resnet.py 25.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

L
LielinJiang 已提交
18 19
import paddle
import paddle.nn as nn
L
LielinJiang 已提交
20

21
from paddle.utils.download import get_weights_path_from_url
L
LielinJiang 已提交
22

23
__all__ = []
L
LielinJiang 已提交
24 25 26

model_urls = {
    'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',
L
LielinJiang 已提交
27
                 'cf548f46534aa3560945be4b95cd11c4'),
L
LielinJiang 已提交
28
    'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',
L
LielinJiang 已提交
29
                 '8d2275cf8706028345f78ac0e1d31969'),
L
LielinJiang 已提交
30
    'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',
L
LielinJiang 已提交
31
                 'ca6f485ee1ab0492d38f323885b0ad80'),
L
LielinJiang 已提交
32
    'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',
L
LielinJiang 已提交
33
                  '02f35f034ca3858e1e54d4036443c92d'),
L
LielinJiang 已提交
34
    'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',
L
LielinJiang 已提交
35
                  '7ad16a2f1e7333859ff986138630fd7a'),
36 37 38 39 40 41
    'resnext50_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_32x4d.pdparams',
     'dc47483169be7d6f018fcbb7baf8775d'),
    "resnext50_64x4d":
    ('https://paddle-hapi.bj.bcebos.com/models/resnext50_64x4d.pdparams',
     '063d4b483e12b06388529450ad7576db'),
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'resnext101_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_32x4d.pdparams',
     '967b090039f9de2c8d06fe994fb9095f'),
    'resnext101_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext101_64x4d.pdparams',
     '98e04e7ca616a066699230d769d03008'),
    'resnext152_32x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_32x4d.pdparams',
     '18ff0beee21f2efc99c4b31786107121'),
    'resnext152_64x4d':
    ('https://paddle-hapi.bj.bcebos.com/models/resnext152_64x4d.pdparams',
     '77c4af00ca42c405fa7f841841959379'),
    'wide_resnet50_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet50_2.pdparams',
     '0282f804d73debdab289bd9fea3fa6dc'),
    'wide_resnet101_2':
    ('https://paddle-hapi.bj.bcebos.com/models/wide_resnet101_2.pdparams',
     'd4360a2d23657f059216f5d5a1a9ac93'),
L
LielinJiang 已提交
60 61 62
}


L
LielinJiang 已提交
63 64 65
class BasicBlock(nn.Layer):
    expansion = 1

L
LielinJiang 已提交
66
    def __init__(self,
L
LielinJiang 已提交
67 68
                 inplanes,
                 planes,
L
LielinJiang 已提交
69
                 stride=1,
L
LielinJiang 已提交
70
                 downsample=None,
L
LielinJiang 已提交
71
                 groups=1,
L
LielinJiang 已提交
72 73 74
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
L
LielinJiang 已提交
75
        super(BasicBlock, self).__init__()
L
LielinJiang 已提交
76
        if norm_layer is None:
C
cnn 已提交
77
            norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
78

L
LielinJiang 已提交
79 80 81
        if dilation > 1:
            raise NotImplementedError(
                "Dilation > 1 not supported in BasicBlock")
L
LielinJiang 已提交
82

83 84 85 86 87 88
        self.conv1 = nn.Conv2D(inplanes,
                               planes,
                               3,
                               padding=1,
                               stride=stride,
                               bias_attr=False)
L
LielinJiang 已提交
89 90
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU()
C
cnn 已提交
91
        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
L
LielinJiang 已提交
92 93 94
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride
L
LielinJiang 已提交
95

L
LielinJiang 已提交
96 97
    def forward(self, x):
        identity = x
L
LielinJiang 已提交
98

L
LielinJiang 已提交
99 100 101
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
L
LielinJiang 已提交
102

L
LielinJiang 已提交
103 104
        out = self.conv2(out)
        out = self.bn2(out)
L
LielinJiang 已提交
105

L
LielinJiang 已提交
106 107
        if self.downsample is not None:
            identity = self.downsample(x)
L
LielinJiang 已提交
108

L
LielinJiang 已提交
109 110
        out += identity
        out = self.relu(out)
L
LielinJiang 已提交
111

L
LielinJiang 已提交
112
        return out
L
LielinJiang 已提交
113

L
LielinJiang 已提交
114 115

class BottleneckBlock(nn.Layer):
L
LielinJiang 已提交
116 117 118

    expansion = 4

L
LielinJiang 已提交
119 120 121 122 123 124 125 126 127
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
L
LielinJiang 已提交
128
        super(BottleneckBlock, self).__init__()
L
LielinJiang 已提交
129
        if norm_layer is None:
C
cnn 已提交
130
            norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
131 132
        width = int(planes * (base_width / 64.)) * groups

