engine.py 68.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
from paddle import static, utils
27
from paddle.distributed import fleet
28 29 30 31
from paddle.fluid.executor import _to_name_str
from paddle.framework import IrGraph
from paddle.framework import _current_expected_place as _get_device
from paddle.framework import core, in_dygraph_mode
32
from paddle.metric import Metric
33
from paddle.static import InputSpec, Operator, Variable, global_scope
34

35
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
36
from .callbacks import config_callbacks
37
from .cluster import Cluster, get_default_cluster
38 39 40
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
41 42
from .dist_loader import (
    DistributedDataLoader,
43
    DistributedDataLoaderFromGenerator,
44
)
45 46 47
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
48
from .interface import CollectionNames, fetch, get_collection
49 50 51 52
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
53

54 55

class Engine:
56
    """
57 58
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
59 60 61 62 63 64 65
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
66 67
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
84
            from paddle.distributed.fleet import auto
85 86 87 88 89 90 91 92 93 94
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
95
            loss = paddle.nn.CrossEntropyLoss()
96 97 98 99
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

100 101
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
102 103 104
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
105
            # evaluate
106 107 108 109 110 111 112
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
113
            # load
114 115 116
            engine.load("./my_model")

    """
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
133 134 135 136
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
137 138 139 140 141 142 143 144 145

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
146 147 148
        self._loss = loss

        if optimizer and not isinstance(
149
            optimizer,
150
            (paddle.optimizer.Optimizer, paddle.static.Optimizer),
151
        ):
152 153
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
154
                " or `paddle.static.Optimizer`."
155
            )
156
        self._optimizer = auto_utils.validate_opt(optimizer)
157
        self._orig_optimizer = copy.deepcopy(self._optimizer)
158 159

        metrics = metrics or []
160
        for metric in auto_utils.to_list(metrics):
161 162 163 164 165 166
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
167
        self._metrics = auto_utils.to_list(metrics)
168 169 170 171 172 173 174 175 176 177 178 179 180

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

181
        self._logger = get_logger(logging.INFO)
182
        if os.getenv("POD_NAME"):
183 184
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
185
            )
186
            fleet.init(is_collective=True)
187

188
        self._executor = None
189 190 191
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
192

193 194
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
195
        self._orig_dist_context = get_default_distributed_context()
196
        self._dist_contexts = {}
197 198
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
199 200
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
201 202 203 204
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
205
        self._planners = {}
206 207
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
208 209
            "train": False,
            "eval": False,
210
            "predict": False,
211
        }
212 213 214 215
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
216
        self._losses = []
217

218
        self._mode = None
219 220
        self._skip_build = False
        self._outside_dataloader = False
221
        self._planned_mode = None
222 223
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
224

Z
zhaoyingli 已提交
225 226
        self.history = None

227 228
        paddle.framework.set_flags({'FLAGS_new_executor_sequential_run': 1})

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
247
            raise TypeError(
C
chenxujun 已提交
248
                "Data should be a Dataset or IterableDataset, but received {}.".format(
249 250 251
                    type(data).__name__
                )
            )
252 253
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
254 255

        num_shards = self._strategy.dataset.num_shards
256

257 258 259 260 261 262 263 264 265 266 267 268
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
W
wanghuancoder 已提交
269
            elif isinstance(item, (Variable, core.eager.Tensor)):
270
                spec = InputSpec.from_tensor(item, name)
271
                _adjust_item_spec(num_shards, spec)
272 273 274 275
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
276
            elif isinstance(item, numbers.Number):
277
                specs.append(InputSpec([batch_size], type(item), name))
278 279 280 281 282 283
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

300
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
301
        if in_dygraph_mode() or self._dygraph_mode:
302 303
            raise ValueError("Only support static graph mode.")

