distributed_strategy.py 85.2 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28
non_auto_func_called = True


def __non_auto_func_called__(func):
29

30 31 32 33 34 35 36 37 38 39
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

40

41 42 43 44 45 46 47 48 49 50 51 52 53
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
54 55 56
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
57 58 59 60 61 62 63 64 65 66 67 68
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


106 107 108 109
ReduceStrategyFluid = paddle.fluid.BuildStrategy.ReduceStrategy
ReduceStrategyFleet = int


110
class DistributedStrategy(object):
111 112
    __lock_attr = False

113
    def __init__(self):
114 115 116
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
117
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS),
118
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
119

120 121
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

122
        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and
123 124 125
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
126
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
127 128 129

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
130
        if _global_flags().is_public(key):
131
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
132
                _global_flags()[key])
133
        key = 'FLAGS_conv_workspace_size_limit'
134 135
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
136
        key = 'FLAGS_cudnn_exhaustive_search'
137 138
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
139
        key = 'FLAGS_sync_nccl_allreduce'
140 141
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
142

143 144 145 146 147 148 149
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
150

151
    def save_to_prototxt(self, output):
152 153 154 155
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
156

157
          .. code-block:: python
1
123malin 已提交
158

159
            import paddle.distributed.fleet as fleet
160 161 162
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
163
            strategy.recompute_configs = {"checkpoints": ["x"]}
164 165
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
166 167 168 169
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
170 171 172 173
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
174

175 176
          .. code-block:: python

177
            import paddle.distributed.fleet as fleet
178
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
179
            strategy.load_from_prototxt("dist_strategy.prototxt")
180 181 182 183 184 185 186 187 188 189 190
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
191

192 193
          .. code-block:: python

M
mapingshuo 已提交
194
            import paddle
1
123malin 已提交
195
            exe_strategy = paddle.static.ExecutionStrategy()
196 197 198 199
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

200
            strategy = paddle.distributed.fleet.DistributedStrategy()
201 202 203 204 205 206 207 208 209 210
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
211
    @is_strict_auto
212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
226

227 228
          .. code-block:: python

M
mapingshuo 已提交
229
            import paddle
1
123malin 已提交
230
            build_strategy = paddle.static.BuildStrategy()
231 232 233 234 235 236 237 238
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
239

240
            strategy = paddle.distributed.fleet.DistributedStrategy()
241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
247 248 249 250
            value = getattr(self.strategy.build_strategy, f.name)
            if f.name == 'reduce_strategy':
                value = ReduceStrategyFluid(value)
            setattr(build_strategy, f.name, value)
251 252 253
        return build_strategy

    @build_strategy.setter
254
    @is_strict_auto
255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
259 260 261 262
                value = getattr(strategy, f.name)
                if f.name == 'reduce_strategy':
                    value = ReduceStrategyFleet(value)
                setattr(self.strategy.build_strategy, f.name, value)
263 264 265 266 267
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
290
    def a_sync(self):
291 292
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
293
        for training. This property is valid when we are using parameter server training,
294 295 296 297
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
298

299 300
          .. code-block:: python

301
            import paddle.distributed.fleet as fleet
302 303 304 305
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
306
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
307

308 309 310
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
311
        return self.strategy.a_sync
312

D
Dong Daxiang 已提交
313
    @a_sync.setter
314
    @is_strict_auto
D
Dong Daxiang 已提交
315
    def a_sync(self, flag):
316
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
317
            self.strategy.a_sync = flag
318
            self.a_sync_configs = {"k_steps": 0}
319
        else:
320
            raise ValueError(
321 322
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
323 324

    @property
D
Dong Daxiang 已提交
325
    def a_sync_configs(self):
326
        """
D
Dong Daxiang 已提交
327
        Set a_sync update configurations. In general, asynchronous parameter server
328 329
        training has serveral configurable settings that can be configured through
        a dict.
330

331
        **Notes**:
M
mapingshuo 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
345

346
        Examples:
1
123malin 已提交
347

348
          .. code-block:: python
349

350
            import paddle.distributed.fleet as fleet
351 352
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
353

354
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
355
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
356
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
357
            strategy.a_sync_configs = configs
358

359 360
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
361

362
        """
D
Dong Daxiang 已提交
363
        return get_msg_dict(self.strategy.a_sync_configs)
364

D
Dong Daxiang 已提交
365
    @a_sync_configs.setter
366
    @is_strict_auto
D
Dong Daxiang 已提交
367 368 369 370
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
371

