sharding_optimizer.py 81.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16 17
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
18
from paddle.static import default_startup_program, device_guard
19 20
from paddle.fluid import layers

21
from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper, OP_ROLE_KEY
22 23 24 25 26 27 28 29 30
from .common import is_backward_op, is_optimizer_op, is_update_op
from .meta_optimizer_base import MetaOptimizerBase
from .sharding.shard import Shard, ProgramSegment
from .sharding.fp16_helper import FP16Utils
from .sharding.weight_decay_helper import WeightDecayHelper
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
from .sharding import utils
31 32 33 34 35 36 37 38 39 40 41 42 43
from .sharding.utils import (
    insert_sync_calc_op,
    insert_sync_comm_ops,
    insert_fill_constant_ops,
    insert_cast_ops,
    insert_allreduce_ops,
    insert_reduce_ops,
    get_grad_device,
    get_first_optimize_op_idx,
    insert_broadcast_ops,
    get_var_size,
    insert_scale_loss_grad_ops,
)
R
Roc 已提交
44
from ..utils.log_util import logger
45

46
__all__ = []
47 48 49


class ShardingOptimizer(MetaOptimizerBase):
50 51
    """Sharding Optimizer."""

52 53 54 55 56 57
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
58 59
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
60
            "ASPOptimizer",
61 62
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
63
        ]
64 65 66
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
67 68 69 70 71 72 73 74 75
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
76 77 78 79
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
80 81 82 83 84 85 86 87 88 89 90 91 92 93

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
94
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
95

W
WangXi 已提交
96 97 98 99 100 101 102 103 104 105 106
    def _get_sharding_segment_strategy(self):
        """ get
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
107

W
WangXi 已提交
108 109
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
110
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
W
WangXi 已提交
111 112
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
113 114 115 116 117 118 119
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
W
WangXi 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
                    str(segment_strategy)))
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
        """ get
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
133

134
        # parallelism
W
WangXi 已提交
135 136 137 138 139 140 141
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
142 143
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
144 145 146
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
147 148 149 150 151 152 153 154 155 156
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert pp_degree == 2, ("For manually set pipeline, only "
                                    "pp_degree = 2 is supported.")
            assert global_world_size == mp_degree * sharding_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, dp_degree)
        else:
            assert global_world_size == mp_degree * sharding_degree * pp_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, pp_degree, dp_degree)
157

J
JZ-LIANG 已提交
158
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
159
        if sharding_configs["hybrid_dp"]:
160
            logger.warning(
W
WangXi 已提交
161 162 163 164 165 166 167 168 169 170 171 172
                "[hybrid_dp] API setting is deprecated. Now when "
                "dp_degree >= 2, its will be in hybrid dp mode automatically")
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
        """ get
173 174
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
175 176
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
177
        self._optimizer_sharding
W
WangXi 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
191 192 193
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
194
                dp_mode = "pp_hybrid_dp"
195
            else:
W
WangXi 已提交
196 197 198 199
                assert self.sharding_degree > 1, \
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, " \
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                dp_mode = "sharding_hybrid_dp"
200

201
        # gradient merge
W
WangXi 已提交
202 203
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
204
        if self.pp_degree <= 1:
W
WangXi 已提交
205
            gm_mode = "sharding_gm"
206 207
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
208 209
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
210 211 212 213 214 215 216 217
            gradient_scale_configs = strategy.gradient_scale_configs
            assert gradient_scale_configs['scale_strategy'] == 'avg', \
                'For pipeline mode, the ' 'gradient scale mode should ' \
                'be "avg", but got {}'.format(gradient_scale_configs['scale_strategy'])
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
218
        if gm_acc_step > 1:
219
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
W
WangXi 已提交
220
                gm_mode, gm_acc_step))
221

222 223 224 225 226 227 228 229
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
        if self.sharding_degree == 1 and self.dp_degree > 1 \
                and sharding_configs['_dp_as_optimizer_sharding'] \
                and self.pp_degree > 1:
            optimizer_sharding = True

W
WangXi 已提交
230 231 232
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
233
        self._optimizer_sharding = optimizer_sharding
234 235

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
236
        self.pp_allreduce_in_optimize = sharding_configs[
237
            "pp_allreduce_in_optimize"]
238