304
        if inputs_spec:
305 306 307 308 309
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
310 311
            assert isinstance(
                inputs, list
312
            ), f"inputs should be list, but received {type(inputs)}"
313 314 315 316 317 318
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
319
        if labels_spec:
320 321 322 323 324
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
325 326
            assert isinstance(
                labels, list
327
            ), f"labels should be list, but received {type(labels)}"
328 329 330 331 332 333 334
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

335 336 337 338 339 340 341 342 343
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
344 345 346
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
364 365 366
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
387 388
                    for name, value in data[0].items():
                        feeds[name] = value
389
                else:
390
                    raise ValueError(f"Unsupported data {data}")
391
            elif isinstance(data, dict):
392 393
                for name, value in data.items():
                    feeds[name] = value
394
            else:
395
                raise ValueError(f"Unsupported data {data}")
396
        if user_feeds is not None:
397 398 399 400 401
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
402 403
            for name, data in user_feeds.items():
                feeds[name] = data
404 405
        return feeds

406
    def _prepare_fetch(self, user_fetches, mode):
407
        if user_fetches is not None:
408 409 410 411 412
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
413 414
        else:
            user_fetches = []
415
        fetch_names = []
416
        fetch_indices = []
417

418 419
        def _process_fetch_group(group_name, var_list):
            group_indices = []
420
            for var in var_list:
421 422 423 424 425 426
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
427 428
            if not group_indices:
                fetch_names.append([])
429 430 431 432 433 434 435 436 437 438
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
439 440 441
        for usr_fetch in user_fetches:
            var_name = _to_name_str(usr_fetch)
            fetch(var_name)
442 443 444
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
445
        var_list = user_fetches_collection or []
446 447 448
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

449 450 451 452 453 454 455 456 457 458
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
459
        logs = {}
460
        if epoch is not None:
Z
zhaoyingli 已提交
461
            logs["epoch"] = epoch
462
        if step is not None:
Z
zhaoyingli 已提交
463
            logs["step"] = step + 1
464
        if lr is not None:
Z
zhaoyingli 已提交
465
            logs["lr"] = lr
466 467
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
468
            # logging loss
469
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
470
            assert len(loss_indices) <= 1
471
            for idx in loss_indices:
Z
zhaoyingli 已提交
472
                logs["loss"] = outs[idx][0]
473
            group_idx += 1
Z
zhaoyingli 已提交
474
            # logging metrics
475 476 477 478 479 480 481 482 483 484
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
485
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
486
                            logs[metric.name()[i]] = res
487
                    group_idx += 1
Z
zhaoyingli 已提交
488 489 490 491 492 493 494
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
495 496
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
497 498
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
499 500 501 502
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
503 504
        logs["fetches"] = logs_fetch
        return logs
505

506 507 508 509 510 511 512 513 514 515 516
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

517
    def _build(self, mode):
518
        if in_dygraph_mode() or self._dygraph_mode:
519
            paddle.disable_static()
520 521 522
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

523
            self.program_helper = ProgramHelper(
524 525 526 527 528
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
529
            )
530
            # build forward main program
531 532
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
533

534 535 536
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
537

538 539
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
540
            outputs = self.program_helper.output_vars
541
            self._losses = self.program_helper.loss_vars
542
            metrics = self.program_helper.metric_vars
543

544
            paddle.enable_static()
545
        else:
546
            # build program in static graph mode
547 548 549 550
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

551
            outputs = []
552
            metrics = []
553
            self._losses = []
554 555
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
556
            if not self._skip_build:
557 558 559
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
560 561 562 563 564 565 566
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

567
                    outputs = auto_utils.to_list(self._model(*self._inputs))
568

569
                    if mode != "predict" and self._loss:
570 571 572 573 574
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
575
                        self._losses = auto_utils.to_list(
576 577
                            self._loss(*(outputs + self._labels))
                        )
578

