adagrad_op.h 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

Q
QI JUN 已提交
22
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
23
struct SparseAdagradFunctor {
Q
QI JUN 已提交
24
  void operator()(const DeviceContext& context,
Q
QI JUN 已提交
25 26 27 28 29
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param);
};

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
31 32 33
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
QI JUN 已提交
34 35
    auto* param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto* moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
36

K
Kexin Zhao 已提交
37 38
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
39

Q
QI JUN 已提交
40 41 42 43 44 45 46 47 48 49
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

    auto* grad_var = ctx.InputVar("Grad");
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto param = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Param"));
      auto grad = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Grad"));
      auto moment = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Moment"));
P
init  
peterzhang2029 已提交
50 51
      auto* learning_rate = ctx.Input<framework::Tensor>("LearningRate");
      auto* lr = learning_rate->data<T>();
Q
QI JUN 已提交
52 53 54

      auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
      auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
Q
QI JUN 已提交
55
      auto* place = ctx.template device_context<DeviceContext>().eigen_device();
Q
QI JUN 已提交
56

Q
QI JUN 已提交
57
      moment_out.device(*place) = moment + grad * grad;
Q
QI JUN 已提交
58
      Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
Q
QI JUN 已提交
59
      param_out.device(*place) =
P
init  
peterzhang2029 已提交
60
          param - lr[0] * grad / (moment_out.sqrt() + epsilon);
Q
QI JUN 已提交
61 62 63 64 65 66 67
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto* param_tensor = ctx.Input<framework::Tensor>("Param");
      PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);

      auto* moment_tensor = ctx.Input<framework::Tensor>("Moment");
      PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor);

Q
QI JUN 已提交
68 69 70
      SparseAdagradFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(),
              *ctx.Input<framework::SelectedRows>("Grad"),
Q
QI JUN 已提交
71 72 73 74 75
              *ctx.Input<framework::Tensor>("LearningRate"), epsilon,
              moment_out_tensor, param_out_tensor);
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
76 77 78 79 80
  }
};

}  // namespace operators
}  // namespace paddle