tensor_parallel.py 1.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .meta_parallel_base import MetaParallelBase
16 17
from ..utils.hybrid_parallel_util import broadcast_dp_parameters
from ..utils.hybrid_parallel_util import broadcast_input_data
18
from ..utils.hybrid_parallel_util import broadcast_mp_parameters, broadcast_sharding_parameters
19
from ..utils.log_util import logger
20

21 22
__all__ = []

23

24
class TensorParallel(MetaParallelBase):
25

26
    def __init__(self, layers, hcg, **kwargs):
27
        super(TensorParallel, self).__init__(layers, hcg, **kwargs)
28 29

    def _prepare_for_model(self):
30
        logger.info("start broadcast mp parameters")
31
        broadcast_mp_parameters(self._layers, self._hcg)
32

33 34 35 36
        if self._hcg.get_sharding_parallel_world_size() > 1:
            logger.info("start broadcast sharding parameters")
            broadcast_sharding_parameters(self._layers, self._hcg)

37
        logger.info("start broadcast dp parameters")
38 39
        broadcast_dp_parameters(self._layers, self._hcg)

40 41
        logger.info("mp's parameters is ready")

42
    def _pre_forward(self, *inputs, **kwargs):
43
        logger.debug("mp start broadcast input data")
44
        return broadcast_input_data(self._hcg, *inputs, **kwargs)