579
                    if mode != "predict" and (outputs or self._labels):
580 581
                        for metric in self._metrics:
                            metrics.append(
582
                                auto_utils.to_list(
583 584
                                    metric.compute(*(outputs + self._labels))
                                )
585
                            )
Z
zhaoyingli 已提交
586
            elif mode == "train":
587 588 589
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
590
                self._losses = auto_utils.to_list(self._loss)
591 592 593 594 595 596 597

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
598 599 600 601 602 603
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
604

605
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
606 607

        fetch_vars = {
608
            "outputs": paddle.utils.flatten(outputs),
609
            "loss": self._losses,
610
            "metrics": metrics,
611 612
        }

613 614 615
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

616 617 618
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
619
        self._dist_contexts[mode] = DistributedContext(
620 621 622
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
623 624 625 626 627 628 629 630 631 632 633
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
634 635 636 637 638
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
639
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
640
        self._fwd_main_progs[mode] = serial_main_prog.clone()
641

642 643 644
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
645

646 647 648 649 650 651 652 653
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
654 655

        from .tuner.optimization_tuner import OptimizationTuner
656 657 658 659 660 661 662 663 664

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
665 666 667

        self._optimization_tuner.tune()

668
        if self._tuning.run_after_tuning:
669 670
            # update the strategy
            self._dist_contexts[
671 672
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
673

674 675 676 677 678 679
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

680 681
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
682

683 684 685 686
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
687
        # TODO: check this feed_list
688 689 690 691 692
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

693 694
        self._dp_world_sizes = []
        self._dp_ranks = []
695
        for feed_var in feed_list:
696
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
697
                self._cur_rank, feed_var, self._dist_contexts[mode]
698
            )
699 700
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
701

702
    def _parallel(self, mode, all_ranks=False):
703 704
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
C
chenxujun 已提交
705
        # because we may use it to complete the annotation of the backward and update.
706
        parallelizer = Parallelizer(
Y
yuehuayingxueluo 已提交
707 708 709
            mode,
            self._planners[mode].completer,
            self._dist_contexts[mode],
710
        )
711 712 713 714
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
715 716

    def _init_dist_context(self, mode):
717
        # Init dist_context['mode'] with the first planned dist_context
718 719 720 721 722 723 724 725 726 727
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
728 729 730 731 732 733 734 735
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
736 737 738
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
739
        # Get the current content from the distributed context
740
        self._serial_main_progs[mode] = self._dist_contexts[
741 742
            mode
        ].serial_main_program
743
        self._serial_startup_progs[mode] = self._dist_contexts[
744 745
            mode
        ].serial_startup_program
746
        self._dist_main_progs[mode] = self._dist_contexts[
747 748
            mode
        ].dist_main_programs
749
        self._dist_startup_progs[mode] = self._dist_contexts[
750 751
            mode
        ].dist_startup_programs
752 753
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
754
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
755

756 757 758 759
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
760
            cur_rank = self._cur_rank
761 762 763
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
764
            if self._strategy.auto_mode == "full":
765 766 767
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
768 769
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
770
                    if cur_rank not in process_group.ranks:
771 772
                        continue
                    process_group.instantiate()
773

774
        self._place = _get_device()
775
        if isinstance(self._place, paddle.framework.CUDAPlace):
776 777 778
            self._place = paddle.framework.CUDAPlace(
                paddle.distributed.ParallelEnv().dev_id
            )
779

780 781 782 783 784
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

785
        if self._dygraph_mode:
786 787
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
788 789 790
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
791

792
        if self._executor is None:
793
            self._executor = paddle.static.Executor(self._place)
794 795 796 797 798 799 800 801 802 803
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
804

805
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
806 807 808
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
809 810

        if self._strategy.reinit:
Z
zhaoyingli 已提交
811
            self._logger.info("NOTE: parameters will be re-initialized.")
812 813 814
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
833 834 835 836 837 838 839 840
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
841
                more than two items, train_sample_split specifies how to split these items into
842
                input and label. The items before it are input and the left are label. Default: None.
843
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
844 845 846
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
847
                is executed in one epoch before stating the next one. If None, it is equal to
848 849
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
850
                evaluation at the end of epoch. No evaluation will be done if set to None.
851
                Default: None. (Unsupported for now)
852
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
853 854
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
855 856
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
857 858 859
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
860 861
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
862 863 864 865
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
866
                0. Default None.
867 868 869 870 871 872 873 874 875 876 877 878
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
879
                from paddle.distributed.fleet import auto
880 881 882 883 884 885 886 887 888
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
889
                loss = paddle.nn.CrossEntropyLoss()
890 891 892 893
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

894
                engine = auto.Engine(model, loss, optimizer, metrics)
895 896 897 898
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
899 900
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
901 902
            train_data, train_sample_split, batch_size
        )
903 904
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
905
        else:
906
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
907

908 909 910 911 912 913 914
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
915 916
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
917

918
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
945 946
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
947 948
                except core.EOFException:
                    break
949
                lr = auto_utils.get_lr(self._optimizer)
950 951 952 953 954 955 956 957 958
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
959 960 961
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
962 963 964 965 966 967 968 969 970 971
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
972
                val_logs = {
973
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
974 975 976 977 978 979 980 981 982 983
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
984

985 986 987 988 989 990 991 992 993 994 995
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
996 997 998 999
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
1000 1001
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
1002
                to be a (input, label) pair by default and has two items. If each sample has
1003
                more than two items, valid_sample_split specifies how to split these items into
1004
                input and label. The items before it are input and the left are label. Default: None.
1005
            batch_size (int, optional): The batch size of valid_data. The user's data will
1006
                be used directly without batching if set to None. Default: 1.
1007 1008
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1009 1010 1011 1012 1013
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1014
                during evaluating. Default: None. (Unused for now)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1025
                from paddle.distributed.fleet import auto
1026 1027 1028 1029 1030 1031 1032 1033 1034
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1035
                loss = paddle.nn.CrossEntropyLoss()
1036 1037
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1038
                engine = auto.Engine(model, loss, metrics=metrics)
1039 1040 1041
                engine.evaluate(valid_dataset, batch_size=64)

        """
1042 1043
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1044 1045
            valid_data, valid_sample_split, batch_size
        )
1046 1047
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1048
        else:
1049
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1050

1051 1052 1053 1054 1055 1056
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1057 1058
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1059

1060
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1061

Z
zhaoyingli 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1072 1073 1074
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1075
        logs = {}
1076
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1077
            cbks.on_batch_begin('eval', step, logs)
1078
            try:
1079 1080
                outs = self._executor.run(
                    self.main_program,
1081
                    fetch_list=fetch_names,
1082
                    use_program_cache=self._strategy.use_cache,
1083 1084
                    return_numpy=self._strategy.return_numpy,
                )
1085
            except core.EOFException:
1086
                break
1087 1088 1089
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1090 1091
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1092
        self._reset_metrics()
Z
zhaoyingli 已提交
1093
        return logs
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1105 1106 1107 1108 1109 1110 1111
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1112
                more than two items, test_sample_split specifies how to split these items into
1113 1114 1115
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1116 1117
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1134
                from paddle.distributed.fleet import auto
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1145
                engine = auto.Engine(model)
1146 1147
                engine.predict(valid_dataset, batch_size=64)
        """
1148 1149
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1150 1151
            test_data, test_sample_split, batch_size
        )
1152 1153
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1154
        else:
1155
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1156

1157 1158 1159 1160 1161 1162
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1163 1164
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1165

1166
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1167

Z
zhaoyingli 已提交
1168 1169 1170 1171 1172
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1173
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1174
            cbks.on_batch_begin('predict', step, logs)
1175
            try:
1176 1177
                outs = self._executor.run(
                    self.main_program,
1178
                    fetch_list=fetch_names,
1179
                    use_program_cache=self._strategy.use_cache,
1180 1181
                    return_numpy=self._strategy.return_numpy,
                )
1182
            except core.EOFException:
1183
                break
1184 1185 1186
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1187 1188 1189 1190 1191
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1209 1210 1211
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1212 1213
            dataset, sample_split, batch_size
        )
1214 1215
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1216
        else:
1217
            self._switch_mode(self._mode)
1218

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1232 1233
            steps_per_epoch=steps_per_epoch,
        )
1234 1235
        return dataloader

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1251 1252 1253
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1254 1255
            dataset, sample_split, batch_size
        )
1256 1257 1258 1259
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1272 1273
            collate_fn=collate_fn,
        )
1274 1275
        return dataloader

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1286 1287
        if mode is not None:
            self.to_mode(mode)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1304 1305
        if inputs or labels:
            self._skip_build = True
1306 1307
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1308
            )
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1320 1321 1322
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1323

1324 1325 1326 1327 1328 1329 1330
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1331
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1332 1333 1334 1335
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1336 1337 1338 1339
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1340
            self._prepare_reader()
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1351
        return logs
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1369

1370
        if self._strategy.gradient_merge and batch_size is not None:
1371 1372 1373 1374 1375
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1376
            batch_size //= self._k_steps
1377

1378 1379
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1380
        dist_main_block = dist_main_prog.global_block()
1381

1382 1383 1384 1385
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1386 1387
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1388 1389 1390 1391
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1392 1393 1394 1395
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1396 1397

        # insert read op at the end of program
1398
        places = paddle.static.cuda_places()
1399
        with static.program_guard(dist_main_prog, dist_startup_prog):
1400
            dataloader = DistributedDataLoader(
1401
                dataset,
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1417
                data_parallel_world_size=self._dp_world_sizes,
1418 1419
                data_parallel_rank=self._dp_ranks,
            )
1420

1421 1422
        return dataloader

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1437 1438

        if self._strategy.gradient_merge and batch_size is not None:
1439 1440 1441 1442 1443
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1483 1484
                data_parallel_rank=self._dp_ranks,
            )
1485 1486 1487 1488 1489 1490
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1491 1492
            tune_data, tune_sample_split, batch_size
        )
1493 1494
        self._optimization_tuning(self._mode, tune_data, batch_size)

1495
    def _validate_spec(self, specs):
1496
        specs = auto_utils.to_list(specs)
1497
        self._k_steps = self._strategy.gradient_merge.k_steps
1498 1499
        if specs is not None:
            for i, spec in enumerate(specs):
1500 1501 1502 1503
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1504 1505
                if spec.name is None:
                    raise ValueError(
1506 1507 1508 1509
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1510
                if self._k_steps > 1:
1511
                    shape = list(spec.shape)
1512 1513 1514 1515 1516
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1517
                    shape[0] //= self._k_steps
1518
                    spec.shape = shape
1519 1520 1521
        return specs or []

    def _validate_vars(self, vars):
1522
        vars = auto_utils.to_list(vars)
1523 1524 1525 1526 1527
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1528

1529 1530 1531 1532
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1533 1534 1535 1536
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1537 1538 1539
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1540
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1541 1542
        return metrics_name

1543
    def _switch_mode(self, mode):
1544 1545
        assert (
            mode in self._dist_main_progs
1546
        ), f"{mode} model is not ready, please call `prepare()` first."
1547
        self.to_mode(mode)
Z
zhaoyingli 已提交
1548
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1549

1550
    def to_mode(self, mode):
1551 1552 1553 1554
        assert mode in [
            "train",
            "eval",
            "predict",
1555
        ], f"mode {mode} should be one of ['train', 'eval', 'predict']"
1556 1557
        self._mode = mode

