data_feed.h 62.2 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
lxsbupt 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
W
Wang Guibao 已提交
8 9 10 11 12 13 14 15 16

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

J
jiaqi 已提交
17 18 19 20 21
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

W
Wang Guibao 已提交
22
#include <fstream>
23
#include <future>  // NOLINT
W
Wang Guibao 已提交
24 25
#include <memory>
#include <mutex>  // NOLINT
D
danleifeng 已提交
26
#include <random>
27
#include <sstream>
W
Wang Guibao 已提交
28 29
#include <string>
#include <thread>  // NOLINT
30
#include <unordered_map>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
J
jiaqi 已提交
34
#include "paddle/fluid/framework/archive.h"
35
#include "paddle/fluid/framework/blocking_queue.h"
J
jiaqi 已提交
36
#include "paddle/fluid/framework/channel.h"
W
Wang Guibao 已提交
37
#include "paddle/fluid/framework/data_feed.pb.h"
38
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
W
Wang Guibao 已提交
39 40 41
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
Y
yaoxuefeng 已提交
42
#include "paddle/fluid/platform/timer.h"
43
#include "paddle/fluid/string/string_helper.h"
G
Galaxy1458 已提交
44
#include "paddle/phi/core/macros.h"
45
#if defined(PADDLE_WITH_CUDA)
D
danleifeng 已提交
46
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_utils.h"
47 48
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
P
pangengzheng 已提交
49
#include "paddle/phi/core/cuda_stream.h"
50
#endif
51
#include "paddle/phi/core/flags.h"
W
Wang Guibao 已提交
52

53 54 55 56
PHI_DECLARE_int32(record_pool_max_size);
PHI_DECLARE_int32(slotpool_thread_num);
PHI_DECLARE_bool(enable_slotpool_wait_release);
PHI_DECLARE_bool(enable_slotrecord_reset_shrink);
Y
yaoxuefeng 已提交
57

W
wanghuancoder 已提交
58 59 60 61 62
namespace paddle {
namespace framework {
class DataFeedDesc;
class Scope;
class Variable;
D
danleifeng 已提交
63 64
class NeighborSampleResult;
class NodeQueryResult;
L
lxsbupt 已提交
65 66
template <typename KeyType, typename ValType>
class HashTable;
W
wanghuancoder 已提交
67 68 69
}  // namespace framework
}  // namespace paddle

70
namespace phi {
71
class DenseTensor;
72
}  // namespace phi
73

W
Wang Guibao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
Y
yaoxuefeng 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

template <typename T>
struct SlotValues {
  std::vector<T> slot_values;
  std::vector<uint32_t> slot_offsets;

  void add_values(const T* values, uint32_t num) {
    if (slot_offsets.empty()) {
      slot_offsets.push_back(0);
    }
    if (num > 0) {
      slot_values.insert(slot_values.end(), values, values + num);
    }
    slot_offsets.push_back(static_cast<uint32_t>(slot_values.size()));
  }
  T* get_values(int idx, size_t* size) {
    uint32_t& offset = slot_offsets[idx];
    (*size) = slot_offsets[idx + 1] - offset;
    return &slot_values[offset];
  }
  void add_slot_feasigns(const std::vector<std::vector<T>>& slot_feasigns,
                         uint32_t fea_num) {
    slot_values.reserve(fea_num);
    int slot_num = static_cast<int>(slot_feasigns.size());
    slot_offsets.resize(slot_num + 1);
    for (int i = 0; i < slot_num; ++i) {
      auto& slot_val = slot_feasigns[i];
      slot_offsets[i] = static_cast<uint32_t>(slot_values.size());
      uint32_t num = static_cast<uint32_t>(slot_val.size());
      if (num > 0) {
        slot_values.insert(slot_values.end(), slot_val.begin(), slot_val.end());
      }
    }
    slot_offsets[slot_num] = slot_values.size();
  }
  void clear(bool shrink) {
    slot_offsets.clear();
    slot_values.clear();
    if (shrink) {
      slot_values.shrink_to_fit();
      slot_offsets.shrink_to_fit();
    }
  }
};
T
Thunderbrook 已提交
137
union FeatureFeasign {
138 139 140 141 142 143
  uint64_t uint64_feasign_;
  float float_feasign_;
};

struct FeatureItem {
  FeatureItem() {}
T
Thunderbrook 已提交
144
  FeatureItem(FeatureFeasign sign, uint16_t slot) {
145 146 147
    this->sign() = sign;
    this->slot() = slot;
  }
T
Thunderbrook 已提交
148 149 150 151 152 153
  FeatureFeasign& sign() {
    return *(reinterpret_cast<FeatureFeasign*>(sign_buffer()));
  }
  const FeatureFeasign& sign() const {
    const FeatureFeasign* ret =
        reinterpret_cast<FeatureFeasign*>(sign_buffer());
154 155 156 157 158 159 160
    return *ret;
  }
  uint16_t& slot() { return slot_; }
  const uint16_t& slot() const { return slot_; }

 private:
  char* sign_buffer() const { return const_cast<char*>(sign_); }
T
Thunderbrook 已提交
161
  char sign_[sizeof(FeatureFeasign)];
162 163 164
  uint16_t slot_;
};

