distribute_transpiler.py 79.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
Q
Qiao Longfei 已提交
38
import logging
39

40
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
W
Wu Yi 已提交
41
from .. import core, framework, unique_name
T
typhoonzero 已提交
42
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
43 44
    default_startup_program, Block, \
    Parameter, grad_var_name
45 46
from .details import *
from functools import reduce
47 48 49

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
50
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
51 52
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
53
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
54
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
55 56 57 58 59 60 61 62 63
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
64 65


T
typhoonzero 已提交
66 67 68 69 70 71
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
72

T
typhoonzero 已提交
73 74
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
75 76


77 78 79 80
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
81
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
82
    """
83 84 85 86 87 88
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
89
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
90 91 92

    Args:
        var_list (list): List of variables.
93 94
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
95 96
        min_block_size (int): Minimum splitted block size.
    Returns:
97
        blocks (list[(varname, block_id, current_block_size)]): A list
98
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
99 100 101
    """
    blocks = []
    for var in var_list:
102
        split_count = slice_count
T
typhoonzero 已提交
103 104 105 106
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
107
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
108 109 110 111 112 113 114 115 116
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
117
        # update split_count after aligning
T
typhoonzero 已提交
118
        split_count = int(math.ceil(var_numel / float(block_size)))
119
        for block_id in range(split_count):
T
typhoonzero 已提交
120 121 122 123 124 125 126
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
127 128 129 130 131 132 133
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
134
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
135 136 137 138 139 140
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
141
    enable_dc_asgd = False
W
Wu Yi 已提交
142 143
    # supported modes: pserver, nccl2
    mode = "pserver"
144
    print_log = False
G
gongweibao 已提交
145 146


Y
gen rst  
yi.wu 已提交
147
class DistributeTranspiler(object):
Y
yi.wu 已提交
148 149 150 151
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
152
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
153

W
Wu Yi 已提交
154 155 156 157 158 159 160 161 162
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
163 164 165 166

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
167 168 169 170 171 172
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
173 174
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
175
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
176 177 178 179 180 181 182 183
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
184

W
Wu Yi 已提交
185 186 187 188 189 190 191 192 193 194 195
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
196
    """
Y
Yancey1989 已提交
197

G
gongweibao 已提交
198 199 200 201 202 203 204 205 206
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

207 208 209
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
210 211 212
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

240 241 242 243 244
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
245
                  sync_mode=True,
W
Wu Yi 已提交
246 247
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
248
        """
Y
yi.wu 已提交
249 250 251 252 253 254 255
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
256 257
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
258 259
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
260 261 262
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
263
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
264 265
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
266 267 268
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
269 270 271
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
272 273
        if startup_program is None:
            startup_program = default_startup_program()
274
        self.origin_program = program
W
Wu Yi 已提交
275 276
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
277

W
Wu Yi 已提交
278 279 280 281 282 283 284 285 286
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

287 288 289 290 291 292 293
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
294
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
295
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
296
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
297
        self.grad_name_to_param_name = dict()
298 299
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
300
            self.grad_name_to_param_name[grad_var.name] = param_var.name
301

T
tangwei12 已提交
302 303 304 305 306 307
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

308
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
309
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
310
        self._init_splited_vars()
311

G
gongweibao 已提交
312
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
313
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
314
        send_vars = []
315 316 317 318 319 320

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
321
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
322

G
gongweibao 已提交
323
        if not self.config.slice_var_up:
324 325
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
326

327
        self.grad_name_to_send_dummy_out = dict()
328
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
329
            eplist = ps_dispatcher.dispatch(splited_vars)
330

G
gongweibao 已提交
331
            if not self.config.slice_var_up:
332 333
                assert (len(splited_vars) == 1)

334
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
335
            if len(splited_vars) == 1:
336
                splited_grad_varname = splited_vars[0].name
337 338
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
339
            elif len(splited_vars) > 1:
340
                orig_var = program.global_block().vars[splited_grad_varname]
341 342
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
343
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
344
                index += 1
Y
Yancey1989 已提交
345 346
            else:
                AssertionError("Can not insert the send op by original "
347
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
348

W
Wu Yi 已提交
349 350
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
351
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
352