W
WangXi 已提交
239 240 241 242
    def _inner_opt_minimize(self, loss, startup_program, parameter_list,
                            no_grad_set):
        pipeline_configs = self.user_defined_strategy.pipeline_configs

243 244 245
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
246 247 248 249

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
W
WangXi 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
266
                'scale_gradient': self.scale_gradient
W
WangXi 已提交
267
            }
268 269
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
270 271 272

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
W
WangXi 已提交
273
            assert self.pp_degree == len(program_list)
274 275 276
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
277 278 279

        if startup_program is None:
            startup_program = default_startup_program()
280 281 282

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
283
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
284 285 286 287 288
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
                main_program = program_list[int(
                    os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))]
            else:
                main_program = program_list[self.pp_rank]
289 290 291 292 293 294 295 296 297 298 299
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

300 301 302 303
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

304 305 306 307 308
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
309
        return optimize_ops, params_grads
310

W
WangXi 已提交
311 312 313 314 315
    def _apply_sharding_pass(self, params_grads):
        if self.sharding_degree == 1: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
316

W
WangXi 已提交
317
        # step1: build shard
318 319
        self._build_shard(params_grads, self.sharding_rank,
                          self.sharding_degree)
320

W
WangXi 已提交
321 322
        # step2: split_program
        self._split_program(main_block)
323

W
WangXi 已提交
324 325 326 327
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
328

W
WangXi 已提交
329
        # step4: remove unneeded ops and vars from block
330 331 332 333 334 335 336 337 338 339 340
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
        """ outer dp as optimizer sharding """
        if self._optimizer_sharding is False: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
W
WangXi 已提交
356
        if self.pp_degree == 1: return
357

W
WangXi 已提交
358
        strategy = self.user_defined_strategy
359
        sharding_configs = strategy.sharding_configs
360

W
WangXi 已提交
361 362 363 364 365 366 367 368 369 370 371 372
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
373 374
                        main_block._remove_op(idx)

W
WangXi 已提交
375 376 377 378 379 380 381 382
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

383 384 385 386 387
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
388
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
389
            main_block, strategy=strategy, shard=shard)
390 391

        len_of_ops = len(main_block.ops)
392 393
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
394 395
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
396
        if self.pp_allreduce_in_optimize:
397 398 399 400 401 402
            logger.info("Pipeline Persistable grad is {}".format(
                accumulated_grad_names))
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
403 404 405 406 407 408
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
409 410 411 412 413 414 415
                use_calc_stream=True,
                rank=self.sharding_rank)

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

416 417 418 419 420 421 422 423 424 425 426
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
                strategy=strategy)
427 428
            logger.info(
                "Optimizer grad in this rank {}".format(accumulated_grad_names))
429 430 431
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

432 433
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
434 435 436 437 438 439 440 441
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
                self.dp_ring_id, [x[0].name for x in params_grads],
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
442
                strategy=None if optimize_cast else strategy)
443 444
            logger.info(
                "Optimizer param in this rank {}".format(optimizer_param))
445
            if not strategy.fuse_grad_merge and not optimize_cast:
446 447
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
448 449 450 451 452 453 454 455 456 457 458 459
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
                user_defined_strategy=strategy)
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
        if self.user_defined_strategy.amp and \
                self.user_defined_strategy.amp_configs['use_dynamic_loss_scaling']:
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
                        dtype=loss_scaling_var.dtype)
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
                            OP_ROLE_KEY: OpRole.Optimize
                        })
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
            assert tmp_first_opt_idx is not None, 'Occurs some errors, no optimize ops'
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

W
WangXi 已提交
510
    def _adapt_amp_clip_without_sharding(self):
511 512
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
513 514
        if self.sharding_degree > 1: return
        if self._optimizer_sharding: return
515

W
WangXi 已提交
516 517 518 519
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
520

521 522 523 524 525
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
526

W
WangXi 已提交
527
        gradientclip_helper = GradientClipHelper(None)
528 529 530
        gradientclip_helper.sync_global_norm(main_block,
                                             [self.mp_ring_id, self.pp_ring_id],
                                             self.mp_rank)
W
WangXi 已提交
531 532 533 534 535

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
536 537 538
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
539
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
540

541 542
        main_block._sync_with_cpp()

543
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
544 545 546 547 548
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