C
cnn 已提交
133
        self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False)
L
LielinJiang 已提交
134 135
        self.bn1 = norm_layer(width)

136 137 138 139 140 141 142 143
        self.conv2 = nn.Conv2D(width,
                               width,
                               3,
                               padding=dilation,
                               stride=stride,
                               groups=groups,
                               dilation=dilation,
                               bias_attr=False)
L
LielinJiang 已提交
144
        self.bn2 = norm_layer(width)
L
LielinJiang 已提交
145

146 147 148 149
        self.conv3 = nn.Conv2D(width,
                               planes * self.expansion,
                               1,
                               bias_attr=False)
L
LielinJiang 已提交
150 151 152 153
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride
L
LielinJiang 已提交
154

L
LielinJiang 已提交
155 156
    def forward(self, x):
        identity = x
L
LielinJiang 已提交
157

L
LielinJiang 已提交
158 159 160
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
L
LielinJiang 已提交
161

L
LielinJiang 已提交
162 163 164
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
L
LielinJiang 已提交
165

L
LielinJiang 已提交
166 167
        out = self.conv3(out)
        out = self.bn3(out)
L
LielinJiang 已提交
168

L
LielinJiang 已提交
169 170
        if self.downsample is not None:
            identity = self.downsample(x)
L
LielinJiang 已提交
171

L
LielinJiang 已提交
172 173
        out += identity
        out = self.relu(out)
L
LielinJiang 已提交
174

L
LielinJiang 已提交
175
        return out
L
LielinJiang 已提交
176

L
LielinJiang 已提交
177 178

class ResNet(nn.Layer):
L
LielinJiang 已提交
179
    """ResNet model from
180
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
L
LielinJiang 已提交
181 182

    Args:
183 184 185 186
        Block (BasicBlock|BottleneckBlock): Block module of model.
        depth (int, optional): Layers of ResNet, Default: 50.
        width (int, optional): Base width per convolution group for each convolution block, Default: 64.
        num_classes (int, optional): Output dim of last fc layer. If num_classes <= 0, last fc layer 
L
LielinJiang 已提交
187
                            will not be defined. Default: 1000.
188 189
        with_pool (bool, optional): Use pool before the last fc layer or not. Default: True.
        groups (int, optional): Number of groups for each convolution block, Default: 1.
L
LielinJiang 已提交
190

N
Nyakku Shigure 已提交
191
    Returns:
192
        :ref:`api_paddle_nn_Layer`. An instance of ResNet model.
N
Nyakku Shigure 已提交
193

L
LielinJiang 已提交
194 195 196
    Examples:
        .. code-block:: python

197
            import paddle
198 199
            from paddle.vision.models import ResNet
            from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
L
LielinJiang 已提交
200

201 202 203 204
            # build ResNet with 18 layers
            resnet18 = ResNet(BasicBlock, 18)

            # build ResNet with 50 layers
L
LielinJiang 已提交
205 206
            resnet50 = ResNet(BottleneckBlock, 50)

207
            # build Wide ResNet model
208 209
            wide_resnet50_2 = ResNet(BottleneckBlock, 50, width=64*2)

210 211
            # build ResNeXt model
            resnext50_32x4d = ResNet(BottleneckBlock, 50, width=4, groups=32)
L
LielinJiang 已提交
212

213 214 215 216
            x = paddle.rand([1, 3, 224, 224])
            out = resnet18(x)

            print(out.shape)
217
            # [1, 1000]
L
LielinJiang 已提交
218 219
    """

220 221 222 223 224
    def __init__(self,
                 block,
                 depth=50,
                 width=64,
                 num_classes=1000,
225 226
                 with_pool=True,
                 groups=1):
L
LielinJiang 已提交
227
        super(ResNet, self).__init__()
L
LielinJiang 已提交
228
        layer_cfg = {
L
LielinJiang 已提交
229 230 231 232
            18: [2, 2, 2, 2],
            34: [3, 4, 6, 3],
            50: [3, 4, 6, 3],
            101: [3, 4, 23, 3],
L
LielinJiang 已提交
233
            152: [3, 8, 36, 3]
L
LielinJiang 已提交
234
        }
L
LielinJiang 已提交
235
        layers = layer_cfg[depth]
236
        self.groups = groups
237
        self.base_width = width
L
LielinJiang 已提交
238 239
        self.num_classes = num_classes
        self.with_pool = with_pool
C
cnn 已提交
240
        self._norm_layer = nn.BatchNorm2D
L
LielinJiang 已提交
241 242 243

        self.inplanes = 64
        self.dilation = 1
L
LielinJiang 已提交
244

245 246 247 248 249 250
        self.conv1 = nn.Conv2D(3,
                               self.inplanes,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias_attr=False)
L
LielinJiang 已提交
251 252
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU()
C
cnn 已提交
253
        self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
L
LielinJiang 已提交
254 255 256 257
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
L
LielinJiang 已提交
258
        if with_pool:
C
cnn 已提交
259
            self.avgpool = nn.AdaptiveAvgPool2D((1, 1))
L
LielinJiang 已提交
260 261

