launch.py 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56
                your_training_py (arg1 arg2 and all others)
"""

57
import shutil
58
import sys
59
import tempfile
60 61 62 63
import os
import time
import six
import copy
64
import pathlib
65 66
from argparse import ArgumentParser, REMAINDER
import paddle.fluid as fluid
67
from paddle.distributed.fleet import launch_utils
68

69
# TODO(danleifeng): Don't import * from a module
70
from paddle.distributed.fleet.launch_utils import *
71 72
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
73

K
kuizhiqing 已提交
74
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
75

76 77
__all__ = []

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
95
    base_group = parser.add_argument_group("Base Parameters")
96

97 98
    base_group.add_argument(
        "--log_dir",
99
        type=str,
100
        default="log",
G
Guoxia Wang 已提交
101
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
102 103 104
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
105 106 107
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
108 109 110 111 112 113 114 115
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

116 117 118
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
119
        default=None,
120 121
        help="run mode of job, can be:collective/ps/ps-heter")

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
142

K
kuizhiqing 已提交
143 144 145 146 147 148 149 150 151 152
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

Z
zn 已提交
153 154 155 156 157 158 159 160 161 162
    if fluid.core.is_compiled_with_mlu():
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu."
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

163 164 165 166 167 168
    base_group.add_argument("training_script",
                            type=str,
                            help="The full path to the single GPU training "
                            "program/script to be launched in parallel, "
                            "followed by all the arguments for the "
                            "training script")
169

170 171 172 173 174 175 176 177 178 179
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
180
    collective_group.add_argument(
181 182 183 184 185 186 187 188 189 190 191
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
192 193 194 195 196
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
197 198 199

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
200 201 202 203 204 205 206 207
    ps_group.add_argument("--servers",
                          type=str,
                          default="",
                          help="User defined servers ip:port")
    ps_group.add_argument("--workers",
                          type=str,
                          default="",
                          help="User defined workers ip:port")
208 209 210 211
    ps_group.add_argument("--coordinators",
                          type=str,
                          default="",
                          help="User defined coordinators ip:port")
212 213 214 215
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
216
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
217 218 219 220
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
221
        help="User defined heter devices in each stage cpu;gpu;cpu")
222 223

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
224 225 226
    ps_group.add_argument("--coordinator_num",
                          type=int,
                          help="number of coordinators")
227
    ps_group.add_argument("--server_num", type=int, help="number of servers")
228 229 230
    ps_group.add_argument("--heter_worker_num",
                          type=str,
                          help="number of heter_workers in each stage 1;2;3")
231
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
232

233 234
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
235 236 237 238 239 240
    elastic_group.add_argument("--elastic_server",
                               type=str,
                               help="etcd server host:port")
    elastic_group.add_argument("--elastic_pre_hook",
                               type=str,
                               help="elastic pre_hook shell cmd")
241

242 243 244
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
245 246 247 248 249 250 251
    elastic_group.add_argument("--host",
                               type=str,
                               help="bind host, default to POD_IP env")
    elastic_group.add_argument("--force",
                               type=bool,
                               default=False,
                               help="update np force")
252

K
kuizhiqing 已提交
253 254
    known_args, _ = parser.parse_known_args()
    return known_args
255 256


257
def get_cluster_from_args(args, device_mode, devices_per_proc):
258 259 260 261
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
262 263 264 265
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
266

267
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
268
        % (node_ip, node_ips)
269 270
    node_rank = node_ips.index(node_ip)

271
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
272 273 274 275 276
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
277
        free_ports = find_free_ports(len(devices_per_proc))
278 279
        if free_ports is not None:
            free_ports = list(free_ports)
G
gongweibao 已提交
280
            logger.info("find free ports:{}".format(free_ports))
281 282 283
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
284
            start_port = int(os.environ.get('FLAGS_START_PORT'))
285

286 287 288
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
289

290 291 292
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
293 294
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
295 296


X
xiongkun 已提交
297 298 299 300 301 302 303 304 305 306 307 308
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


309
def get_cluster_info(args):
K
kuizhiqing 已提交
310
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
311
    if args.backend == 'gloo': cpuonly_check(args)
312 313 314 315 316
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
317 318 319 320
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

321 322
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
323 324 325 326 327 328
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
329
    # auto mapping between processes and devices for auto-parallel
330
    if args.enable_auto_mapping == True:
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
362
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
363 364 365
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, device_mode,
                                                     devices_per_proc,
                                                     start_port)
K
kuizhiqing 已提交
366 367
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
368
        # for ascend
369 370 371 372
        cluster, pod = ascend_utils.get_cloud_cluster(rank_table_file=os.getenv(
            "RANK_TABLE_FILE", None),
                                                      device_mode=device_mode,
                                                      start_port=start_port)
K
kuizhiqing 已提交
373 374 375 376 377
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
378 379
    return cluster, pod

380

381
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
382 383 384 385
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
386
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
387
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
388 389 390 391 392 393 394
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
395