549
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
550
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
551 552
        offload_helper = OffloadHelper(mp_ring_id=mp_ring_id,
                                       dp_ring_id=dp_ring_id)
553

W
WangXi 已提交
554 555 556 557
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
558
            logger.info("Sharding with optimize offload !")
559
            offload_helper.offload(main_block, startup_block)
560
            # The optimize_cast is already included in offload_fp32param
561
            offload_helper.offload_fp32param(main_block, startup_block)
562 563 564 565
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
566 567 568 569 570
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
                    main_block, startup_block,
                    [x[0].name for x in params_grads])
                # NOTE(wangxi): fused after optimize_cast
571 572 573 574
                utils.fuse_opt_broadcast_param_ops(main_block,
                                                   dp_ring_id,
                                                   self._shard,
                                                   strategy=strategy)
575
            else:
576 577
                offload_helper.cast_fp32param_in_optimize(
                    main_block, startup_block)
578

W
WangXi 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
            loss, startup_program, parameter_list, no_grad_set)

        self._init_comm()

        self._apply_sharding_pass(params_grads)

614 615 616
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
617 618 619 620 621 622

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

623
        # apply optimize offload or optimize cast
624
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
625

626
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
627
        self._sharding_gradient_merge()
628 629 630 631 632 633

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
634

W
WangXi 已提交
635 636 637
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
638

639 640 641 642
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
643
        self._dump_program_for_debug()
644

645 646 647
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
648 649
        return optimize_ops, params_grads

650 651 652 653 654 655
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
656
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
657 658 659 660 661 662 663
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       pp_group_endpoints,
                                                       pp_rank,
                                                       ring_id,
                                                       False,
                                                       sync=False)
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
681 682 683 684 685 686 687
        send_to_next_pair = (self.pp_rank, (self.pp_rank + 1) % self.pp_degree
                             )  # 2->3
        recv_from_next_pair = (
            (self.pp_rank + 1) % self.pp_degree, self.pp_rank)  # 3->2
        recv_from_prev_pair = (
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree, self.pp_rank
        )  # 1->2
688 689 690 691 692 693 694 695 696 697
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
698 699
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
700 701 702 703 704 705

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
706 707
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
708 709 710 711 712

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
713 714 715
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           1)  # 3->0 not in pp_ring_map
716 717 718 719 720 721 722 723
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
724 725 726
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           2)  # 0->3 not in pp_ring_map
727 728 729 730 731 732 733 734 735 736 737
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
738
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
739 740 741 742 743 744 745
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.pp_group_endpoints,
                                                       self.pp_rank,
                                                       self.pp_ring_id,
                                                       False,
                                                       sync=False)
746

747 748 749 750 751 752 753 754 755 756 757 758
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

759
    def _init_comm(self):
760
        # sync var
761 762
        startup_block = self._startup_program.global_block()

763
        # mp ring
764
        if self.mp_degree > 1:
765 766 767 768 769 770 771
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.mp_group_endpoints,
                                                       self.mp_rank,
                                                       self.mp_ring_id,
                                                       False,
                                                       sync=False)
772

773
        # sharding ring
774 775 776 777 778 779 780 781 782 783
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

784 785
        # pp ring
        if self.pp_degree > 1:
786
            self._init_pipeline_comm(startup_block)
787 788

        # pure dp ring
789
        if self.dp_degree > 1:
790 791 792 793 794 795 796
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.dp_group_endpoints,
                                                       self.dp_rank,
                                                       self.dp_ring_id,
                                                       False,
                                                       sync=False)
797

798 799
        startup_block._sync_with_cpp()

800
    def _build_shard(self, params_grads, shard_rank, shard_size):
801 802
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
803
        self._shard.setup(params_grads, shard_rank, shard_size)
804 805 806 807 808 809

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
810 811 812
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
813 814
            self._collective_helper._wait(current_endpoint, endpoints)

815 816 817 818 819 820 821 822
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

823 824 825 826 827
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
828 829

        var2broadcast_time = dict()
830 831 832 833 834
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
835 836 837 838 839 840 841 842 843 844 845 846 847
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
848 849
                                input_name = input_name[:input_name.
                                                        find(".cast_fp16@GRAD")]
850 851