Y
yaoxuefeng 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct AllSlotInfo {
  std::string slot;
  std::string type;
  int used_idx;
  int slot_value_idx;
};
struct UsedSlotInfo {
  int idx;
  int slot_value_idx;
  std::string slot;
  std::string type;
  bool dense;
  std::vector<int> local_shape;
  int total_dims_without_inductive;
  int inductive_shape_index;
};
struct SlotRecordObject {
  uint64_t search_id;
  uint32_t rank;
  uint32_t cmatch;
  std::string ins_id_;
  SlotValues<uint64_t> slot_uint64_feasigns_;
  SlotValues<float> slot_float_feasigns_;

  ~SlotRecordObject() { clear(true); }
  void reset(void) { clear(FLAGS_enable_slotrecord_reset_shrink); }
  void clear(bool shrink) {
    slot_uint64_feasigns_.clear(shrink);
    slot_float_feasigns_.clear(shrink);
  }
};
using SlotRecord = SlotRecordObject*;
197 198 199 200 201 202 203 204 205
// sizeof Record is much less than std::vector<MultiSlotType>
struct Record {
  std::vector<FeatureItem> uint64_feasigns_;
  std::vector<FeatureItem> float_feasigns_;
  std::string ins_id_;
  std::string content_;
  uint64_t search_id;
  uint32_t rank;
  uint32_t cmatch;
206
  std::string uid_;
207 208
};

Y
yaoxuefeng 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
inline SlotRecord make_slotrecord() {
  static const size_t slot_record_byte_size = sizeof(SlotRecordObject);
  void* p = malloc(slot_record_byte_size);
  new (p) SlotRecordObject;
  return reinterpret_cast<SlotRecordObject*>(p);
}

inline void free_slotrecord(SlotRecordObject* p) {
  p->~SlotRecordObject();
  free(p);
}

template <class T>
class SlotObjAllocator {
 public:
  explicit SlotObjAllocator(std::function<void(T*)> deleter)
      : free_nodes_(NULL), capacity_(0), deleter_(deleter) {}
  ~SlotObjAllocator() { clear(); }

  void clear() {
    T* tmp = NULL;
    while (free_nodes_ != NULL) {
      tmp = reinterpret_cast<T*>(reinterpret_cast<void*>(free_nodes_));
      free_nodes_ = free_nodes_->next;
      deleter_(tmp);
      --capacity_;
    }
    CHECK_EQ(capacity_, static_cast<size_t>(0));
  }
  T* acquire(void) {
    T* x = NULL;
    x = reinterpret_cast<T*>(reinterpret_cast<void*>(free_nodes_));
    free_nodes_ = free_nodes_->next;
    --capacity_;
    return x;
  }
  void release(T* x) {
    Node* node = reinterpret_cast<Node*>(reinterpret_cast<void*>(x));
    node->next = free_nodes_;
    free_nodes_ = node;
    ++capacity_;
  }
  size_t capacity(void) { return capacity_; }

 private:
  struct alignas(T) Node {
    union {
      Node* next;
      char data[sizeof(T)];
    };
  };
  Node* free_nodes_;  // a list
  size_t capacity_;
  std::function<void(T*)> deleter_ = nullptr;
};
static const int OBJPOOL_BLOCK_SIZE = 10000;
class SlotObjPool {
 public:
  SlotObjPool()
      : max_capacity_(FLAGS_record_pool_max_size), alloc_(free_slotrecord) {
    ins_chan_ = MakeChannel<SlotRecord>();
    ins_chan_->SetBlockSize(OBJPOOL_BLOCK_SIZE);
    for (int i = 0; i < FLAGS_slotpool_thread_num; ++i) {
      threads_.push_back(std::thread([this]() { run(); }));
    }
    disable_pool_ = false;
    count_ = 0;
  }
  ~SlotObjPool() {
    ins_chan_->Close();
    for (auto& t : threads_) {
      t.join();
    }
  }
  void disable_pool(bool disable) { disable_pool_ = disable; }
  void set_max_capacity(size_t max_capacity) { max_capacity_ = max_capacity; }
  void get(std::vector<SlotRecord>* output, int n) {
    output->resize(n);
    return get(&(*output)[0], n);
  }
  void get(SlotRecord* output, int n) {
    int size = 0;
    mutex_.lock();
    int left = static_cast<int>(alloc_.capacity());
    if (left > 0) {
      size = (left >= n) ? n : left;
      for (int i = 0; i < size; ++i) {
        output[i] = alloc_.acquire();
      }
    }
    mutex_.unlock();
    count_ += n;
    if (size == n) {
      return;
    }
    for (int i = size; i < n; ++i) {
      output[i] = make_slotrecord();
    }
  }
  void put(std::vector<SlotRecord>* input) {
    size_t size = input->size();
    if (size == 0) {
      return;
    }
    put(&(*input)[0], size);
    input->clear();
  }
  void put(SlotRecord* input, size_t size) {
    CHECK(ins_chan_->WriteMove(size, input) == size);
  }
  void run(void) {
    std::vector<SlotRecord> input;
    while (ins_chan_->ReadOnce(input, OBJPOOL_BLOCK_SIZE)) {
      if (input.empty()) {
        continue;
      }
      // over max capacity
      size_t n = input.size();
      count_ -= n;
      if (disable_pool_ || n + capacity() > max_capacity_) {
        for (auto& t : input) {
          free_slotrecord(t);
        }
      } else {
        for (auto& t : input) {
          t->reset();
        }
        mutex_.lock();
        for (auto& t : input) {
          alloc_.release(t);
        }
        mutex_.unlock();
      }
      input.clear();
    }
  }
  void clear(void) {
    platform::Timer timeline;
    timeline.Start();
    mutex_.lock();
    alloc_.clear();
    mutex_.unlock();
    // wait release channel data
    if (FLAGS_enable_slotpool_wait_release) {
      while (!ins_chan_->Empty()) {
        sleep(1);
      }
    }
    timeline.Pause();
    VLOG(3) << "clear slot pool data size=" << count_.load()
            << ", span=" << timeline.ElapsedSec();
  }
  size_t capacity(void) {
    mutex_.lock();
    size_t total = alloc_.capacity();
    mutex_.unlock();
    return total;
  }