        if num_classes > 0:
L
LielinJiang 已提交
262 263 264 265 266 267 268 269 270 271 272
            self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
273 274 275 276 277 278 279
                nn.Conv2D(self.inplanes,
                          planes * block.expansion,
                          1,
                          stride=stride,
                          bias_attr=False),
                norm_layer(planes * block.expansion),
            )
L
LielinJiang 已提交
280 281 282

        layers = []
        layers.append(
283 284
            block(self.inplanes, planes, stride, downsample, self.groups,
                  self.base_width, previous_dilation, norm_layer))
L
LielinJiang 已提交
285 286
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
287
            layers.append(
288 289 290 291 292
                block(self.inplanes,
                      planes,
                      groups=self.groups,
                      base_width=self.base_width,
                      norm_layer=norm_layer))
L
LielinJiang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

L
LielinJiang 已提交
306
        if self.with_pool:
L
LielinJiang 已提交
307 308 309 310
            x = self.avgpool(x)

        if self.num_classes > 0:
            x = paddle.flatten(x, 1)
L
LielinJiang 已提交
311
            x = self.fc(x)
L
LielinJiang 已提交
312

L
LielinJiang 已提交
313 314 315 316 317 318 319 320 321 322
        return x


def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
323 324

        param = paddle.load(weight_path)
325 326
        model.set_dict(param)

L
LielinJiang 已提交
327 328 329 330
    return model


def resnet18(pretrained=False, **kwargs):
331
    """ResNet 18-layer model from
332
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
333

L
LielinJiang 已提交
334
    Args:
N
Nyakku Shigure 已提交
335 336
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
337
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
338 339

    Returns:
340
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 18-layer model.
L
LielinJiang 已提交
341 342 343 344

    Examples:
        .. code-block:: python

345
            import paddle
346
            from paddle.vision.models import resnet18
L
LielinJiang 已提交
347 348 349 350 351 352

            # build model
            model = resnet18()

            # build model and load imagenet pretrained weight
            # model = resnet18(pretrained=True)
353 354 355 356 357

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
358
            # [1, 1000]
L
LielinJiang 已提交
359 360 361 362 363
    """
    return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs)


def resnet34(pretrained=False, **kwargs):
364
    """ResNet 34-layer model from
365
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
366

L
LielinJiang 已提交
367
    Args:
N
Nyakku Shigure 已提交
368 369
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
370
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
371 372

    Returns:
373
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 34-layer model.
374

L
LielinJiang 已提交
375 376 377
    Examples:
        .. code-block:: python

378
            import paddle
379
            from paddle.vision.models import resnet34
L
LielinJiang 已提交
380 381 382 383 384 385

            # build model
            model = resnet34()

            # build model and load imagenet pretrained weight
            # model = resnet34(pretrained=True)
386 387 388 389 390

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
391
            # [1, 1000]
L
LielinJiang 已提交
392 393 394 395 396
    """
    return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs)


def resnet50(pretrained=False, **kwargs):
397
    """ResNet 50-layer model from
398
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
399

L
LielinJiang 已提交
400
    Args:
N
Nyakku Shigure 已提交
401 402
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
403
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
404 405

    Returns:
406
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 50-layer model.
L
LielinJiang 已提交
407 408 409 410

    Examples:
        .. code-block:: python

411
            import paddle
412
            from paddle.vision.models import resnet50
L
LielinJiang 已提交
413 414 415 416 417 418

            # build model
            model = resnet50()

            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)
419 420 421 422 423

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
424
            # [1, 1000]
L
LielinJiang 已提交
425 426 427 428 429
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)


def resnet101(pretrained=False, **kwargs):
430
    """ResNet 101-layer model from
431
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
432

L
LielinJiang 已提交
433
    Args:
N
Nyakku Shigure 已提交
434 435
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
436
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
437 438

    Returns:
439
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 101-layer.
L
LielinJiang 已提交
440 441 442 443

    Examples:
        .. code-block:: python

444
            import paddle
445
            from paddle.vision.models import resnet101
L
LielinJiang 已提交
446 447 448 449 450 451

            # build model
            model = resnet101()

            # build model and load imagenet pretrained weight
            # model = resnet101(pretrained=True)
452 453 454 455 456

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
457
            # [1, 1000]
L
LielinJiang 已提交
458 459 460 461 462
    """
    return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs)


def resnet152(pretrained=False, **kwargs):
463
    """ResNet 152-layer model from
464
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
465

L
LielinJiang 已提交
466
    Args:
N
Nyakku Shigure 已提交
467 468
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
469
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
470 471

