mp_layers.py 18.7 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from . import mp_ops
from paddle.fluid import core
from paddle.fluid.dygraph.layers import Layer
from .random import get_rng_state_tracker
from paddle.nn import functional as F
from ...base import topology as tp

__all__ = []

# Follow this paper to achieve the file:
# Shoeybi M, Patwary M, Puri R, et al. Megatron-lm: Training multi-billion parameter
# language models using model parallelism[J]. arXiv preprint arXiv:1909.08053, 2019. (https://arxiv.org/abs/1909.08053)


def is_fused_matmul_bias_supported():
    if paddle.is_compiled_with_cuda() and not paddle.is_compiled_with_rocm():
        return hasattr(core.ops, 'fused_gemm_epilogue')
    else:
        return False


class VocabParallelEmbedding(Layer):
    """Embedding mp parallelized in the vocabulary dimension.
    this class is used for splitting embedding in mp group.

    Args:
        num_embeddings(int): One element which indicate the size of the dictionary of embeddings.
        embedding_dim(int): One element which indicate the size of each embedding vector respectively.
        weight_attr(ParamAttr|None): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        mp_group(Group): The tensor parallel group.
        name(str, optional): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
              super(SimpleMPNet, self).__init__()
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

    def __init__(self,
                 num_embeddings,
                 embedding_dim,
                 weight_attr=None,
                 mp_group=None,
                 name=None):
        super(VocabParallelEmbedding, self).__init__()

        self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
        ) if mp_group is None else mp_group
        self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
        ) if mp_group is None else mp_group.nranks
        self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
        ) if mp_group is None else mp_group.rank

        self.origin_num_embeddings = num_embeddings
        self.is_mp = (self.world_size > 1)

        assert num_embeddings % self.world_size == 0, (
            "The length of the vocabulary must be divisible by the parallelism degree of MP"
        )

        per_part_size = num_embeddings // self.world_size

        self.vocab_start_index = self.rank * per_part_size
        self._dtype = self._helper.get_default_dtype()
        self._size = [per_part_size, embedding_dim]
        self._weight_attr = weight_attr
        self._name = name

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(attr=self._weight_attr,
                                                    shape=self._size,
                                                    dtype=self._dtype,
                                                    is_bias=False)
        else:
            self.weight = self.create_parameter(attr=self._weight_attr,
                                                shape=self._size,
                                                dtype=self._dtype,
                                                is_bias=False)

        self.weight.is_distributed = True if self.is_mp else False

    def forward(self, x):
        if self.is_mp:
            output_parallel = mp_ops._c_lookup_table(
                self.weight,
                x,
                start_index=self.vocab_start_index,
                name=self._name)
            output = mp_ops._mp_allreduce(output_parallel,
                                          group=self.model_parallel_group,
                                          use_calc_stream=True,
                                          use_model_parallel=True)
        else:
            output = F.embedding(x,
                                 weight=self.weight,
                                 padding_idx=None,
                                 sparse=False,
                                 name=self._name)
        return output


class ColumnParallelLinear(Layer):
    """Linear layer with mp parallelized(column).
    this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        gather_output(bool): whether to do allgahter for the output of each rank.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
              super(SimpleMPNet, self).__init__()
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 has_bias=None,
                 gather_output=True,
                 fuse_matmul_bias=False,
                 mp_group=None,
                 name=None):
        super(ColumnParallelLinear, self).__init__()

        self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
        ) if mp_group is None else mp_group
        self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
        ) if mp_group is None else mp_group.nranks
        self._name = name
        self.is_mp = (self.world_size > 1)

        self.gather_output = gather_output
        assert out_features % self.world_size == 0, (
            "Number of column of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
                out_features, self.world_size))
        self.output_size_per_partition = out_features // self.world_size