396 397 398 399 400 401
    procs = start_local_trainers(cluster,
                                 pod,
                                 training_script=args.training_script,
                                 training_script_args=args.training_script_args,
                                 log_dir=args.log_dir,
                                 envs=global_envs)
K
kuizhiqing 已提交
402 403 404

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
405

K
kuizhiqing 已提交
406
    while True:
K
kuizhiqing 已提交
407 408
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
409

K
kuizhiqing 已提交
410 411 412 413
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
414

K
kuizhiqing 已提交
415 416 417 418 419 420
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
421

422 423
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
424

425

426 427 428 429 430 431 432
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
433 434 435 436 437
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
438 439 440 441 442 443

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


444 445 446 447 448 449 450 451
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
Z
zn 已提交
452 453
    elif fluid.core.is_compiled_with_mlu():
        args.backend = 'cncl'
454 455 456 457
    else:
        args.backend = 'gloo'


458
def which_distributed_mode(args):
459
    infer_backend(args)  # modify the args.backend
460 461 462 463 464 465 466 467 468 469
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

470
    ps_args = [
471
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
472
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
473
    ]
474
    collective_args = ['--ips']
475

476
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
477

478 479
    coordinator_args = ["--coordinator_num", "--coordinators"]

480 481 482 483 484 485 486
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
487 488 489 490 491 492

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

493
    if fluid.core.is_compiled_with_cuda():
494
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
495 496
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
497
    elif fluid.core.is_compiled_with_xpu():
498
        accelerators = fluid.core.get_xpu_device_count()
Z
zn 已提交
499 500
    elif fluid.core.is_compiled_with_mlu():
        accelerators = fluid.core.get_mlu_device_count()
501
    else:
502
        accelerators = 0
503

504 505
    if len(has_ps_args) > 0:
        logger.info(
506 507
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}"
            .format(has_ps_args, accelerators))
508
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
509
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
510 511 512 513
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
514
    elif len(has_collective_args) > 0:
515 516 517
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
                has_collective_args, accelerators))
518
        return DistributeMode.COLLECTIVE
519
    else:
520
        if not fluid.core.is_compiled_with_cuda(
Z
zn 已提交
521 522
        ) and not fluid.core.is_compiled_with_xpu(
        ) and not fluid.core.is_compiled_with_mlu():
X
xiongkun 已提交
523 524
            if args.servers:
                logger.warning(
Z
zn 已提交
525
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
526
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
527 528 529
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
530 531
        else:
            logger.warning(
Z
zn 已提交
532
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
533
                "Default use collective mode")
534
            return DistributeMode.COLLECTIVE
535 536 537


def launch():
G
Guoxia Wang 已提交
538 539
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
540

G
Guoxia Wang 已提交
541 542 543 544 545 546 547 548 549
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
550
                             training_script ...
G
Guoxia Wang 已提交
551 552 553


    Base Parameters:
G
Guoxia Wang 已提交
554
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
555

G
Guoxia Wang 已提交
556
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
557

G
Guoxia Wang 已提交
558
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
559

G
Guoxia Wang 已提交
560
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
561 562

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
563

G
Guoxia Wang 已提交
564
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
565

G
Guoxia Wang 已提交
566 567
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
568 569 570 571
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

572
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
573

G
Guoxia Wang 已提交
574
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
575 576

    Collective Parameters:
G
Guoxia Wang 已提交
577
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
578 579

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
580
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
581

G
Guoxia Wang 已提交
582
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
583

584
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
585 586 587 588 589

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

590
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
591

592
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
593 594 595 596

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
597
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
598

G
Guoxia Wang 已提交
599
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
600

G
Guoxia Wang 已提交
601
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
602 603 604 605 606 607 608 609 610 611

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
612

G
Guoxia Wang 已提交
613
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
614 615

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
616

G
Guoxia Wang 已提交
617 618 619 620
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
621 622
            # The parameters of --gpus and --ips must be consistent in each node.

623
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17
G
Guoxia Wang 已提交
624 625 626 627 628 629 630

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
631

G
Guoxia Wang 已提交
632 633 634 635
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
636
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
637

G
Guoxia Wang 已提交
638
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
639

G
Guoxia Wang 已提交
640 641 642 643
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
644
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
658
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
659

G
Guoxia Wang 已提交
660 661
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
662

G
Guoxia Wang 已提交
663 664 665 666
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
667
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
683
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
684

G
Guoxia Wang 已提交
685 686
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
687

G
Guoxia Wang 已提交
688 689 690 691
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
692
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
709

G
Guoxia Wang 已提交
710 711
    """

712 713 714 715
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
716
    if args.backend == 'auto':
717 718
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
719 720 721 722 723
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

Z
zn 已提交
724
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
725

X
xiongkun 已提交
726 727
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
728

729 730 731
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
732 733 734
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
735

K
kuizhiqing 已提交
736 737
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
738
    else:
K
kuizhiqing 已提交
739
        launch_ps(args, distribute_mode)
740 741 742 743


if __name__ == "__main__":
    launch()