 private:
  size_t max_capacity_;
  Channel<SlotRecord> ins_chan_;
  std::vector<std::thread> threads_;
  std::mutex mutex_;
  SlotObjAllocator<SlotRecordObject> alloc_;
  bool disable_pool_;
  std::atomic<long> count_;  // NOLINT
};

inline SlotObjPool& SlotRecordPool() {
  static SlotObjPool pool;
  return pool;
}
382 383 384 385 386 387 388 389 390
struct PvInstanceObject {
  std::vector<Record*> ads;
  void merge_instance(Record* ins) { ads.push_back(ins); }
};

using PvInstance = PvInstanceObject*;

inline PvInstance make_pv_instance() { return new PvInstanceObject(); }

T
Thunderbrook 已提交
391 392 393 394 395 396 397 398 399 400 401 402
struct SlotConf {
  std::string name;
  std::string type;
  int use_slots_index;
  int use_slots_is_dense;
};

class CustomParser {
 public:
  CustomParser() {}
  virtual ~CustomParser() {}
  virtual void Init(const std::vector<SlotConf>& slots) = 0;
T
Thunderbrook 已提交
403
  virtual bool Init(const std::vector<AllSlotInfo>& slots) = 0;
T
Thunderbrook 已提交
404
  virtual void ParseOneInstance(const char* str, Record* instance) = 0;
405 406 407
  virtual int ParseInstance(int len UNUSED,
                            const char* str UNUSED,
                            std::vector<Record>* instances UNUSED) {
T
Thunderbrook 已提交
408
    return 0;
409
  }
Y
yaoxuefeng 已提交
410
  virtual bool ParseOneInstance(
411 412 413
      const std::string& line UNUSED,
      std::function<void(std::vector<SlotRecord>&, int)> GetInsFunc
          UNUSED) {  // NOLINT
Y
yaoxuefeng 已提交
414 415 416
    return true;
  }
  virtual bool ParseFileInstance(
417 418 419 420
      std::function<int(char* buf, int len)> ReadBuffFunc UNUSED,
      std::function<void(std::vector<SlotRecord>&, int, int)> PullRecordsFunc
          UNUSED,           // NOLINT
      int& lines UNUSED) {  // NOLINT
Y
yaoxuefeng 已提交
421 422
    return false;
  }
T
Thunderbrook 已提交
423 424
};

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
struct UsedSlotGpuType {
  int is_uint64_value;
  int slot_value_idx;
};

#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
template <typename T>
struct CudaBuffer {
  T* cu_buffer;
  uint64_t buf_size;

  CudaBuffer<T>() {
    cu_buffer = NULL;
    buf_size = 0;
  }
  ~CudaBuffer<T>() { free(); }
  T* data() { return cu_buffer; }
  uint64_t size() { return buf_size; }
  void malloc(uint64_t size) {
    buf_size = size;
    CUDA_CHECK(
        cudaMalloc(reinterpret_cast<void**>(&cu_buffer), size * sizeof(T)));
  }
  void free() {
    if (cu_buffer != NULL) {
      CUDA_CHECK(cudaFree(cu_buffer));
      cu_buffer = NULL;
    }
    buf_size = 0;
  }
  void resize(uint64_t size) {
    if (size <= buf_size) {
      return;
    }
    free();
    malloc(size);
  }
};
template <typename T>
struct HostBuffer {
  T* host_buffer;
  size_t buf_size;
  size_t data_len;