        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[in_features, self.output_size_per_partition],
                    attr=self._weight_attr,
                    dtype=self._dtype,
                    is_bias=False)
        else:
            self.weight = self.create_parameter(
                shape=[in_features, self.output_size_per_partition],
                attr=self._weight_attr,
                dtype=self._dtype,
                is_bias=False)

        self.weight.is_distributed = True if self.is_mp else False

        if has_bias:
            # initialize bias to zero like Megatron
            self.bias = self.create_parameter(
                shape=[self.output_size_per_partition],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
                is_bias=True)
            self.bias.is_distributed = True if self.is_mp else False
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in ColumnParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
                    "with cuda 11.6 or higher.")
            from paddle.incubate.nn.functional import fused_linear
            self.linear = fused_linear

    def forward(self, x):
        # use inner api to process identity
        if self.is_mp:
            input_parallel = mp_ops._c_identity(x,
                                                group=self.model_parallel_group)
        else:
            input_parallel = x

        output_parallel = self.linear(input_parallel,
                                      self.weight,
                                      self.bias,
                                      name=self._name)

        if self.gather_output and self.is_mp:
            output = mp_ops._c_concat(output_parallel,
                                      group=self.model_parallel_group)
        else:
            output = output_parallel
        return output


class RowParallelLinear(Layer):
    """Linear layer with mp parallelized(row).
    this class is used for splitting Linear Layer in mp group, row split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        input_is_parallel(bool): whether the input has alreadly been splitted across the mp group.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
              super(SimpleMPNet, self).__init__()
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

    def __init__(self,
                 in_features,
                 out_features,
                 weight_attr=None,
                 has_bias=True,
                 input_is_parallel=False,
                 fuse_matmul_bias=False,
                 mp_group=None,
                 name=None):
        super(RowParallelLinear, self).__init__()

        self.in_features = in_features
        self.out_features = out_features
        self.input_is_parallel = input_is_parallel
        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()
        self._name = name

        self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
        ) if mp_group is None else mp_group
        self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
        ) if mp_group is None else mp_group.nranks
        self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
        ) if mp_group is None else mp_group.rank

        self.is_mp = (self.world_size > 1)
        assert in_features % self.world_size == 0, (
            "Number of row of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
                in_features, self.world_size))

        self.input_size_per_partition = in_features // self.world_size

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[self.input_size_per_partition, self.out_features],
                    attr=self._weight_attr,
                    dtype=self._dtype,
                    is_bias=False)
        else:
            self.weight = self.create_parameter(
                shape=[self.input_size_per_partition, self.out_features],
                attr=self._weight_attr,
                dtype=self._dtype,
                is_bias=False)

        self.weight.is_distributed = True if self.is_mp else False

        if has_bias:
            self.bias = self.create_parameter(
                shape=[self.out_features],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
                is_bias=True)
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in RowParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
                    "with cuda 11.6 or higher.")
            from paddle.incubate.nn.functional import fused_linear
            self.linear = fused_linear

    def forward(self, x):
        if self.input_is_parallel or (not self.is_mp):
            input_parallel = x
        else:
            # split last dim
            input_parallel = mp_ops._c_split(x, group=self.model_parallel_group)

        if self.is_mp:
            output_parallel = self.linear(input_parallel,
                                          self.weight,
                                          name=self._name)
            output_ = mp_ops._mp_allreduce(output_parallel,
                                           group=self.model_parallel_group,
                                           use_calc_stream=True,
                                           use_model_parallel=True)
            output = output_ + self.bias if self.bias is not None else output_
        else:
            output = self.linear(input_parallel,
                                 self.weight,
                                 self.bias,
                                 name=self._name)

        return output


class ParallelCrossEntropy(Layer):
    """CrossEntropy with mp parallelized.
    this class is used for splitting softmax cross entropy in mp group.

    Args:
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        loss_func = ParallelCrossEntropy()
        loss = loss_func(img, lable)
    """

    def __init__(self, mp_group=None, name=None):
        super(ParallelCrossEntropy, self).__init__()
        self.name = name
        self.model_parallel_group = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group(
        ) if mp_group is None else mp_group
        self.world_size = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size(
        ) if mp_group is None else mp_group.nranks
        self.rank = tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank(
        ) if mp_group is None else mp_group.rank

    def forward(self, input, label):
        loss = mp_ops._c_softmax_with_cross_entropy(
            input, label, group=self.model_parallel_group)
        return loss