pool_with_index_op.cc 10.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
36
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
45
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
46

C
fix doc  
chengduoZH 已提交
47
    if (ctx->Attrs().Get<bool>("globalPooling")) {
C
chengduoZH 已提交
48
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
49 50
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
52
      }
C
chengduoZH 已提交
53 54 55
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
56
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
57
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
58
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
60
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
76
  void InferShape(framework::InferShapeContext *ctx) const override {
77
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
78
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
79 80
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
fix bug  
chengduoZH 已提交
92
        "(Tensor), the input tensor of pooling operator. "
C
chengduoZH 已提交
93 94 95
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
C
fix bug  
chengduoZH 已提交
96
              "(Tensor), the output tensor of pooling operator."
C
chengduoZH 已提交
97 98 99 100
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
101
    AddOutput("Mask",
C
fix bug  
chengduoZH 已提交
102
              "(Tensor), the Mask tensor of pooling operator."
C
chengduoZH 已提交
103 104 105 106
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
107

C
fix bug  
chengduoZH 已提交
108 109 110 111 112 113
    AddAttr<std::vector<int>>("ksize",
                              "(vector ), the pooling window size(height, "
                              "width) of pooling operator."
                              "If globalPooling = true, ksize and paddings "
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
114
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
115 116 117 118
    AddAttr<bool>(
        "globalPooling",
        "(bool default: false), whether to use the global pooling."
        "If globalPooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
119
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
120 121 122
    AddAttr<std::vector<int>>(
        "strides",
        "(vector, default:{1, 1}), strides(height, width) of pooling operator.")
C
chengduoZH 已提交
123
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
124
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
125 126
    AddAttr<std::vector<int>>(
        "paddings",
C
fix bug  
chengduoZH 已提交
127 128
        "(vector defalut:{0, 0}), paddings(height, width) of pooling operator."
        "If globalPooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
129
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
130
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
131 132

    AddComment(R"DOC(
C
chengduoZH 已提交
133 134 135 136 137 138
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
139 140 141 142 143 144 145 146 147 148 149
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, H_in, W_in)
  Output:
       Out shape: (N, C, H_out, W_out)
       Mask shape: (N, C, H_out, W_out)
  where
       H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
C
chengduoZH 已提交
150 151 152 153 154 155 156 157 158 159 160
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
C
fix bug  
chengduoZH 已提交
161
        "(Tensor), the input tensor of pooling operator. "
C
chengduoZH 已提交
162 163 164 165
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
C
fix bug  
chengduoZH 已提交
166
              "(Tensor), the output tensor of pooling operator."
C
chengduoZH 已提交
167 168 169 170
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
171
    AddOutput("Mask",
C
fix bug  
chengduoZH 已提交
172
              "(Tensor), the Mask tensor of pooling operator."
C
chengduoZH 已提交
173 174 175 176
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
177

C
fix bug  
chengduoZH 已提交
178 179 180 181 182 183 184
    AddAttr<std::vector<int>>("ksize",
                              "(vector), the pooling window size(depth, "
                              "height, width) of pooling "
                              "operator."
                              "If globalPooling = true, ksize and paddings "
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
185
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
186 187 188 189
    AddAttr<bool>(
        "globalPooling",
        "(bool default: false), whether to use the global pooling."
        "If globalPooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
190
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
191 192 193
    AddAttr<std::vector<int>>("strides",
                              "(vector, default:{1,1,1}), strides(depth, "
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
194
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
195
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
196 197 198 199 200
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector defalut:{0,0,0}), paddings(depth, "
        "height, width) of pooling operator."
        "If globalPooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
201
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
202
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
203

C
chengduoZH 已提交
204
    AddComment(R"DOC(
C
chengduoZH 已提交
205 206 207 208 209 210
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
211 212 213 214 215 216 217 218 219 220 221 222
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
       X shape: (N, C, D_in, H_in, W_in)
  Output:
       Out shape: (N, C, D_out, H_out, W_out)
       Mask shape: (N, C, D_out, H_out, W_out)
  where
       D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
       H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
       W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
C
chengduoZH 已提交
223 224 225
)DOC");
  }
};
C
chengduoZH 已提交
226

C
chengduoZH 已提交
227 228 229 230 231
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
232 233
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
234 235 236
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
237
    max_pool2d_with_index,
C
chengduoZH 已提交
238 239
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
240
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
241 242
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

C
chengduoZH 已提交
243 244
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
245 246 247
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
248
    max_pool3d_with_index,
C
chengduoZH 已提交
249 250
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
251
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
252
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)