372 373 374
    @property
    def trainer_desc_configs(self):
        """
375
        Set trainer desc configurations.
376 377 378 379 380 381 382 383

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

384
            stat_var_names(list(str)):
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

404 405 406 407
    @property
    def adam_d2sum(self):
        """
        set adam_d2sum
W
wangguanqun 已提交
408
        Default value: False
409 410 411 412 413 414 415 416 417 418

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
W
wangguanqun 已提交
419
            strategy.adam_d2sum = True  # by default this is False
420 421 422 423 424 425 426 427 428 429 430 431 432

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.adam_d2sum

    @adam_d2sum.setter
    @is_strict_auto
    def adam_d2sum(self, flag):
        if isinstance(flag, bool):
            self.strategy.adam_d2sum = flag
        else:
            raise ValueError(
433 434
                "The type of `flag` is invalid, expected type is bool, but received {}"
                .format(type(flag)))
435

436 437 438 439 440 441 442
    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

443 444 445
    @property
    def fs_client_param(self):
        """
446
        Set fs client configurations.
447 448 449 450
        **Notes**:
            uri(str): the uri of fs client
            user(str): the user_name of fs client
            passwd(str): the passwd of fs client
451
            hadoop_bin(str):
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
            strategy = fleet.DistributedStrategy()
            configs = {"uri": "xxx", "user": "xxx", passwd: "xxx"}
            strategy.fs_client_param = configs
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.fs_client_param

    @fs_client_param.setter
    @is_strict_auto
    def fs_client_param(self, configs):
        check_configs_key(self.strategy.fs_client_param, configs,
                          "fs_client_param")
        assign_configs_value(self.strategy.fs_client_param, configs)

    @property
    def sparse_table_configs(self):
        return self.strategy.downpour_table_param

    @sparse_table_configs.setter
    @is_strict_auto
    def sparse_table_configs(self, configs):
        from google.protobuf.descriptor import FieldDescriptor
        table_param = self.strategy.downpour_table_param

482
        def set_table_config(msg, config_name, configs, index=0):
483 484 485
            for field in msg.DESCRIPTOR.fields:
                name = config_name + "." + field.name
                if field.type == FieldDescriptor.TYPE_MESSAGE:
486
                    # print("message:", name)
487 488 489 490
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        if name + ".num" not in configs:
                            continue
                        num = configs[name + ".num"]
491
                        # print("message num:", name, num)
492 493 494 495
                        for i in range(num):
                            data = getattr(msg, field.name).add()
                            set_table_config(data, name, configs, i)
                    else:
496 497
                        set_table_config(getattr(msg, field.name), name,
                                         configs)
498
                else:
499
                    # print("not message:", name)
500 501 502 503 504
                    if name not in configs:
                        continue
                    if field.label == FieldDescriptor.LABEL_REPEATED:
                        getattr(msg, field.name).extend(configs[name])
                    else:
505 506 507 508
                        if type(configs[name]) == list:
                            setattr(msg, field.name, configs[name][index])
                        else:
                            setattr(msg, field.name, configs[name])
509

510 511 512
        if not configs:
            print("table configs is empty")
        else:
513 514 515 516 517
            for table_name in configs:
                table_data = table_param.add()
                table_data.table_name = table_name
                set_table_config(table_data, "table_parameters." + table_name,
                                 configs[table_name])
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
    @sparse_table_configs.setter
    def fleet_desc_configs(self, configs):
        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_fea_dim', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold',
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
D
danleifeng 已提交
533
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate', 'feature_learning_rate', 'nodeid_slot']
534 535 536 537
        support_sparse_table_class = ['DownpourSparseTable']
        support_sparse_accessor_class = [
            'DownpourSparseValueAccessor', 'DownpourCtrAccessor',
            'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor',
538
            'DownpourDoubleUnitAccessor', 'DownpourCtrDymfAccessor'
539 540 541
        ]
        table_param = self.strategy.downpour_table_param

D
danleifeng 已提交
542 543 544 545 546
        def add_graph_config(graph, strategy):
            graph.feature_learning_rate = strategy.get('feature_learning_rate',
                                                       0.05)
            graph.nodeid_slot = strategy.get('nodeid_slot', 9008)