    Returns:
472
        :ref:`api_paddle_nn_Layer`. An instance of ResNet 152-layer model.
L
LielinJiang 已提交
473 474 475 476

    Examples:
        .. code-block:: python

477
            import paddle
478
            from paddle.vision.models import resnet152
L
LielinJiang 已提交
479 480 481 482 483 484

            # build model
            model = resnet152()

            # build model and load imagenet pretrained weight
            # model = resnet152(pretrained=True)
485 486 487 488 489

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
490
            # [1, 1000]
L
LielinJiang 已提交
491 492
    """
    return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)
493 494


495 496
def resnext50_32x4d(pretrained=False, **kwargs):
    """ResNeXt-50 32x4d model from
497
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
498 499
    
    Args:
N
Nyakku Shigure 已提交
500 501
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
502
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
503 504

    Returns:
505
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 32x4d model.
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_32x4d

            # build model
            model = resnext50_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext50_32x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext50_64x4d(pretrained=False, **kwargs):
    """ResNeXt-50 64x4d model from
532
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
533 534
    
    Args:
N
Nyakku Shigure 已提交
535 536
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
537
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
538 539

    Returns:
540
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-50 64x4d model.
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext50_64x4d

            # build model
            model = resnext50_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext50_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext50_64x4d', BottleneckBlock, 50, pretrained, **kwargs)


def resnext101_32x4d(pretrained=False, **kwargs):
    """ResNeXt-101 32x4d model from
567
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
568 569
    
    Args:
N
Nyakku Shigure 已提交
570 571
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
572
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
573 574

    Returns:
575
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 32x4d model.
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_32x4d

            # build model
            model = resnext101_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext101_32x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext101_64x4d(pretrained=False, **kwargs):
    """ResNeXt-101 64x4d model from
603
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
604 605
    
    Args:
N
Nyakku Shigure 已提交
606 607
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
608
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
609 610

    Returns:
611
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-101 64x4d model.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext101_64x4d

            # build model
            model = resnext101_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext101_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext101_64x4d', BottleneckBlock, 101, pretrained,
                   **kwargs)


def resnext152_32x4d(pretrained=False, **kwargs):
    """ResNeXt-152 32x4d model from
639
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
640 641
    
    Args:
N
Nyakku Shigure 已提交
642 643
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
644
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
645 646

    Returns:
647
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 32x4d model.
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_32x4d

            # build model
            model = resnext152_32x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_32x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 32
    kwargs['width'] = 4
    return _resnet('resnext152_32x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


def resnext152_64x4d(pretrained=False, **kwargs):
    """ResNeXt-152 64x4d model from
675
    `"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
676 677
    
    Args:
N
Nyakku Shigure 已提交
678 679
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
680
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
681 682

    Returns:
683
        :ref:`api_paddle_nn_Layer`. An instance of ResNeXt-152 64x4d model.
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import resnext152_64x4d

            # build model
            model = resnext152_64x4d()

            # build model and load imagenet pretrained weight
            # model = resnext152_64x4d(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
            # [1, 1000]
    """
    kwargs['groups'] = 64
    kwargs['width'] = 4
    return _resnet('resnext152_64x4d', BottleneckBlock, 152, pretrained,
                   **kwargs)


709 710 711 712 713
def wide_resnet50_2(pretrained=False, **kwargs):
    """Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
N
Nyakku Shigure 已提交
714 715
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
716
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
717 718

    Returns:
719
        :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-50-2 model.
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet50_2

            # build model
            model = wide_resnet50_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet50_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
737
            # [1, 1000]
738 739 740 741 742 743 744 745 746 747
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)


def wide_resnet101_2(pretrained=False, **kwargs):
    """Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.

    Args:
N
Nyakku Shigure 已提交
748 749
        pretrained (bool, optional): Whether to load pre-trained weights. If True, returns a model pre-trained
                            on ImageNet. Default: False.
750
        **kwargs (optional): Additional keyword arguments. For details, please refer to :ref:`ResNet <api_paddle_vision_ResNet>`.
N
Nyakku Shigure 已提交
751 752

    Returns:
753
        :ref:`api_paddle_nn_Layer`. An instance of Wide ResNet-101-2 model.
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

    Examples:
        .. code-block:: python

            import paddle
            from paddle.vision.models import wide_resnet101_2

            # build model
            model = wide_resnet101_2()

            # build model and load imagenet pretrained weight
            # model = wide_resnet101_2(pretrained=True)

            x = paddle.rand([1, 3, 224, 224])
            out = model(x)

            print(out.shape)
771
            # [1, 1000]
772 773 774 775
    """
    kwargs['width'] = 64 * 2
    return _resnet('wide_resnet101_2', BottleneckBlock, 101, pretrained,
                   **kwargs)