                        if input_name in self._backward_remain_anchors:
852 853
                            segment = self.collect_segment(
                                segment, op_idx, block)
854 855 856 857 858 859 860
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
861 862
                            segment = self.collect_segment(
                                segment, op_idx, block)
863
                            self._forward_remain_anchors.remove(output_name)
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
881 882 883 884 885 886

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
887 888
                                                                      broadcast_var_base_name
                                                                      .find(
889 890 891 892 893 894 895
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

896
                segment._param2broadcast[input_name] = broadcast_var_name
897 898
                segment._broadcast_vars.append(
                    (broadcast_var_name, self._shard.device(input_name)))
899 900 901 902
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
903 904 905 906 907 908 909 910 911 912
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
913 914 915
                            param, reduced_grad = op_role_var[i], op_role_var[i
                                                                              +
                                                                              1]
916
                            segment._allreduce_vars.append(reduced_grad)
917 918
                            assert (reduced_grad
                                    not in self._reduced_grads_to_param)
919
                            self._reduced_grads_to_param[reduced_grad] = param
920 921 922 923 924 925 926 927 928 929 930

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
931 932 933 934 935 936 937 938 939 940

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
941 942 943
            for varname in sorted(var2broadcast_time,
                                  key=var2broadcast_time.get,
                                  reverse=True):
944
                logger.info("Sharding broadcast: [{}] times [{}]".format(
945 946
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
947
                logger.info("segment [{}] :".format(idx_))
948 949 950 951 952 953 954
                logger.info("start op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._start_idx].desc.type(),
                    block.ops[self._segments[idx_].
                              _start_idx].desc.input_arg_names()))
                logger.info("end   op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._end_idx].desc.type(),
                    block.ops[
955
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
956 957
        return

958
    def _prune_main_program(self, block, shard, rings):
959 960 961
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
962 963 964 965 966

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
967

968 969
        """
        weightdecay_helper = WeightDecayHelper()
970
        weightdecay_helper.prune_weight_decay(block, shard)
971 972

        # FIXME(wangxi): mp should prune duplicated param_grads
973 974 975
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
976
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
977

978
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
979
        gradientclip_helper = GradientClipHelper(None)
980
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
981 982 983 984 985 986

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
987 988 989
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
            if op.type == "c_allreduce_sum" and \
                    op.attr('use_model_parallel') is False:
990 991 992 993
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

994
        # prune optimizer state and param
995 996
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
997 998
            if shard.is_opti_var(var_name) and \
              not shard.has_opt_var(var_name):
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1009 1010 1011 1012 1013 1014 1015
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1047 1048
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1049
                if program_deps.should_remove_op(idx):
1050 1051 1052
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
                    reserved_vars = self._params if self._optimizer_sharding else None
                    program_deps.remove_op(idx, reserved_vars)
1053

1054
        # NOTE (JZ-LIANG) revise and unify logic here
1055
        # sharding support fp16_allreduce logic
1056 1057 1058 1059 1060 1061 1062 1063
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
1064 1065 1066 1067 1068
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1069 1070
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1071

1072
        if combined with pipeline(grad accumulate),
1073
        the grad allreduce should be done in optimize role
1074 1075 1076
        """
        if len(self._segments) < 1:
            return
1077
        # sharding
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

1094
        if self._segments[-1]._allreduce_vars:
1095 1096
            shard_allredue_vars = self._shard.filter_grads(
                self._segments[-1]._allreduce_vars)
1097 1098 1099
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1100 1101
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
1102 1103 1104 1105 1106 1107
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1108
            # gradient merge
1109
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1110
                self.create_persistable_gradients_and_insert_merge_ops(
1111
                    block, self._startup_program.global_block(),
1112 1113 1114
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

1115
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
1116
                                 self.sharding_ring_id,
1117
                                 self._segments[-1]._allreduce_vars)
1118 1119 1120 1121 1122 1123 1124 1125
            # allreduce --> reduce
            insert_reduce_ops(block,
                              self._segments[-1]._end_idx,
                              self.sharding_ring_id,
                              self._segments[-1]._allreduce_vars,
                              self._shard,
                              op_role=OpRole.Backward,
                              use_calc_stream=False)
1126 1127 1128 1129