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        def sparse_optimizer_config(sgd, strategy, prefix):
            optimizer_name = strategy.get(prefix + "sparse_optimizer",
                                          "adagrad")
            sgd.name = optimizer_name
            if optimizer_name == "naive":
                sgd.name = "SparseNaiveSGDRule"
                sgd.naive.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.naive.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.naive.weight_bounds.extend(bounds)
            elif optimizer_name == "adagrad":
                sgd.name = 'SparseAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "std_adagrad":
                sgd.name = 'StdAdaGradSGDRule'
                sgd.adagrad.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.05)
                sgd.adagrad.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                if prefix == "embed_":
                    sgd.adagrad.initial_range = 0
                sgd.adagrad.initial_g2sum = strategy.get(
                    prefix + 'sparse_initial_g2sum', 3)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adagrad.weight_bounds.extend(bounds)
            elif optimizer_name == "adam":
                sgd.name = 'SparseAdamSGDRule'
D
danleifeng 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)
            elif optimizer_name == "shared_adam":
                sgd.name = 'SparseSharedAdamSGDRule'
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
                sgd.adam.learning_rate = strategy.get(
                    prefix + 'sparse_learning_rate', 0.001)
                sgd.adam.initial_range = strategy.get(
                    prefix + 'sparse_initial_range', 1e-4)
                sgd.adam.beta1_decay_rate = strategy.get(
                    prefix + 'sparse_beta1_decay_rate', 0.9)
                sgd.adam.beta2_decay_rate = strategy.get(
                    prefix + 'sparse_beta2_decay_rate', 0.999)
                sgd.adam.ada_epsilon = strategy.get(
                    prefix + 'sparse_ada_epsilon', 1e-8)
                bounds = strategy.get(prefix + 'sparse_weight_bounds',
                                      [-10, 10])
                sgd.adam.weight_bounds.extend(bounds)

        def set_sparse_table_config(table_data, config):
            for key in config:
                if key not in support_sparse_key_list:
                    raise ValueError("strategy key '%s' not support" % (key))
            table_class = config.get("sparse_table_class",
                                     "DownpourSparseTable")
            if table_class not in support_sparse_table_class:
                raise ValueError(
                    "support sparse_table_class: ['DownpourSparseTable'], but actual %s"
                    % (table_class))
            table_data.table_class = 'MemorySparseTable'
            table_data.shard_num = config.get('sparse_shard_num', 1000)
629 630 631 632 633 634
            table_data.enable_sparse_table_cache = config.get(
                'sparse_enable_cache', True)
            table_data.sparse_table_cache_rate = config.get(
                'sparse_cache_rate', 0.00055)
            table_data.sparse_table_cache_file_num = config.get(
                'sparse_cache_file_num', 16)
635 636 637 638 639

            accessor_class = config.get("sparse_accessor_class",
                                        "DownpourCtrAccessor")
            if accessor_class not in support_sparse_accessor_class:
                raise ValueError(
640
                    "support sparse_accessor_class: ['DownpourSparseValueAccessor', 'DownpourCtrAccessor', 'DownpourCtrDoubleAccessor', 'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'], but actual %s"
641 642
                    % (accessor_class))

643 644
            if accessor_class.find("Double") >= 0:
                table_data.accessor.accessor_class = 'CtrDoubleAccessor'
645 646
            elif accessor_class.find("Dymf") >= 0:
                table_data.accessor.accessor_class = 'CtrDymfAccessor'
647
            else:
648 649 650
                table_data.accessor.accessor_class = 'CtrCommonAccessor'

            if not configs.get("use_cvm", True):
651 652 653 654 655 656 657
                table_data.accessor.accessor_class = 'SparseAccessor'

            table_data.accessor.embedx_dim = config.get('sparse_embedx_dim', 8)
            table_data.accessor.fea_dim = table_data.accessor.embedx_dim + 3
            table_data.accessor.embedx_threshold = config.get(
                'sparse_embedx_threshold', 10)

658 659 660 661 662
            if accessor_class == 'DownpourUnitAccessor':
                table_data.accessor.ctr_accessor_param.show_scale = False
            else:
                table_data.accessor.ctr_accessor_param.show_scale = True

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            table_data.accessor.ctr_accessor_param.nonclk_coeff = config.get(
                'sparse_nonclk_coeff', 0.1)
            table_data.accessor.ctr_accessor_param.click_coeff = config.get(
                'sparse_click_coeff', 1)
            table_data.accessor.ctr_accessor_param.base_threshold = config.get(
                'sparse_base_threshold', 1.5)
            table_data.accessor.ctr_accessor_param.delta_threshold = config.get(
                'sparse_delta_threshold', 0.25)
            table_data.accessor.ctr_accessor_param.delta_keep_days = config.get(
                'sparse_delta_keep_days', 16)
            table_data.accessor.ctr_accessor_param.show_click_decay_rate = config.get(
                'sparse_show_click_decay_rate', 0.98)
            table_data.accessor.ctr_accessor_param.delete_threshold = config.get(
                'sparse_delete_threshold', 0.8)
            table_data.accessor.ctr_accessor_param.delete_after_unseen_days = config.get(
                'sparse_delete_after_unseen_days', 30)
            table_data.accessor.ctr_accessor_param.ssd_unseenday_threshold = config.get(
                'sparse_ssd_unseenday_threshold', 1)
            converter = config.get('sparse_converter', "")
            deconverter = config.get('sparse_deconverter', "")