  HostBuffer<T>() {
    host_buffer = NULL;
    buf_size = 0;
    data_len = 0;
  }
  ~HostBuffer<T>() { free(); }

  T* data() { return host_buffer; }
  const T* data() const { return host_buffer; }
  size_t size() const { return data_len; }
  void clear() { free(); }
  T& back() { return host_buffer[data_len - 1]; }

  T& operator[](size_t i) { return host_buffer[i]; }
  const T& operator[](size_t i) const { return host_buffer[i]; }
  void malloc(size_t len) {
    buf_size = len;
    CUDA_CHECK(cudaHostAlloc(reinterpret_cast<void**>(&host_buffer),
487 488
                             buf_size * sizeof(T),
                             cudaHostAllocDefault));
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    CHECK(host_buffer != NULL);
  }
  void free() {
    if (host_buffer != NULL) {
      CUDA_CHECK(cudaFreeHost(host_buffer));
      host_buffer = NULL;
    }
    buf_size = 0;
  }
  void resize(size_t size) {
    if (size <= buf_size) {
      data_len = size;
      return;
    }
    data_len = size;
    free();
    malloc(size);
  }
};

struct BatchCPUValue {
  HostBuffer<int> h_uint64_lens;
  HostBuffer<uint64_t> h_uint64_keys;
  HostBuffer<int> h_uint64_offset;

  HostBuffer<int> h_float_lens;
  HostBuffer<float> h_float_keys;
  HostBuffer<int> h_float_offset;

  HostBuffer<int> h_rank;
  HostBuffer<int> h_cmatch;
  HostBuffer<int> h_ad_offset;
};

struct BatchGPUValue {
  CudaBuffer<int> d_uint64_lens;
  CudaBuffer<uint64_t> d_uint64_keys;
  CudaBuffer<int> d_uint64_offset;

  CudaBuffer<int> d_float_lens;
  CudaBuffer<float> d_float_keys;
  CudaBuffer<int> d_float_offset;

  CudaBuffer<int> d_rank;
  CudaBuffer<int> d_cmatch;
  CudaBuffer<int> d_ad_offset;
};

class MiniBatchGpuPack {
 public:
  MiniBatchGpuPack(const paddle::platform::Place& place,
P
pangengzheng 已提交
540 541
                   const std::vector<UsedSlotInfo>& infos,
                   phi::StreamId stream_id);
542
  ~MiniBatchGpuPack();
P
pangengzheng 已提交
543 544
  bool is_use() { return is_using_; }
  void set_use_flag(bool is_use) { is_using_ = is_use; }
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
  void reset(const paddle::platform::Place& place);
  void pack_instance(const SlotRecord* ins_vec, int num);
  int ins_num() { return ins_num_; }
  int pv_num() { return pv_num_; }
  BatchGPUValue& value() { return value_; }
  BatchCPUValue& cpu_value() { return buf_; }
  UsedSlotGpuType* get_gpu_slots(void) {
    return reinterpret_cast<UsedSlotGpuType*>(gpu_slots_.data());
  }
  SlotRecord* get_records(void) { return &ins_vec_[0]; }

  // tensor gpu memory reused
  void resize_tensor(void) {
    if (used_float_num_ > 0) {
      int float_total_len = buf_.h_float_lens.back();
      if (float_total_len > 0) {
        float_tensor_.mutable_data<float>({float_total_len, 1}, this->place_);
      }
    }
    if (used_uint64_num_ > 0) {
      int uint64_total_len = buf_.h_uint64_lens.back();
      if (uint64_total_len > 0) {
        uint64_tensor_.mutable_data<int64_t>({uint64_total_len, 1},
                                             this->place_);
      }
    }
  }
572 573
  phi::DenseTensor& float_tensor(void) { return float_tensor_; }
  phi::DenseTensor& uint64_tensor(void) { return uint64_tensor_; }
P
pangengzheng 已提交
574 575 576 577 578 579
  std::vector<phi::DenseTensor>& float_tensor_vec(void) {
    return float_tensor_vec_;
  }
  std::vector<phi::DenseTensor>& uint64_tensor_vec(void) {
    return uint64_tensor_vec_;
  }
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

  HostBuffer<size_t>& offsets(void) { return offsets_; }
  HostBuffer<void*>& h_tensor_ptrs(void) { return h_tensor_ptrs_; }

  void* gpu_slot_offsets(void) { return gpu_slot_offsets_->ptr(); }

  void* slot_buf_ptr(void) { return slot_buf_ptr_->ptr(); }

  void resize_gpu_slot_offsets(const size_t slot_total_bytes) {
    if (gpu_slot_offsets_ == nullptr) {
      gpu_slot_offsets_ = memory::AllocShared(place_, slot_total_bytes);
    } else if (gpu_slot_offsets_->size() < slot_total_bytes) {
      auto buf = memory::AllocShared(place_, slot_total_bytes);
      gpu_slot_offsets_.swap(buf);
      buf = nullptr;
    }
  }
  const std::string& get_lineid(int idx) {
    if (enable_pv_) {
      return ins_vec_[idx]->ins_id_;
    }
    return batch_ins_[idx]->ins_id_;
  }