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
1130 1131 1132
            broadcast_vars = self._segments[
                idx +
                1]._broadcast_vars if idx < len(self._segments) - 1 else []
1133
            fill_constant_vars = self._segments[
1134 1135 1136 1137
                idx +
                2]._fill_constant_vars if idx < len(self._segments) - 2 else []
            cast_ops = self._segments[
                idx + 2]._cast_ops if idx < len(self._segments) - 2 else {}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
1153 1154
                        dtype=self._main_program.global_block().var(
                            param_name).dtype,
1155 1156 1157 1158
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
1159 1160
            segment._end_idx += FP16Utils.remove_cast_op(
                block, self._params, segment, 0)
1161 1162

            # step2: add Sync ops
1163 1164
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1165 1166 1167
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
1185
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1186 1187 1188 1189 1190
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

1191 1192 1193 1194 1195 1196 1197 1198
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

1199
            # step3: insert `fill_constant` ops
1200 1201 1202
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

1203
            # step4: add `cast` ops
1204 1205 1206
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1207
            # gradient merge
1208
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1209
                self.create_persistable_gradients_and_insert_merge_ops(
1210 1211
                    block, self._startup_program.global_block(),
                    segment._start_idx, shard_allredue_vars, self._shard)
1212

1213 1214
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1215

1216
            # step6: add all_reduce ops
1217
            # dp
1218 1219 1220
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1221 1222 1223 1224 1225 1226
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1227 1228 1229
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
1230
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1231 1232 1233
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
1234
            # allreduce --> reduce
1235 1236
            # TODO temp change
            if len(allreduce_vars) > 0:
1237 1238 1239 1240 1241 1242 1243
                insert_reduce_ops(block,
                                  segment._start_idx,
                                  self.sharding_ring_id,
                                  allreduce_vars,
                                  self._shard,
                                  op_role=OpRole.Backward,
                                  use_calc_stream=False)
1244 1245 1246 1247

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1248 1249 1250
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1251
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1252
                                 self.sharding_ring_id,
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1279
    def _prune_startup_program(self, block, shard):
1280 1281
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1282 1283 1284
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1285 1286 1287 1288 1289 1290
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1291 1292 1293
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1294 1295 1296
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1297

1298
    def _build_groups(self):
1299 1300
        """
        pre-assign ring ids
1301 1302 1303 1304
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1305 1306
            pp: 4
            pp-pair: >= 20
1307
        if one parallelism is not enable: -1
1308
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1309 1310 1311 1312 1313 1314
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1315 1316
        self._collective_helper = CollectiveHelper(self.role_maker,
                                                   nrings=self._nrings_sharding)
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1334
            ]
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1347
        # sharding
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
1361
            # sharding + ...
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1376 1377
        # pp
        if self.pp_degree > 1:
1378 1379 1380
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1392 1393 1394
                self.pp_group_endpoints.append(
                    self.global_endpoints[pp_first_stage_idx +
                                          pp_stage_offset * i])
1395 1396 1397
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1398 1399
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1400 1401 1402 1403
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1404 1405 1406
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1407
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert self.pp_degree == 2, ("For manually set pipeline, only "
                                         "pp_degree = 2 is supported.")
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    self.global_word_size, self.mp_degree, self.sharding_degree, self.dp_degree)
            local_pp_degree = 1
        else:
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree, self.sharding_degree, self.pp_degree,
                self.dp_degree, self.global_word_size)
1420

1421 1422
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1423 1424
            self.dp_rank = self.global_rank // (
                self.sharding_degree * self.mp_degree * local_pp_degree)
1425
            dp_first_rank_idx = self.global_rank % (
L
lilong12 已提交
1426 1427 1428
                self.sharding_degree * self.mp_degree * local_pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree *
                         local_pp_degree)
1429 1430
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1431 1432
                self.dp_group_endpoints.append(
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i])
1433
            assert self.current_endpoint in self.dp_group_endpoints
1434
            logger.info("Hybrid DP mode turn on !")
1435 1436 1437
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1438
            self.dp_group_endpoints = []
1439

1440
        # global group
1441 1442
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1443
        self.global_ring_id = 3
1444