            save_data1 = table_data.accessor.table_accessor_save_param.add()
            save_data1.param = 1
            save_data1.converter = converter
            save_data1.deconverter = deconverter

            save_data2 = table_data.accessor.table_accessor_save_param.add()
            save_data2.param = 2
            save_data2.converter = converter
            save_data2.deconverter = deconverter

            if accessor_class == 'DownpourCtrAccessor' or accessor_class == 'DownpourCtrDoubleAccessor':
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, '')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, '')
            else:
                sparse_optimizer_config(table_data.accessor.embed_sgd_param,
                                        config, 'embed_')
                sparse_optimizer_config(table_data.accessor.embedx_sgd_param,
                                        config, 'embedx_')
D
danleifeng 已提交
704
            add_graph_config(table_data.accessor.graph_sgd_param, config)
705 706 707 708 709 710 711 712 713 714 715 716 717

        if not configs:
            print("fleet desc config is empty")
        else:
            for table_name in configs:
                if table_name == 'dense_table' or table_name == 'datanorm_table':
                    continue
                if type(configs[table_name]) != dict:
                    continue
                table_data = table_param.add()
                table_data.table_name = table_name
                set_sparse_table_config(table_data, configs[table_name])

718
    @property
719 720 721 722
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
723

724
        Examples:
1
123malin 已提交
725

726
          .. code-block:: python
727

728
            import paddle.distributed.fleet as fleet
729 730
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
731

732 733
        """
        return self.strategy.amp
734

735
    @amp.setter
736
    @is_strict_auto
737
    def amp(self, flag):
738
        if isinstance(flag, bool):
739
            self.strategy.amp = flag
740
        else:
741
            print("WARNING: amp should have value of bool type")
742 743

    @property
744
    def amp_configs(self):
745 746 747 748 749
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
765

766 767 768 769 770 771 772 773
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
774

775 776 777 778 779 780 781 782
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
783 784 785 786 787 788 789 790 791 792 793 794 795

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
796
        """
797
        return get_msg_dict(self.strategy.amp_configs)
798

799
    @amp_configs.setter
800
    @is_strict_auto
801 802 803
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
804

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

830
    @property
831 832 833 834 835 836
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
837

838 839
          .. code-block:: python

840
            import paddle.distributed.fleet as fleet
841 842 843 844 845 846
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
847

848 849
    @property
    def sync_nccl_allreduce(self):
850 851 852 853 854
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
855

856 857 858 859 860 861
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
862 863 864
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
865
    @is_strict_auto
866 867 868 869
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
870
            print("WARNING: sync_nccl_allreduce should have value of bool type")
871

872
    @property
873
    def use_hierarchical_allreduce(self):
874 875 876 877 878 879
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
880

881 882 883 884 885 886
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
887
        return self.strategy.use_hierarchical_allreduce
888

889
    @use_hierarchical_allreduce.setter
890
    @is_strict_auto
891
    def use_hierarchical_allreduce(self, flag):
892
        if isinstance(flag, bool):
893
            self.strategy.use_hierarchical_allreduce = flag
894 895
        else:
            print(
896
                "WARNING: use_hierarchical_allreduce should have value of bool type"
897 898 899
            )

    @property
900
    def hierarchical_allreduce_inter_nranks(self):
901 902 903 904 905
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
906

907 908 909 910 911 912
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
913
        return self.strategy.hierarchical_allreduce_inter_nranks
914

915
    @hierarchical_allreduce_inter_nranks.setter
916
    @is_strict_auto
917 918 919
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
920 921
        else:
            print(
922
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
923 924
            )

925
    @property
926
    def sync_batch_norm(self):
927 928
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
929

930 931 932
        Default value: False

        Examples:
1
123malin 已提交
933

934 935 936 937 938 939 940
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

941
        return self.strategy.sync_batch_norm
942

943
    @sync_batch_norm.setter
944
    @is_strict_auto
945
    def sync_batch_norm(self, flag):
946
        if isinstance(flag, bool):
947
            self.strategy.sync_batch_norm = flag
948
        else:
949
            print("WARNING: sync_batch_norm should have value of bool type")
950 951 952

    @property
    def fuse_all_reduce_ops(self):
953 954 955 956 957
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
958

959 960 961 962 963 964
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
965 966 967
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
968
    @is_strict_auto
969 970 971 972 973 974
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

975 976
    @property
    def fuse_grad_size_in_MB(self):
977 978 979 980 981 982
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
983

984
          .. code-block:: python
1
123malin 已提交
985

986 987 988 989
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
990 991 992
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
993
    @is_strict_auto
994 995 996 997 998 999
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

1000 1001 1002
    @property
    def last_comm_group_size_MB(self):
        """
1003 1004 1005
        Specifying the size of gradient to fuse in Mega-Bytes when
        the last group of each batch communicates. Making the last group
        small is useful to improve performance.
1006 1007 1008 1009 1010

        Default value: 1

        Examples:
          .. code-block:: python
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

1026 1027 1028
    @property
    def find_unused_parameters(self):
        """
1029
        Indicating whether we are using find_unused_parameters to
1030 1031
        find unused parameters in DataParallel.

1032
        Default value: False
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
1052 1053
                "WARNING: find_unused_parameters should have value of bool type"
            )
1054

1055 1056 1057 1058 1059
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
1060
    @is_strict_auto
1061 1062 1063 1064 1065 1066 1067 1068
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

1069
    @property
1070
    def nccl_comm_num(self):
1071 1072 1073 1074 1075 1076
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
1077

1078
          .. code-block:: python
1
123malin 已提交
1079

1080 1081 1082 1083 1084
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

1085
        return self.strategy.nccl_comm_num
1086

1087
    @nccl_comm_num.setter
1088
    @is_strict_auto
1089
    def nccl_comm_num(self, value):
1090
        if isinstance(value, int):
1091
            self.strategy.nccl_comm_num = value
1092
        else:
1093
            print("WARNING: nccl_comm_num should have value of int type")
1094

1095
    @recompute.setter
1096
    @is_strict_auto
1097
    def recompute(self, flag):
1098
        if isinstance(flag, bool):
1099
            self.strategy.recompute = flag
1100
        else:
1101
            print("WARNING: recompute should have value of bool type")
1102 1103

    @property
1104 1105
    def recompute_configs(self):
        """
1106 1107
        Set recompute configurations.

J
JZ-LIANG 已提交
1108 1109 1110 1111
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

1112
        enable_offload(bool): enable recompute checkpoints offload feature. this feature
J
JZ-LIANG 已提交
1113 1114 1115 1116 1117 1118
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
1119
        specific here should be determined ("-1" is not allowed).
1120

1121
        Examples:
1
123malin 已提交
1122

1123
          .. code-block:: python
1
123malin 已提交
1124

1125
            import paddle.distributed.fleet as fleet
1126 1127
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
1128 1129 1130 1131
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
1132 1133 1134 1135 1136

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
1137
    @is_strict_auto
1138 1139 1140 1141
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
1142

1143 1144 1145 1146
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
1147
        optimization. We implement the sharding optimizer following the ZeRO-DP
J
JZ-LIANG 已提交
1148 1149
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
1150

1151 1152
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

1153 1154 1155
        Default value: False

        Examples:
1
123malin 已提交
1156

1157
          .. code-block:: python
1
123malin 已提交
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
1176
        Set sharding configurations.
1177 1178

        **Note**:
1179 1180
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and
1181 1182
            communication. Default is segment_broadcast_MB.

1183
            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and
1184 1185 1186 1187
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

1188
            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation.
1189 1190 1191 1192 1193 1194
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

1195
            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model.
1196 1197 1198 1199 1200
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

1201
            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.
1202

1203
            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
1204

1205
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on.
1206
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
1207

1208 1209 1210
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
1211

1212
        Examples:
1
123malin 已提交
1213

1214
          .. code-block:: python
1
123malin 已提交
1215

1216
            # sharding-DP, 2 nodes with 8 gpus per node
1217 1218 1219
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
1220
            strategy.sharding_configs = {
1221 1222 1223
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
1224
                "dp_degree": 2,
1225 1226
                "gradient_merge_acc_step": 4,
                }
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
1328 1329
                "WARNING: fuse_grad_size_in_num should have value of int32 type"
            )
1330

1331
    @property
1332 1333 1334 1335 1336 1337 1338 1339
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1340

1341
          .. code-block:: python
1
123malin 已提交
1342

1343
            import paddle.distributed.fleet as fleet
1344 1345 1346 1347 1348
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    @property
    def is_fl_ps_mode(self):
        return self.strategy.is_fl_ps_mode

    @is_fl_ps_mode.setter
    @is_strict_auto
    def is_fl_ps_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.is_fl_ps_mode = flag
        else:
            print("WARNING: is_fl_ps_mode should have value of bool type")

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    @property
    def is_with_coordinator(self):
        return self.strategy.with_coordinator

    @is_with_coordinator.setter
    @is_strict_auto
    def is_with_coordinator(self, flag):
        if isinstance(flag, bool):
            self.strategy.with_coordinator = flag
        else:
            print("WARNING: with_coordinator should have value of bool type")

1374
    @pipeline.setter
1375
    @is_strict_auto
1376
    def pipeline(self, flag):
1377
        if isinstance(flag, bool):
1378
            self.strategy.pipeline = flag
1379
        else:
1380
            print("WARNING: pipeline should have value of bool type")
1381 1382

    @property
1383 1384 1385 1386
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
1387
        There are Tensor queue buffer between each pair of neighborhood GPUS
1388 1389 1390
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
1391
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller,
1392
        so that we will have a faster producer for downstream consumers.
1393

1394 1395
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1396

1397
            **micro_batch_size**: the number of small batches in each user defined batch
1398

1399
        Examples:
1
123malin 已提交
1400

1401
          .. code-block:: python
1
123malin 已提交
1402

1403
            import paddle.distributed.fleet as fleet
1404 1405
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1406
            strategy.pipeline_configs = {"micro_batch_size": 12}
1407

1408
        """
1409

1410
        return get_msg_dict(self.strategy.pipeline_configs)
1411

1412
    @pipeline_configs.setter
1413
    @is_strict_auto
1414 1415 1416 1417
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1418

L
lilong12 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1451 1452
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1453 1454 1455 1456 1457 1458 1459 1460

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1461 1462
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1474 1475 1476
    @property
    def hybrid_configs(self):
        """
1477
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism
1478 1479 1480 1481 1482 1483 1484
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
1485
                                    If it is not set, or set to -1, its value will be inferred
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1508
    @property
1509
    def localsgd(self):
1510
        """
M
mapingshuo 已提交
1511 1512 1513
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1514 1515 1516


        Examples:
1
123malin 已提交
1517

1518 1519 1520 1521 1522 1523 1524
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1525
        return self.strategy.localsgd
1526

1527
    @localsgd.setter
1528
    @is_strict_auto
1529 1530 1531
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1532
        else:
1533
            print("WARNING: localsgd should have value of bool type")
1534 1535

    @property
1536
    def localsgd_configs(self):
1537 1538 1539 1540 1541
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1542
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1543
            begin_step(int) The step of beginning training by localsgd. Default 1.
1544 1545

        Examples:
1
123malin 已提交
1546

1547 1548 1549 1550 1551
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1552 1553
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1554 1555
        """

1556
        return get_msg_dict(self.strategy.localsgd_configs)
1557

1558
    @localsgd_configs.setter
1559
    @is_strict_auto
1560 1561 1562 1563
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1564

1565 1566 1567 1568
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
1569
        For more details, please refer to `Adaptive Communication Strategies to Achieve
1570 1571 1572 1573
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1574

1575 1576 1577 1578 1579 1580 1581
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1582
        return self.strategy.adaptive_localsgd
1583 1584 1585 1586 1587

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1588
            self.strategy.adaptive_localsgd = flag
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
1602
            begin_step(int) The step of beginning training by adaptive localsgd. Default 1.
1603 1604

        Examples:
1
123malin 已提交
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1624
    @property
1625
    def dgc(self):
1626 1627 1628 1629 1630 1631 1632
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1633

1634 1635 1636 1637 1638 1639 1640
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1641
        return self.strategy.dgc
1642

1643
    @dgc.setter
1644
    @is_strict_auto
1645 1646 1647
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1648
        else:
1649
            print("WARNING: dgc should have value of bool type")
1650 1651

    @property
1652
    def dgc_configs(self):
1653
        r"""
1654 1655 1656 1657
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1668 1669

        Examples:
1
123malin 已提交
1670

1671 1672 1673 1674 1675 1676 1677
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1678
        return get_msg_dict(self.strategy.dgc_configs)
1679

1680
    @dgc_configs.setter
1681
    @is_strict_auto
1682 1683 1684
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1685

1686 1687 1688 1689 1690 1691 1692
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1710
    @property
1711
    def gradient_merge(self):
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1723

M
mapingshuo 已提交
1724 1725
          .. code-block:: python

1726
            import paddle.distributed.fleet as fleet
1727 1728 1729 1730
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1731
        return self.strategy.gradient_merge
1732

1733
    @gradient_merge.setter
1734
    @is_strict_auto
1735
    def gradient_merge(self, flag):
1736
        if isinstance(flag, bool):
1737
            self.strategy.gradient_merge = flag
1738
        else:
1739 1740 1741 1742
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1743 1744
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1745 1746 1747 1748 1749 1750 1751

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1752

M
mapingshuo 已提交
1753 1754
          .. code-block:: python

1755
            import paddle.distributed.fleet as fleet
1756 1757 1758 1759
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1760 1761 1762
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1763
    @is_strict_auto
1764 1765 1766 1767
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1768 1769

    @property
1770
    def lars(self):
1771
        """
1772 1773
        Set lars configurations. lars is used to deal with the convergence problems when the global
        batch size is larger than 8k.  For more details, please refer to
1774 1775 1776 1777 1778
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1779

1780 1781 1782 1783 1784 1785
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1786
        return self.strategy.lars
1787

1788
    @lars.setter
1789
    @is_strict_auto
1790
    def lars(self, flag):
1791
        if isinstance(flag, bool):
1792
            self.strategy.lars = flag
1793
        else:
1794
            print("WARNING: lars should have value of bool type")
1795

1796 1797
    @property
    def lars_configs(self):
1798 1799 1800 1801 1802 1803
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
1804 1805
        **epsilon (float)**: argument is used to avoid potential devision-by-zero
        when compute the local lr;
1806 1807 1808 1809
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1810

1811
          .. code-block:: python
M
mapingshuo 已提交
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1823 1824 1825
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1826
    @is_strict_auto
1827 1828 1829 1830
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1831
    @property
1832
    def lamb(self):
1833
        """
1834 1835 1836
        Set lamb configurations. lamb is used to deal with the convergence problems for large
        batch size training, specially for attention-related model like BERT. For more details,
        please refer to
1837 1838 1839
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1840

1841
        Examples:
1
123malin 已提交
1842

1843 1844 1845 1846 1847 1848 1849
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1850
        return self.strategy.lamb
1851

1852
    @lamb.setter
1853
    @is_strict_auto
1854
    def lamb(self, flag):
1855
        if isinstance(flag, bool):
1856
            self.strategy.lamb = flag
1857
        else:
1858
            print("WARNING: lamb should have value of bool type")
1859

1860 1861
    @property
    def lamb_configs(self):
1862 1863 1864 1865 1866 1867 1868 1869 1870
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1871

1872
          .. code-block:: python
M
mapingshuo 已提交
1873

1874 1875 1876 1877 1878 1879 1880 1881
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1882 1883 1884
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1885
    @is_strict_auto
1886 1887 1888 1889
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1890 1891
    @property
    def elastic(self):
1892 1893 1894 1895
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1896 1897 1898
        return self.strategy.elastic

    @elastic.setter
1899
    @is_strict_auto
1900 1901 1902 1903 1904 1905 1906 1907
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1908 1909
        """
        Indicating whether we are using auto-parallel configuration
1910
        This feature is currently an experimental feature. Currently,
1911 1912 1913 1914 1915 1916
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1917

1918 1919 1920
          .. code-block:: python

            import paddle
1921
            paddle.enable_static()
1
123malin 已提交
1922
            import paddle.distributed.fleet as fleet
1923

1924 1925
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1926 1927
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1928 1929 1930 1931

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1932 1933 1934 1935 1936 1937 1938 1939 1940
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1941 1942 1943 1944
    @property
    def semi_auto(self):
        """
        Indicating whether we are using semi-auto parallel function
1945
        This feature is currently an experimental feature. Currently,
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        auto-parallelism can be used only when a user does not set any other
        strategy configs except semi-auto. For details, please reference the following
        code example
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.semi_auto = True
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
        return self.strategy.semi_auto

    @semi_auto.setter
    def semi_auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.semi_auto = flag
        else:
            print("WARNING: semi-auto should have value of bool type")

Z
zhaoyingli 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    @property
    def auto_search(self):
        """
        Indicating whether we are using auto-search parallel function
        For details, please reference the following code example
        Default Value: False
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.auto_search = True
        """
        return self.strategy.auto_search