P
pangengzheng 已提交
604 605
  cudaStream_t get_stream() { return stream_; }

606 607 608 609 610 611 612 613 614 615 616 617 618
 private:
  void transfer_to_gpu(void);
  void pack_all_data(const SlotRecord* ins_vec, int num);
  void pack_uint64_data(const SlotRecord* ins_vec, int num);
  void pack_float_data(const SlotRecord* ins_vec, int num);

 public:
  template <typename T>
  void copy_host2device(CudaBuffer<T>* buf, const T* val, size_t size) {
    if (size == 0) {
      return;
    }
    buf->resize(size);
619 620
    CUDA_CHECK(cudaMemcpyAsync(
        buf->data(), val, size * sizeof(T), cudaMemcpyHostToDevice, stream_));
621 622 623 624 625 626 627
  }
  template <typename T>
  void copy_host2device(CudaBuffer<T>* buf, const HostBuffer<T>& val) {
    copy_host2device(buf, val.data(), val.size());
  }

 private:
P
pangengzheng 已提交
628
  bool is_using_ = false;
629
  paddle::platform::Place place_;
P
pangengzheng 已提交
630
  std::unique_ptr<phi::CUDAStream> stream_holder_;
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
  cudaStream_t stream_;
  BatchGPUValue value_;
  BatchCPUValue buf_;
  int ins_num_ = 0;
  int pv_num_ = 0;

  bool enable_pv_ = false;
  int used_float_num_ = 0;
  int used_uint64_num_ = 0;
  int used_slot_size_ = 0;

  CudaBuffer<UsedSlotGpuType> gpu_slots_;
  std::vector<UsedSlotGpuType> gpu_used_slots_;
  std::vector<SlotRecord> ins_vec_;
  const SlotRecord* batch_ins_ = nullptr;

  // uint64 tensor
648
  phi::DenseTensor uint64_tensor_;
P
pangengzheng 已提交
649
  std::vector<phi::DenseTensor> uint64_tensor_vec_;
650
  // float tensor
651
  phi::DenseTensor float_tensor_;
P
pangengzheng 已提交
652
  std::vector<phi::DenseTensor> float_tensor_vec_;
653 654 655 656 657 658 659 660 661 662 663 664
  // batch
  HostBuffer<size_t> offsets_;
  HostBuffer<void*> h_tensor_ptrs_;

  std::shared_ptr<phi::Allocation> gpu_slot_offsets_ = nullptr;
  std::shared_ptr<phi::Allocation> slot_buf_ptr_ = nullptr;
};
class MiniBatchGpuPackMgr {
  static const int MAX_DEIVCE_NUM = 16;

 public:
  MiniBatchGpuPackMgr() {
P
pangengzheng 已提交
665
    pack_list_.resize(MAX_DEIVCE_NUM);
666
    for (int i = 0; i < MAX_DEIVCE_NUM; ++i) {
P
pangengzheng 已提交
667
      pack_list_[i].clear();
668 669 670 671
    }
  }
  ~MiniBatchGpuPackMgr() {
    for (int i = 0; i < MAX_DEIVCE_NUM; ++i) {
P
pangengzheng 已提交
672 673 674 675 676 677
      for (size_t j = 0; j < pack_list_[i].size(); j++) {
        if (pack_list_[i][j] == nullptr) {
          continue;
        }
        delete pack_list_[i][j];
        pack_list_[i][j] = nullptr;
678 679 680
      }
    }
  }
P
pangengzheng 已提交
681 682

  // thread unsafe
683 684 685
  MiniBatchGpuPack* get(const paddle::platform::Place& place,
                        const std::vector<UsedSlotInfo>& infos) {
    int device_id = place.GetDeviceId();
P
pangengzheng 已提交
686 687 688 689 690 691
    for (size_t i = 0; i < pack_list_[device_id].size(); i++) {
      if (!pack_list_[device_id][i]->is_use()) {
        pack_list_[device_id][i]->set_use_flag(true);
        pack_list_[device_id][i]->reset(place);
        return pack_list_[device_id][i];
      }
692
    }
P
pangengzheng 已提交
693 694 695 696 697 698 699 700 701 702 703 704
    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (!alloc_stream_map_.count(device_id)) {
        alloc_stream_map_.emplace(device_id, new phi::CUDAStream(place));
      }
    }
    phi::StreamId alloc_stream_id = reinterpret_cast<phi::StreamId>(
        alloc_stream_map_[device_id]->raw_stream());
    auto* pack = new MiniBatchGpuPack(place, infos, alloc_stream_id);
    pack->set_use_flag(true);
    pack_list_[device_id].push_back(pack);
    return pack;
705 706 707
  }

 private:
P
pangengzheng 已提交
708 709 710
  std::vector<std::vector<MiniBatchGpuPack*>> pack_list_;
  std::unordered_map<int, std::unique_ptr<phi::CUDAStream>> alloc_stream_map_;
  std::mutex mutex_;
711 712 713 714 715 716 717 718
};
// global mgr
inline MiniBatchGpuPackMgr& BatchGpuPackMgr() {
  static MiniBatchGpuPackMgr mgr;
  return mgr;
}
#endif

T
Thunderbrook 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
typedef paddle::framework::CustomParser* (*CreateParserObjectFunc)();

class DLManager {
  struct DLHandle {
    void* module;
    paddle::framework::CustomParser* parser;
  };

 public:
  DLManager() {}

  ~DLManager() {
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    for (auto it = handle_map_.begin(); it != handle_map_.end(); ++it) {
      delete it->second.parser;
      dlclose(it->second.module);
    }
#endif
  }

  bool Close(const std::string& name) {
#ifdef _LINUX
    auto it = handle_map_.find(name);
    if (it == handle_map_.end()) {
      return true;
    }
    delete it->second.parser;
    dlclose(it->second.module);
#endif
    VLOG(0) << "Not implement in windows";
    return false;
  }

  paddle::framework::CustomParser* Load(const std::string& name,
Y
yaoxuefeng 已提交
754
                                        const std::vector<SlotConf>& conf) {
T
Thunderbrook 已提交
755 756 757 758 759 760 761 762 763 764
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    DLHandle handle;
    std::map<std::string, DLHandle>::iterator it = handle_map_.find(name);
    if (it != handle_map_.end()) {
      return it->second.parser;
    }

    handle.module = dlopen(name.c_str(), RTLD_NOW);
    if (handle.module == nullptr) {
T
Thunderbrook 已提交
765
      VLOG(0) << "Create so of " << name << " fail, " << dlerror();
T
Thunderbrook 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
      return nullptr;
    }

    CreateParserObjectFunc create_parser_func =
        (CreateParserObjectFunc)dlsym(handle.module, "CreateParserObject");
    handle.parser = create_parser_func();
    handle.parser->Init(conf);
    handle_map_.insert({name, handle});

    return handle.parser;
#endif
    VLOG(0) << "Not implement in windows";
    return nullptr;
  }

Y
yaoxuefeng 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
  paddle::framework::CustomParser* Load(const std::string& name,
                                        const std::vector<AllSlotInfo>& conf) {
#ifdef _LINUX
    std::lock_guard<std::mutex> lock(mutex_);
    DLHandle handle;
    std::map<std::string, DLHandle>::iterator it = handle_map_.find(name);
    if (it != handle_map_.end()) {
      return it->second.parser;
    }
    handle.module = dlopen(name.c_str(), RTLD_NOW);
    if (handle.module == nullptr) {
      VLOG(0) << "Create so of " << name << " fail";
      exit(-1);
      return nullptr;
    }

    CreateParserObjectFunc create_parser_func =
        (CreateParserObjectFunc)dlsym(handle.module, "CreateParserObject");
    handle.parser = create_parser_func();
    handle.parser->Init(conf);
    handle_map_.insert({name, handle});

    return handle.parser;
#endif
    VLOG(0) << "Not implement in windows";
    return nullptr;
  }

T
Thunderbrook 已提交
809
  paddle::framework::CustomParser* ReLoad(const std::string& name,
Y
yaoxuefeng 已提交
810
                                          const std::vector<SlotConf>& conf) {
T
Thunderbrook 已提交
811 812 813 814 815 816 817 818 819
    Close(name);
    return Load(name, conf);
  }

 private:
  std::mutex mutex_;
  std::map<std::string, DLHandle> handle_map_;
};

D
danleifeng 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
struct engine_wrapper_t {
  std::default_random_engine engine;
#if !defined(_WIN32)
  engine_wrapper_t() {
    struct timespec tp;
    clock_gettime(CLOCK_REALTIME, &tp);
    double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
    static std::atomic<uint64_t> x(0);
    std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
    engine.seed(sseq);
  }
#endif
};

struct BufState {
  int left;
  int right;
  int central_word;
  int step;
  engine_wrapper_t random_engine_;

  int len;
  int cursor;
  int row_num;

  int batch_size;
  int walk_len;
  std::vector<int>* window;

  BufState() {}
  ~BufState() {}

  void Init(int graph_batch_size,
            int graph_walk_len,
            std::vector<int>* graph_window) {
    batch_size = graph_batch_size;
    walk_len = graph_walk_len;
    window = graph_window;

    left = 0;
    right = window->size() - 1;
    central_word = -1;
    step = -1;

    len = 0;
    cursor = 0;
    row_num = 0;
    for (size_t i = 0; i < graph_window->size(); i++) {
      VLOG(2) << "graph_window[" << i << "] = " << (*graph_window)[i];
    }
  }

  void Reset(int total_rows) {
    cursor = 0;
    row_num = total_rows;
    int tmp_len = cursor + batch_size > row_num ? row_num - cursor : batch_size;
    len = tmp_len;
    central_word = -1;
    step = -1;
    GetNextCentrolWord();
  }

  int GetNextStep() {
    step++;
    if (step <= right && central_word + (*window)[step] < walk_len) {
      return 1;
    }
    return 0;
  }

  void Debug() {
    VLOG(2) << "left: " << left << " right: " << right
            << " central_word: " << central_word << " step: " << step
            << " cursor: " << cursor << " len: " << len
            << " row_num: " << row_num;
  }

  int GetNextCentrolWord() {
    if (++central_word >= walk_len) {
      return 0;
    }
    int window_size = window->size() / 2;
    int random_window = random_engine_.engine() % window_size + 1;
    left = window_size - random_window;
    right = window_size + random_window - 1;
    VLOG(2) << "random window: " << random_window << " window[" << left
            << "] = " << (*window)[left] << " window[" << right
            << "] = " << (*window)[right];

    for (step = left; step <= right; step++) {
      if (central_word + (*window)[step] >= 0) {
        return 1;
      }
    }
    return 0;
  }

  int GetNextBatch() {
    cursor += len;
L
lxsbupt 已提交
919 920 921
    if (row_num - cursor < 0) {
      return 0;
    }
D
danleifeng 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935
    int tmp_len = cursor + batch_size > row_num ? row_num - cursor : batch_size;
    if (tmp_len == 0) {
      return 0;
    }
    len = tmp_len;
    central_word = -1;
    step = -1;
    GetNextCentrolWord();
    return tmp_len != 0;
  }
};

class GraphDataGenerator {
 public:
936 937
  GraphDataGenerator() {}
  virtual ~GraphDataGenerator() {}
D
danleifeng 已提交
938
  void SetConfig(const paddle::framework::DataFeedDesc& data_feed_desc);
L
lxsbupt 已提交
939 940 941
  void AllocResource(int thread_id, std::vector<phi::DenseTensor*> feed_vec);
  void AllocTrainResource(int thread_id);
  void SetFeedVec(std::vector<phi::DenseTensor*> feed_vec);
D
danleifeng 已提交
942 943
  int AcquireInstance(BufState* state);
  int GenerateBatch();
L
lxsbupt 已提交
944 945 946 947 948
  int FillWalkBuf();
  int FillWalkBufMultiPath();
  int FillInferBuf();
  void DoWalkandSage();
  int FillSlotFeature(uint64_t* d_walk);
D
danleifeng 已提交
949 950 951 952
  int FillFeatureBuf(uint64_t* d_walk, uint64_t* d_feature, size_t key_num);
  int FillFeatureBuf(std::shared_ptr<phi::Allocation> d_walk,
                     std::shared_ptr<phi::Allocation> d_feature);
  void FillOneStep(uint64_t* start_ids,
953
                   int etype_id,
D
danleifeng 已提交
954
                   uint64_t* walk,
955
                   uint8_t* walk_ntype,
D
danleifeng 已提交
956
                   int len,
957
                   NeighborSampleResult& sample_res,  // NOLINT
D
danleifeng 已提交
958 959 960
                   int cur_degree,
                   int step,
                   int* len_per_row);
L
lxsbupt 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
  int FillInsBuf(cudaStream_t stream);
  int FillIdShowClkTensor(int total_instance,
                          bool gpu_graph_training,
                          size_t cursor = 0);
  int FillGraphIdShowClkTensor(int uniq_instance,
                               int total_instance,
                               int index);
  int FillGraphSlotFeature(
      int total_instance,
      bool gpu_graph_training,
      std::shared_ptr<phi::Allocation> final_sage_nodes = nullptr);
  int FillSlotFeature(uint64_t* d_walk, size_t key_num);
  int MakeInsPair(cudaStream_t stream);
  uint64_t CopyUniqueNodes();
  int GetPathNum() { return total_row_; }
  void ResetPathNum() { total_row_ = 0; }
  void ResetEpochFinish() { epoch_finish_ = false; }
  void ClearSampleState();
979
  void DumpWalkPath(std::string dump_path, size_t dump_rate);
980 981
  void SetDeviceKeys(std::vector<uint64_t>* device_keys UNUSED,
                     int type UNUSED) {
L
lxsbupt 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    // type_to_index_[type] = h_device_keys_.size();
    // h_device_keys_.push_back(device_keys);
  }
  std::vector<std::shared_ptr<phi::Allocation>> SampleNeighbors(
      int64_t* uniq_nodes,
      int len,
      int sample_size,
      std::vector<int>& edges_split_num,  // NOLINT
      int64_t* neighbor_len);
  std::shared_ptr<phi::Allocation> FillReindexHashTable(int64_t* input,
                                                        int num_input,
                                                        int64_t len_hashtable,
                                                        int64_t* keys,
                                                        int* values,
                                                        int* key_index,
                                                        int* final_nodes_len);
  std::shared_ptr<phi::Allocation> GetReindexResult(int64_t* reindex_src_data,
                                                    int64_t* center_nodes,
                                                    int* final_nodes_len,
                                                    int node_len,
                                                    int64_t neighbor_len);
  std::shared_ptr<phi::Allocation> GenerateSampleGraph(
      uint64_t* node_ids,
      int len,
      int* uniq_len,
      std::shared_ptr<phi::Allocation>& inverse);  // NOLINT
1008
  std::shared_ptr<phi::Allocation> GetNodeDegree(uint64_t* node_ids, int len);
L
lxsbupt 已提交
1009 1010 1011 1012 1013 1014
  int InsertTable(const uint64_t* d_keys,
                  uint64_t len,
                  std::shared_ptr<phi::Allocation> d_uniq_node_num);
  std::vector<uint64_t>& GetHostVec() { return host_vec_; }
  bool get_epoch_finish() { return epoch_finish_; }
  void clear_gpu_mem();
D
danleifeng 已提交
1015 1016