W
Wu Yi 已提交
353 354 355 356
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
357
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
358
                index=index + 1,
359
                type="send",
Y
update  
Yancey1989 已提交
360
                inputs={"X": splited_vars},
361
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
362 363
                attrs={
                    "epmap": eplist,
364
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
365 366 367 368
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
369
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
370
                })
Y
update  
Yancey1989 已提交
371 372
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
373 374

        if self.sync_mode:
W
Wu Yi 已提交
375 376
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
377 378 379 380
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
381
            input_deps = list(self.grad_name_to_send_dummy_out.values())
382

Y
Yancey1989 已提交
383 384
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
385
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
386
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
387 388
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
389 390
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
391
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
392
                })
Y
Yancey1989 已提交
393

G
gongweibao 已提交
394
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
395
        recv_vars = []
Y
update  
Yancey1989 已提交
396
        for _, var in enumerate(send_vars):
397
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
398
        ps_dispatcher.reset()
Y
Yancey1989 已提交
399 400
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
401
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
402 403
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
404

Y
Yancey1989 已提交
405
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
406
        all_recv_outputs = []
407
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
408 409 410 411
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
412 413 414 415
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
416
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
417 418
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
419 420 421 422 423 424 425 426 427
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
428 429
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
430
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
431 432 433
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
W
Wu Yi 已提交
434
                    "trainer_id": self.trainer_id,
435
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
436 437
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
438
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
439
                })
T
typhoonzero 已提交
440

Q
qiaolongfei 已提交
441
        if self.sync_mode:
W
Wu Yi 已提交
442
            # form a WAW dependency
Q
qiaolongfei 已提交
443 444 445
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
446
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
447 448
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
449
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
450 451
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
452

453
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
454 455
            if len(splited_var) <= 1:
                continue
456
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
457
            program.global_block().append_op(
T
typhoonzero 已提交
458
                type="concat",
T
typhoonzero 已提交
459
                inputs={"X": splited_var},
T
typhoonzero 已提交
460
                outputs={"Out": [orig_param]},
461 462 463 464
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
465

G
gongweibao 已提交
466 467
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

468
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
469 470
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
471
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
472

W
Wu Yi 已提交
473
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
474 475 476 477 478 479
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
480
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
481
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
482
        lr_ops = self._get_lr_ops()
483
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
484 485
        delete_ops(self.origin_program.global_block(), lr_ops)

486 487
        # delete table init op
        if self.has_distributed_lookup_table:
488 489 490
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
491 492
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
493 494 495 496 497
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
498
            table_init_op = table_param_init_op[0]
499 500 501 502 503 504
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
505

506
        self.origin_program.__str__()
G
gongweibao 已提交
507

W
Wu Yi 已提交
508 509 510
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

511
        return self.origin_program
T
typhoonzero 已提交
512

W
Wu Yi 已提交
513
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
514 515 516 517
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
518
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
519
            eplist (list): A list of strings indicating
G
gongweibao 已提交
520 521 522 523

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
524
        startup_program = self.startup_program
G
gongweibao 已提交
525 526 527 528

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
529
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
550
                inputs={"X": []},
G
gongweibao 已提交
551 552 553 554 555 556
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
557 558
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
559 560 561
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
562
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
563 564 565 566 567
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
568
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
569
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
570 571
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
572
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
573
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
574 575 576 577 578 579 580 581 582 583
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
584 585 586 587 588 589 590 591
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
592 593
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
594
        Get parameter server side program.
595

Y
yi.wu 已提交
596 597
        Args:
            endpoint (str): current parameter server endpoint.
598

Y
yi.wu 已提交
599 600
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
601
        """
Y
yi.wu 已提交
602 603 604 605
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
606 607 608
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
609 610
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
611
        pserver_program.random_seed = self.origin_program.random_seed
612
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
613 614 615 616 617 618 619 620
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
621 622 623 624 625
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
626 627 628 629 630 631 632 633 634
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
635
            if self.sync_mode and self.trainer_num > 1:
636
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
637 638 639 640 641 642 643 644 645
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
646

Q
qiaolongfei 已提交
647
        # step 3
648
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
649 650 651
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
652
        # step 3.2
T
typhoonzero 已提交
653 654 655 656
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
657 658
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
659
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
660
        # step 3.3
W
Wu Yi 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
679
        # Iterate through the ops, and if an op and the optimize ops
680
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
681
        # append it into the sub program.
T
typhoonzero 已提交
682 683 684

        global_ops = []