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1462
            self.sharding_group_endpoints))
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1476
            self.dp_group_endpoints))
1477 1478
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1479 1480

        return
1481

1482
    def _recreate_not_persist_param_as_var(self):
1483

1484 1485 1486 1487 1488 1489
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1506
                block._remove_var(name, sync=False)
1507 1508 1509 1510 1511 1512 1513 1514
                var = block.create_var(name=name,
                                       shape=shape,
                                       dtype=dtype,
                                       type=type,
                                       lod_level=lod_level,
                                       stop_gradient=stop_gradient,
                                       trainable=trainable,
                                       persistable=False)
1515 1516 1517
                if have_dist_attr:
                    var.is_distributed = is_distributed

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1543 1544 1545 1546 1547 1548 1549 1550
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
            if param in broadcast_params: continue
1551 1552 1553 1554 1555 1556 1557 1558 1559

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1560 1561 1562 1563 1564 1565 1566 1567 1568
                startup_block.append_op(type='c_broadcast',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring,
                                            'root': 0,
                                            'use_calc_stream': True,
                                            OP_ROLE_KEY: OpRole.Forward
                                        })
1569

1570 1571
        startup_block._sync_with_cpp()

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1602 1603 1604 1605
                inputs={
                    'X': grad_name,
                    'Y': gradient_merge_var
                },
1606 1607 1608 1609 1610 1611 1612 1613
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
1614 1615 1616 1617 1618 1619 1620
            startup_block.append_op(type="fill_constant",
                                    outputs={"Out": startup_gradient_merge_var},
                                    attrs={
                                        "shape": grad_var.shape,
                                        "dtype": grad_var.dtype,
                                        "value": float(0),
                                    })
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1635 1636 1637 1638 1639 1640
        zero_var = layers.create_global_var(name="gradient_merge_zero",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1651 1652 1653
        cond_var = main_block.create_var(name="gradient_merge_cond",
                                         shape=[1],
                                         dtype='bool')
1654 1655 1656

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
            main_block.append_op(type='increment',
                                 inputs={'X': [current_step_var]},
                                 outputs={'Out': [current_step_var]},
                                 attrs={
                                     'step': float(1),
                                     OP_ROLE_KEY: OpRole.Optimize
                                 })

            main_block.append_op(type='elementwise_mod',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': acc_step_var
                                 },
                                 outputs={'Out': current_step_var},
                                 attrs={
                                     'axis': -1,
                                     OP_ROLE_KEY: OpRole.Optimize,
                                     'use_mkldnn': False
                                 })
1676 1677

            # cond_var = (step_var == 0)
1678 1679 1680 1681 1682 1683 1684
            main_block.append_op(type='equal',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': zero_var
                                 },
                                 outputs={'Out': cond_var},
                                 attrs={OP_ROLE_KEY: OpRole.Optimize})
1685 1686 1687 1688 1689 1690 1691 1692 1693
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1694
            amp
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

1709
        # allreduce grad@gradientmerge
1710 1711 1712 1713
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
1714 1715 1716 1717 1718 1719 1720 1721
                cur_block.append_op(type='c_allreduce_sum',
                                    inputs={'X': merged_grad_var},
                                    outputs={'Out': merged_grad_var},
                                    attrs={
                                        'ring_id': self.dp_ring_id,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Optimize
                                    })
1722 1723 1724 1725 1726

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
            cur_block.append_op(type='scale',
                                inputs={'X': merged_grad_var},
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    'scale':
                                    1.0 / float(self._gradient_merge_acc_step),
                                    'bias':
                                    0.0,
                                    'bias_after_scale':
                                    False,
                                    OP_ROLE_KEY:
                                    OpRole.Optimize
                                })
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
1768 1769 1770 1771
                        self.cond_block.create_var(name=name_,
                                                   shape=shape_,
                                                   dtype=type_,
                                                   persistable=False)
1772 1773 1774 1775 1776 1777 1778 1779
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
1780 1781 1782 1783 1784 1785 1786 1787
            cur_block.append_op(type='fill_constant',
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    "shape": merged_grad_var.shape,
                                    "dtype": merged_grad_var.dtype,
                                    "value": float(0),
                                    OP_ROLE_KEY: OpRole.Optimize
                                })
1788 1789 1790 1791

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
1792
    def _sharding_gradient_merge(self):
1793 1794 1795 1796 1797 1798
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
W
WangXi 已提交
1799 1800 1801 1802
        if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
            return

        main_block = self._main_program.global_block()
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
1842 1843 1844 1845
            outputs={
                'Out': [],
                'Scope': [step_scope]
            },
1846 1847 1848 1849
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })