoujiyi 已提交
928 929
        self._server_sub_program = []
        self._heter_client = None
930
        self._send_ctx = None
Z
ziyoujiyi 已提交
931 932 933 934

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
935 936
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
937

Z
ziyoujiyi 已提交
938
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
939 940 941 942 943
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
944 945 946
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
947 948
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
949
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
950 951
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
952
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
953 954
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
955
        self.context['tensor_table'] = {}
956 957 958 959 960 961 962 963
        # FL
        self.context['local_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["local_sparse"]
        self.context['remote_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["remote_sparse"]
        print("fl-ps > local_sparse: {}, remote_sparse: {}".format(
            self.context['local_sparse'], self.context['remote_sparse']))

W
wangguanqun 已提交
964
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
965

966 967
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

968
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
969
        self.string_hosts = []
970
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
971 972 973 974
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

975 976 977 978 979 980 981 982 983 984
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
985 986
        self.ps_desc_builder = PsDescBuilder(self.context)

987
    def _init_all_params(self, scopes, send_ctx, recv_map):
988
        all_var_names = []
989 990 991 992 993 994 995
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
996
            #print("init params:", idx, table_id, var_names)
997
            self._worker.push_dense_params(scope, table_id, var_names)
998 999
            all_var_names.extend(var_names)
        return all_var_names
1000 1001

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
1002
        all_var_names = []
1003 1004 1005 1006 1007 1008 1009
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
1010
            #print("pull all dense:", idx, table_id, var_names)
1011
            self._worker.pull_dense_params(scope, table_id, var_names)
1012 1013
            all_var_names.extend(var_names)
        return all_var_names
1014

1015
    def _init_params(self, program, scope, send_ctx, recv_map):
1016
        all_var_names = []
1017 1018 1019 1020 1021 1022 1023 1024 1025
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)
1026 1027
            all_var_names.extend(var_names)
        return all_var_names
1028

1029
    def _pull_dense(self, program, scope, send_ctx, recv_map):
1030
        all_var_names = []
1031 1032 1033 1034 1035 1036 1037 1038 1039
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)
1040 1041
            all_var_names.extend(var_names)
        return all_var_names
1042 1043

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
1044
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
1045 1046 1047 1048 1049 1050
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
1051 1052 1053 1054
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1068
            ep_list=self.endpoints)
1069
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
1070 1071
        trainer_config = self.context['trainer']

1072 1073
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1085
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1086 1087 1088 1089 1090

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1091
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1092

1093
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
Z
ziyoujiyi 已提交
1094 1095 1096
        if not self.is_heter_ps_mode:
            self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
            print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
1097 1098 1099 1100 1101
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
            self._worker.init_fl_worker(self.coordinator_hosts, self.role_id,
                                        self.trainer_endpoint)
1102

1103 1104
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
1105 1106 1107
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
1108
            self._communicator.init_with_ctx(send_ctx, dense_map, worker_desc,
1109 1110
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
1111
        fleet.util.barrier()
1112 1113 1114

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1115
        if isinstance(info, list) and len(info) > 0:
1116 1117
            all_info = self.role_maker._all_gather(
                info[0])  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1118 1119 1120 1121
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1122 1123 1124 1125 1126

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1127 1128 1129 1130 1131 1132 1133 1134
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1145
        if not is_test:
1146 1147
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1148
                self._communicator.init_params(dense_map)
1149
            else:
D
danleifeng 已提交
1150
                if not self.context['use_ps_gpu']:
1151
                    if self.role_id == 0:
1152
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1153
                        self._init_all_params(scopes, send_ctx, dense_map)
1154

1155 1156
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1157
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1158
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1159 1160
        fleet.util.barrier()

1161 1162
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1163 1164 1165 1166
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1182 1183 1184
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    def _init_coordinator(self, scopes=None):
        if self._coordinator == None:
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
        self._coordinator.start_coordinator(self.coordinator_hosts[0],
                                            self.trainer_endpoints)

    def _make_fl_strategy(self):
        if self._coordinator == None:
            assert ("Coordinator py object is null!")
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1201
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1202
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1203 1204 1205 1206
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1207 1208
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1209

Z
ziyoujiyi 已提交
1210
        self._server = fluid.core.DistFleetWrapper()
1211
        self._server.init_server(server_desc, self.string_hosts, self.role_id,
Z
ziyoujiyi 已提交
1212
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1213

W
wangguanqun 已提交
1214 1215 1216
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1226 1227
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1228 1229 1230 1231 1232
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1233
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1248 1249 1250
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1251 1252 1253 1254 1255 1256
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1257

Z
ziyoujiyi 已提交
1258 1259 1260 1261
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1262
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1263 1264 1265 1266
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1267
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1278 1279 1280 1281 1282 1283 1284
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    def _ps_save_dense_params(self,
                              executor,
                              dirname,
                              scope,
                              program,
                              var_names=None):
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        if program is None or len(self.origin_main_programs) == 1:
            program = self.origin_main_programs[0]
        dense_var_names = self._pull_dense(program, scope, send_ctx, dense_map)
        save_var_names = dense_var_names if var_names is None else var_names
        vars = [program.global_block().var(i) for i in save_var_names]
        import paddle
        with paddle.static.scope_guard(scope):
            paddle.static.save_vars(executor,
                                    "./",
                                    program,
                                    vars=vars,
                                    filename=dirname)

Z
ziyoujiyi 已提交
1310 1311
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1312 1313
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1314
        values = []
W
wangguanqun 已提交
1315
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1316 1317 1318 1319
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1320
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
1332 1333 1334
                                       main_program=None,
                                       mode=0,
                                       **kwargs):
Z
ziyoujiyi 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1356
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1388 1389 1390 1391 1392
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1408
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1409 1410 1411 1412 1413 1414 1415
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1416
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1417 1418 1419
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1420 1421 1422
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1423 1424
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1425 1426
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1427 1428 1429 1430 1431

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1432 1433
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1434 1435

        for var in remaining_vars:
1436
            tensor = var.get_value(scope)
1437 1438 1439
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1440

Z
zhaocaibei123 已提交
1441
    def _save_cache_model(self, dirname, **kwargs):
1442
        mode = kwargs.get("mode", 1)
Z
zhaocaibei123 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

1465 1466 1467 1468 1469 1470
    def _check_save_pre_patch_done(self):
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            self._worker.check_save_pre_patch_done()
        fleet.util.barrier()

Z
ziyoujiyi 已提交
1471
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1472
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1488 1489 1490 1491 1492
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1502
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1503 1504 1505 1506

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1507 1508 1509 1510 1511 1512 1513
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1514
        recv_dense_varnames = []
1515
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1516 1517 1518 1519 1520
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1521 1522
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1523

1524
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1525 1526 1527 1528 1529
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1530
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1531

1532
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1533

1534
    def _save_one_table(self, table_id, path, mode):
1535
        fleet.util.barrier()
1536 1537 1538
        if self.role_maker._is_first_worker():
            self._worker.save_one_model(table_id, path, mode)
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1539

1540
    def _save_dense_params(self, *args, **kwargs):
1541
        fleet.util.barrier()
1542 1543 1544 1545 1546
        if self.role_maker._is_first_worker():
            self._ps_save_dense_params(*args, **kwargs)
        fleet.util.barrier()

    def _save_persistables(self, *args, **kwargs):
1547
        fleet.util.barrier()
1548 1549 1550 1551 1552
        if self.role_maker._is_first_worker():
            self._save_distributed_persistables(*args, **kwargs)
        fleet.util.barrier()

    def _save_inference_model(self, *args, **kwargs):
1553
        fleet.util.barrier()
1554 1555 1556 1557 1558
        if self.role_maker._is_first_worker():
            self._ps_inference_save_inference_model(*args, **kwargs)
        fleet.util.barrier()

    def _load_one_table(self, table_id, path, mode):
1559
        fleet.util.barrier()
1560 1561 1562 1563 1564
        if self.role_maker._is_first_worker():
            self._worker.load_one_table(table_id, path, mode)
        fleet.util.barrier()

    def _load_persistables(self, path, mode):
1565
        fleet.util.barrier()
1566 1567 1568 1569 1570
        if self.role_maker._is_first_worker():
            self._worker.load_model(path, mode)
        fleet.util.barrier()

    def _load_inference_model(self, path, mode):
1571
        fleet.util.barrier()
1572
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1573
            self._ps_inference_load_inference_model(path, mode)
1574
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1586
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1587 1588 1589
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
1590
                _is_heter_parameter_server_mode)
Z
ziyoujiyi 已提交
1591 1592 1593 1594

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()