Y
wip  
yi.wu 已提交
685 686
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
687
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
688
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
689
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
690
            elif op not in lr_ops:
Q
Qiyang Min 已提交
691
                self._append_pserver_non_opt_ops(block, op)
692 693 694 695 696 697

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
698

Y
Yancey1989 已提交
699
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
700 701 702 703 704 705 706 707
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
708
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
709 710 711

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
712
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
713 714

            # clone ops
Y
Yancey1989 已提交
715 716
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
717
                # clone sub_block of op
Y
Yancey1989 已提交
718
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
719 720

            # reset the block of op
W
Wu Yi 已提交
721
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
722

723
        # append lr decay ops to the child block if exists
724
        lr_ops = self._get_lr_ops()
725 726
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
727
        if len(lr_ops) > 0:
W
Wu Yi 已提交
728
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
729
                pserver_program.num_blocks - 1)
730
            optimize_blocks.append(lr_decay_block)
731
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
732
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
733
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
734 735
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
736

T
typhoonzero 已提交
737
        # append op to the current block
Q
qiaolongfei 已提交
738
        grad_to_block_id = []
Q
qiaolongfei 已提交
739
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
740
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
741
            per_opt_block = pserver_program._create_block(pre_block_idx)
742
            optimize_blocks.append(per_opt_block)
743
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
744
            # append grad merging ops before clip and weight decay
745 746
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
747
            for _, op in enumerate(self.optimize_ops):
748 749 750 751 752
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
753 754 755
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
756 757 758 759 760 761
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
762
                            op not in global_ops:
763 764 765 766 767
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
768

W
Wu Yi 已提交
769
# dedup grad to ids list
W
Wu Yi 已提交
770
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
771
        # append global ops
772
        if global_ops:
W
Wu Yi 已提交
773
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
774
                pserver_program.num_blocks - 1)
775
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
776
            for glb_op in global_ops:
X
Xi Chen 已提交
777
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
778
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
779

780
        # process distributed lookup_table
Q
qiaolongfei 已提交
781
        prefetch_var_name_to_block_id = []
782 783
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
784
            table_opt_block = self._create_table_optimize_block(
785
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
786
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
787
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
788
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
789 790
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
791

T
tangwei12 已提交
792
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
793 794
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
795

796
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
797 798
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
799 800 801 802 803 804
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
805
        attrs = {
806
            "optimize_blocks": optimize_blocks,
807 808 809
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
810
            "grad_to_block_id": grad_to_block_id,
811
        }
T
tangwei12 已提交
812 813

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
814
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
815 816
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
817

T
tangwei12 已提交
818 819 820 821
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
822 823 824 825 826
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
827
            attrs=attrs)
828

T
tangwei12 已提交
829
        # add distributed attrs
T
tangwei12 已提交
830
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
831
            endpoint)
832

W
Wu Yi 已提交
833
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
834 835
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
836 837
        return pserver_program

W
Wu Yi 已提交
838 839 840 841 842 843
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
844

W
Wu Yi 已提交
845 846 847 848
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
849 850
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
851 852
        return pserver_prog, pserver_startup

853 854
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
855
                            pserver_program=None,
856
                            startup_program=None):
T
typhoonzero 已提交
857
        """
W
Wu Yi 已提交
858 859
        **Deprecated**

T
typhoonzero 已提交
860 861 862
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
863 864 865

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
866 867
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
868
                when initalizing
869

Y
yi.wu 已提交
870 871
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
872
        """
873 874 875
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
876
        if pserver_program != None:
877 878 879
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
880
        if startup_program != None:
881 882 883
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
884

T
typhoonzero 已提交
885
        s_prog = Program()
W
Wu Yi 已提交
886
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
887
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
888 889 890 891 892 893 894 895 896 897 898
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
899
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
900
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
901
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
902 903 904 905
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
906
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
907 908
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
909 910 911 912 913 914 915 916 917 918
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
919 920

            if op_on_pserver:
921 922 923
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
924 925 926
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
927
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
928 929 930 931
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
932
                    attrs=op.all_attrs())
W
Wu Yi 已提交
933 934 935 936 937 938 939 940 941
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
942 943

        # add slice vars
T
tangwei12 已提交
944
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
945

T
typhoonzero 已提交
946 947
        return s_prog

T
tangwei12 已提交
948 949 950
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
951
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
952
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
953
            if not block_name:
954 955
                continue

T
tangwei12 已提交
956
            block_idx = int(block_name.split(block_suffix)[1])
957 958
            orig_var = self.origin_program.global_block().vars[orig_var_name]

T
tangwei12 已提交
959
            skip_dim0 = 0
960 961
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
T
tangwei12 已提交
962 963
                skip_dim0 += slice_var.shape[0]
            slice_vars_and_attrs.append([orig_var, skip_dim0, param])
964

T
tangwei12 已提交
965
        return slice_vars_and_attrs
966

967 968
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
969 970 971 972 973 974 975 976 977
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
978
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1030
    def _init_splited_vars(self):
Y
yi.wu 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1054
        if self.config.slice_var_up:
Y
yi.wu 已提交
1055 1056
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1057 1058 1059
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1060
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1061 1062
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1063 1064 1065
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1066 1067 1068 1069
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1070 1071
        assert (len(grad_blocks) == len(param_blocks))

1072
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1073 1074
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1075
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1076 1077 1078 1079
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1080
        # dict(grad_splited_var -> param_splited_var)
1081
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1082 1083 1084
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1085
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1086
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1087 1088

        # create mapping of endpoint -> split var to create pserver side program
1089
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1099
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1100 1101
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1102
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1103
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1104 1105
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1106 1107
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1108 1109 1110 1111 1112 1113

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1114 1115
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1116
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1117 1118 1119
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1120 1121
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1122 1123
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1124 1125 1126
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1127
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1128
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1129 1130

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1131
                    self.all_out_emb_vars.append(out_var)
1132 1133

                    # delete lookup_table_op
1134
                    delete_ops(program.global_block(), [op])
1135 1136 1137
                    # break for loop
                    break

S
seiriosPlus 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1184
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1185
        # 2. add split_ids_op and send_op to send gradient to pservers
1186

1187 1188
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1189
        table_grad_name = grad_var_name(self.table_name)
1190 1191 1192 1193
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1194
                program.global_block()._insert_op(
1195 1196 1197 1198 1199
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1200 1201
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1202
                program.global_block()._insert_op(
1203
                    index=op_index + 2,
1204
                    type="send",
1205
                    inputs={'X': self.trainer_side_table_grad_list},
1206 1207 1208 1209 1210
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1211
                    attrs={
1212
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1213
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1214
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1215 1216 1217 1218 1219
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1220
                    })
1221 1222 1223 1224 1225 1226
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1227
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1253
        return prefetch_var_name_to_block_id
1254 1255

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1256
                                     pre_block_idx, grad_to_block_id):
1257
        # STEP: create table optimize block
1258
        table_opt_block = pserver_program._create_block(pre_block_idx)
1259
        # create table param and grad var in pserver program
1260 1261 1262 1263 1264 1265 1266
        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
        ][0]

Y
Yancey1989 已提交
1267 1268
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1269

T
tangwei12 已提交
1270
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1271 1272
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1273 1274 1275
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1276 1277
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1278
            shape=table_shape,
Y
Yancey1989 已提交
1279 1280 1281
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1282

1283 1284
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1285
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1286
            self.origin_program.global_block().vars[grad_var_name(
1287
                self.table_name)])
1288

1289 1290 1291
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1292

1293 1294 1295
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1296
            pserver_side_table_grad_list = [
1297 1298 1299 1300 1301 1302 1303 1304 1305
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1306
            # append sum op for pserver_side_table_grad_list
1307 1308
            table_opt_block.append_op(
                type="sum",
1309
                inputs={"X": pserver_side_table_grad_list},
1310 1311
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1312 1313
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1314
            origin_grad_name = grad_var.name
1315 1316
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1317 1318
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1319
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1320
            grad_var = pserver_program.global_block()._rename_var(
1321
                origin_grad_name, splited_grad_name)
1322 1323 1324 1325 1326 1327 1328

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1329
        # only support sgd now
1330 1331 1332
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1333
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1334

1335 1336 1337
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1338 1339
        return table_opt_block

T
tangwei12 已提交
1340 1341 1342 1343 1344 1345
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1346
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1347
            name="kLookupTablePath",
T
tangwei12 已提交
1348 1349
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1350

W
Wu Yi 已提交
1351
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1352
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1353 1354 1355 1356
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1357
            attrs={'file_path': "none"})
T
tangwei12 已提交
1358 1359 1360

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1361 1362 1363 1364 1365
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1366
        Create vars for each split.
T
typhoonzero 已提交
1367 1368
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1369 1370 1371 1372
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1373
        Returns:
1374
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1375
                from original var name to each var split.
T
typhoonzero 已提交
1376
        """
1377 1378

        # varname->[(block_id, current_block_size)]
1379
        block_map = collections.OrderedDict()
1380

1381
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1382 1383
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1384
            if varname not in block_map:
T
typhoonzero 已提交
1385
                block_map[varname] = []
1386
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1387

M
minqiyang 已提交
1388
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1389
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1390
            if len(splited) == 1:
1391
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1392
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1393
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1394
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1395 1396 1397 1398 1399
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1400
                continue
T
typhoonzero 已提交
1401
            var_mapping[varname] = []
T
typhoonzero 已提交
1402 1403 1404 1405
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1406

T
typhoonzero 已提交
1407
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1408
                size = block[1]
M
minqiyang 已提交
1409
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1410 1411 1412
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1413
                new_var_name = ""
1414
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1415
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1416
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1417 1418
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1419
                                   (varname, i)
T
typhoonzero 已提交
1420
                var = program.global_block().create_var(
T
typhoonzero 已提交
1421 1422
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1423
                    dtype=orig_var.dtype,
1424
                    type=orig_var.type,
T
typhoonzero 已提交
1425
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1426
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1427
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1428
        return var_mapping
T
done  
typhoonzero 已提交
1429

1430
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1431 1432 1433 1434 1435 1436
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1437
            persistable=persistable)
T
done  
typhoonzero 已提交
1438

Y
Yancey1989 已提交
1439
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1440 1441 1442 1443
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1444
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1445 1446 1447 1448
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1449 1450 1451 1452
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1453 1454 1455 1456
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1457
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1458 1459 1460 1461
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1462 1463 1464 1465
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1466 1467 1468
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1469

T
typhoonzero 已提交
1470 1471 1472 1473
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1474
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1487
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1488 1489
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1490 1491
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1492
                return param_shape
1493 1494 1495
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1496 1497 1498
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1499 1500
        elif op_type == "sgd":
            pass
1501 1502 1503 1504
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1505 1506
        return orig_shape

1507 1508
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1509
        orig_var_name = ""
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1520
        else:
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1543
            return None
1544 1545 1546 1547
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1548
        else:
1549
            merged_var_name = orig_varname
1550 1551

        merged_var = pserver_block.vars[merged_var_name]
1552 1553 1554
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1555
            for i in range(self.trainer_num):
1556
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1557
                                   (merged_var_name, i)
1558 1559 1560 1561
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1562 1563
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1564 1565 1566 1567 1568
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1569
        return merged_var
T
typhoonzero 已提交
1570

W
Wu Yi 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                print("#### ref inputs: ", param_var.name, p_bak.name)
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1634
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1635
                            grad_to_block_id, origin_program, merged_var):
1636
        program = optimize_block.program
T
typhoonzero 已提交
1637
        pserver_block = program.global_block()
1638
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1649 1650 1651 1652
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1653
        for key in opt_op.input_names:
T
typhoonzero 已提交
1654
            if key == "Grad":
W
Wu Yi 已提交
1655 1656 1657 1658
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
                    new_inputs[key] = merged_var
T
typhoonzero 已提交
1659
            elif key == "Param":
W
Wu Yi 已提交
1660
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1661 1662
                if not param_block:
                    return
T
typhoonzero 已提交
1663
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1664
                    name=param_block.name,
T
typhoonzero 已提交
1665
                    persistable=True,
T
typhoonzero 已提交
1666 1667 1668
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1669
            elif key == "LearningRate":
1670
                # learning rate variable has already be created by non-optimize op,
1671
                # don't create it once again.
1672
                lr_varname = opt_op.input(key)[0]
1673
                if lr_varname in pserver_block.vars:
1674 1675 1676 1677 1678 1679 1680 1681 1682
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1683