1558 1559 1560
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1561
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1562 1563
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        for name, param in program.state_dict().items():
            param_array = np.array(param)
            if name not in state_dict:
                continue
            if param_array.dtype != state_dict[name].dtype:
                self._logger.info(
                    "cast {}'s dtype from '{}' to '{}'".format(
                        name,
                        str(state_dict[name].dtype),
                        str(param_array.dtype),
                    )
                )
                state_dict[name] = state_dict[name].astype(param_array.dtype)
1577 1578 1579
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1580 1581
        """
        Saves the model, parameters, optimizer state to path.
1582 1583 1584 1585 1586 1587 1588
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1589
                for inference only. If `training` is set to True, the optimizer state
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1602
                from paddle.distributed.fleet import auto
1603 1604 1605 1606 1607 1608 1609 1610 1611
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1612
                loss = paddle.nn.CrossEntropyLoss()
1613 1614 1615 1616
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1617
                engine = auto.Engine(model, loss, optimizer, metrics)
1618 1619 1620 1621
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1622

1623
        """
1624
        if training:
Z
zhaoyingli 已提交
1625 1626 1627 1628
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1629 1630 1631 1632 1633 1634
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1635
        else:
Z
zhaoyingli 已提交
1636 1637 1638 1639
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1640
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1641
                from paddle.static.quantization import QuantWeightPass
1642 1643 1644

                self._logger.info("export quantized model.")
                self._logger.info(
1645
                    f"convert config {self._strategy.qat.to_dict()}"
1646 1647 1648 1649 1650 1651 1652 1653
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1654 1655 1656 1657 1658 1659 1660
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1661

1662 1663 1664 1665 1666 1667
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1668
                optimizer states.
1669 1670 1671
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1672
                mismatch shape). Default: True.
1673
            load_optimizer (bool, optional): If True, the stored optimizer
1674
                states is restored. Otherwise, the optimizer states is initialized
1675
                from scratch. Default: True.
1676 1677 1678 1679 1680 1681 1682 1683 1684

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1685
                from paddle.distributed.fleet import auto
1686 1687 1688 1689 1690 1691 1692 1693 1694
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1695
                loss = paddle.nn.CrossEntropyLoss()
1696 1697 1698 1699
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1700
                engine = auto.Engine(model, loss, optimizer, metrics)
1701 1702 1703 1704 1705
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1706

1707 1708 1709
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1710 1711
            path, load_optimizer
        )
1712
        return self._state_dict, self._dist_attr
1713

1714
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1725
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1726 1727 1728 1729 1730 1731 1732

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1733
            self._logger.info(
1734 1735 1736 1737 1738
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1739 1740 1741
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1742 1743
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1744
                    mode, list(self._has_prepared.keys())
1745 1746
                )
            )
1747 1748
        self.to_mode(mode)

1749 1750 1751
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1752 1753 1754
            self._build(mode)
            self._plan(mode)
        else:
1755
            if in_dygraph_mode() or self._dygraph_mode:
1756
                raise ValueError(
1757 1758 1759 1760 1761
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1762
                )
1763 1764 1765 1766 1767 1768 1769 1770
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1771 1772 1773 1774 1775 1776

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1777 1778
    @property
    def main_program(self):
1779
        return self._dist_main_progs[self._mode][self._cur_rank]
1780 1781 1782

    @property
    def startup_program(self):
1783
        return self._dist_startup_progs[self._mode][self._cur_rank]
1784 1785 1786

    @property
    def dist_context(self):
1787
        return self._dist_contexts[self._mode]
1788 1789 1790

    @property
    def serial_main_program(self):
1791
        return self._serial_main_progs[self._mode]
1792 1793 1794

    @property
    def serial_startup_program(self):
1795
        return self._serial_startup_progs[self._mode]
1796 1797 1798

    @property
    def fetch_vars(self):
1799
        return self._fetch_vars[self._mode]
1800 1801 1802

    @property
    def inputs(self):
1803
        return self._inputs
1804 1805 1806

    @property
    def labels(self):
1807
        return self._labels