    @auto_search.setter
    def auto_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto_search = flag
        else:
            print("WARNING: auto-search should have value of bool type")

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
    @property
    def split_data(self):
        """
        Indicating whether we split the data. If True, we split the data.
        Default Value: True
        Examples:
          .. code-block:: python
            import paddle
            paddle.enable_static()
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.split_data = True
        """
        return self.strategy.split_data

    @split_data.setter
    def split_data(self, flag):
        if isinstance(flag, bool):
            self.strategy.split_data = flag
        else:
            print("WARNING: split_data should have value of bool type")

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    @property
    def qat(self):
        """
        Indicating whether we are using quantization training
        Default Value: False
        """
        return self.strategy.qat

    @qat.setter
    def qat(self, flag):
        if isinstance(flag, bool):
            self.strategy.qat = flag
        else:
            print("WARNING: qat should have value of bool type")

    @property
    def qat_configs(self):
        """
        Set quantization training configurations. In general, qat has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
            channel_wise_abs_max(bool): Whether to use `per_channel` quantization training. Default is True.

            weight_bits(int): quantization bit number for weight. Default is 8.

            activation_bits(int): quantization bit number for activation. Default is 8.

2049
            not_quant_pattern(list[str]): When the skip pattern is detected in an op's name scope,
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
                the corresponding op will not be quantized.

            algo(str): Other quantization training algorithm.

        Exampless:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.qat = True
            strategy.qat_configs = {
                "channel_wise_abs_max": True,
                "weight_bits": 8,
                "activation_bits: 8,
                "not_quant_pattern": ['skip_quant']}

        """
        return get_msg_dict(self.strategy.qat_configs)

    @qat_configs.setter
    def qat_configs(self, configs):
        check_configs_key(self.strategy.qat_configs, configs, "qat_configs")
        assign_configs_value(self.strategy.qat_configs, configs)

K
kuizhiqing 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    @property
    def heter_ccl_mode(self):
        """
        Indicating whether we are using heter_ccl_mode for model training.
        This feature is currently an experimental feature. Currently,
        heter_ccl_mode can be used only for dataparallel with dygraph mode.
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle
            import paddle.distributed.fleet as fleet

            strategy = fleet.DistributedStrategy()
            strategy.heter_ccl_mode = True

            # for initialize parallel env, only need to call
            paddle.distributed.init_parallel_env()
            # then the heterogenous context will be created.
        """
        return self.strategy.heter_ccl_mode

    @heter_ccl_mode.setter
    def heter_ccl_mode(self, flag):
        if isinstance(flag, bool):
            self.strategy.heter_ccl_mode = flag
        else:
            print("WARNING: heter_ccl_mode should have value of bool type")

2106 2107
    @property
    def cudnn_exhaustive_search(self):
2108 2109 2110 2111 2112 2113 2114 2115
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
2116

2117 2118
          .. code-block:: python

1
123malin 已提交
2119 2120
            import paddle
            paddle.enable_static()
2121 2122 2123 2124 2125 2126 2127
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
2128 2129 2130
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
2131
    @is_strict_auto
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
2142 2143 2144 2145 2146 2147 2148 2149
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
2150

2151 2152
          .. code-block:: python

1
123malin 已提交
2153 2154
            import paddle
            paddle.enable_static()
2155 2156 2157 2158 2159 2160
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
2161

2162
        """
2163 2164 2165
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
2166
    @is_strict_auto
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
2177 2178 2179 2180 2181 2182
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
2183

2184 2185
          .. code-block:: python

1
123malin 已提交
2186 2187
            import paddle
            paddle.enable_static()
2188 2189 2190 2191 2192 2193 2194 2195
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
2196 2197 2198
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
2199
    @is_strict_auto
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
2228 2229
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
2230

2231 2232 2233 2234 2235 2236
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

2237
    def __repr__(self):
2238 2239 2240 2241 2242 2243 2244
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
2245 2246
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
2247 2248 2249 2250 2251 2252 2253 2254 2255

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
2256
        fields = self.strategy.DESCRIPTOR.fields
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
2271
                                "{}=True <-> {}_configs".format(f.name, f.name))
2272 2273 2274 2275 2276 2277
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
2278 2279 2280
                                        getattr(my_configs,
                                                ff.name), google.protobuf.pyext.
                                        _message.RepeatedScalarContainer):
2281 2282 2283
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
2284 2285
                                            draws += h2_format.format(
                                                ff.name, str(v))
2286
                                        else:
2287 2288
                                            draws += h2_format.format(
                                                "", str(v))
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
2309
        for f in fields:
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res