T
typhoonzero 已提交
1684
        for key in opt_op.input_names:
1685
            new_shape = None
W
Wu Yi 已提交
1686
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1687
                continue
1688
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1689 1690 1691 1692
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1693
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1694 1695 1696 1697 1698
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1699

1700
        # change output's ParamOut variable
1701 1702
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1703
        outputs["ParamOut"] = new_inputs["Param"]
1704
        optimize_block.append_op(
T
typhoonzero 已提交
1705 1706
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1707
            outputs=outputs,
G
gongweibao 已提交
1708
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1709

1710 1711
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1712
        for _, g in six.iteritems(var_dict):
1713 1714 1715 1716 1717 1718
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1719 1720 1721
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1722
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1723 1724 1725 1726
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1727
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1728 1729 1730

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1731
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1732 1733 1734 1735
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1736
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1737

Y
Yancey1989 已提交
1738
        return block.append_op(
G
gongweibao 已提交
1739
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1740 1741

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1742
        program = optimize_block.program
1743
        # Append the ops for parameters that do not need to be optimized/updated
1744 1745
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1746
        for key, varlist in six.iteritems(inputs):
1747 1748
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1749
            for var in varlist:
1750 1751 1752 1753 1754 1755
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1756
                elif var.name not in program.global_block().vars:
1757
                    program.global_block().create_var(
T
typhoonzero 已提交
1758 1759 1760 1761 1762
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1763 1764
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1765
        for key, varlist in six.iteritems(outputs):
1766 1767 1768
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1769 1770 1771 1772
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1773
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1774
                    program.global_block()._clone_variable(var)
1775

Y
Yancey1989 已提交
1776
        return optimize_block.append_op(
T
typhoonzero 已提交
1777
            type=opt_op.type,
T
typhoonzero 已提交
1778 1779
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1780
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1781

1782 1783 1784 1785
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1786
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1787
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1788 1789 1790 1791 1792 1793
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1794 1795
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1796 1797 1798 1799 1800 1801
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1802
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1803
        if "Param" in op.input_names and \
T
tangwei12 已提交
1804
                "LearningRate" in op.input_names:
1805 1806 1807 1808 1809 1810 1811
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1812
        if op.input("Param")[0] in param_names:
1813 1814 1815
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1816
                param = op.input("Param")[0]
T
typhoonzero 已提交
1817
                if same_or_split_var(n, param) and n != param:
1818 1819 1820
                    return True
            return False

T
typhoonzero 已提交
1821
    def _get_input_map_from_op(self, varmap, op):
1822
        """Returns a dict from op input name to the vars in varmap."""
1823
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1835
        """Returns a dict from op output name to the vars in varmap."""
1836
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1846 1847

    def _get_lr_ops(self):
1848 1849 1850
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1851 1852 1853 1854
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1855 1856 1857 1858 1859
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1860 1861 1862 1863
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1864
            if self._is_optimizer_op(op):
1865 1866 1867 1868
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1869
        block = self.origin_program.global_block()
1870 1871 1872 1873 1874
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1875

1876 1877 1878 1879 1880
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1881
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1882 1883 1884 1885 1886 1887
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1888 1889
                    # we only need to append op for once
                    break
1890
        return lr_ops
Y
Yancey1989 已提交
1891

W
Wu Yi 已提交
1892 1893 1894 1895 1896
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1897 1898
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1899 1900 1901
            return True
        return False

Y
Yancey1989 已提交
1902
    def _get_optimize_pass(self):
1903
        """
1904
        Get optimizer operators, parameters and gradients from origin_program
1905 1906 1907 1908
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1909 1910 1911
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1912 1913
        # tmp set to dedup
        optimize_params = set()
1914
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1915
        for op in block.ops:
W
Wu Yi 已提交
1916
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1917
                opt_ops.append(op)
1918 1919 1920 1921 1922 1923
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1924 1925
                        params_grads.append([
                            origin_var_dict[param_name],
1926
                            origin_var_dict[grad_name]
1927
                        ])
Y
Yancey1989 已提交
1928 1929 1930
            else:
                pass
        return opt_ops, params_grads