 protected:
L
lxsbupt 已提交
1017
  HashTable<uint64_t, uint64_t>* table_;
D
danleifeng 已提交
1018 1019 1020 1021 1022 1023
  int walk_degree_;
  int walk_len_;
  int window_;
  int once_sample_startid_len_;
  int gpuid_;
  size_t cursor_;
L
lxsbupt 已提交
1024
  int thread_id_;
D
danleifeng 已提交
1025
  size_t jump_rows_;
L
lxsbupt 已提交
1026
  int edge_to_id_len_;
D
danleifeng 已提交
1027
  int64_t* id_tensor_ptr_;
L
lxsbupt 已提交
1028
  int* index_tensor_ptr_;
D
danleifeng 已提交
1029 1030
  int64_t* show_tensor_ptr_;
  int64_t* clk_tensor_ptr_;
1031
  int* degree_tensor_ptr_;
L
lxsbupt 已提交
1032 1033 1034

  cudaStream_t train_stream_;
  cudaStream_t sample_stream_;
D
danleifeng 已提交
1035
  paddle::platform::Place place_;
1036
  std::vector<phi::DenseTensor*> feed_vec_;
D
danleifeng 已提交
1037 1038 1039
  std::vector<size_t> offset_;
  std::shared_ptr<phi::Allocation> d_prefix_sum_;
  std::vector<std::shared_ptr<phi::Allocation>> d_device_keys_;
L
lxsbupt 已提交
1040
  std::shared_ptr<phi::Allocation> d_train_metapath_keys_;
D
danleifeng 已提交
1041 1042

  std::shared_ptr<phi::Allocation> d_walk_;
1043 1044
  std::shared_ptr<phi::Allocation> d_walk_ntype_;
  std::shared_ptr<phi::Allocation> d_excluded_train_pair_;
L
lxsbupt 已提交
1045
  std::shared_ptr<phi::Allocation> d_feature_list_;
D
danleifeng 已提交
1046 1047 1048
  std::shared_ptr<phi::Allocation> d_feature_;
  std::shared_ptr<phi::Allocation> d_len_per_row_;
  std::shared_ptr<phi::Allocation> d_random_row_;
L
lxsbupt 已提交
1049 1050 1051 1052 1053
  std::shared_ptr<phi::Allocation> d_uniq_node_num_;
  std::shared_ptr<phi::Allocation> d_slot_feature_num_map_;
  std::shared_ptr<phi::Allocation> d_actual_slot_id_map_;
  std::shared_ptr<phi::Allocation> d_fea_offset_map_;

D
danleifeng 已提交
1054 1055 1056 1057 1058 1059 1060
  std::vector<std::shared_ptr<phi::Allocation>> d_sampleidx2rows_;
  int cur_sampleidx2row_;
  // record the keys to call graph_neighbor_sample
  std::shared_ptr<phi::Allocation> d_sample_keys_;
  int sample_keys_len_;

  std::shared_ptr<phi::Allocation> d_ins_buf_;
L
lxsbupt 已提交
1061 1062
  std::shared_ptr<phi::Allocation> d_feature_size_list_buf_;
  std::shared_ptr<phi::Allocation> d_feature_size_prefixsum_buf_;
D
danleifeng 已提交
1063 1064 1065
  std::shared_ptr<phi::Allocation> d_pair_num_;
  std::shared_ptr<phi::Allocation> d_slot_tensor_ptr_;
  std::shared_ptr<phi::Allocation> d_slot_lod_tensor_ptr_;
L
lxsbupt 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  std::shared_ptr<phi::Allocation> d_reindex_table_key_;
  std::shared_ptr<phi::Allocation> d_reindex_table_value_;
  std::shared_ptr<phi::Allocation> d_reindex_table_index_;
  std::vector<std::shared_ptr<phi::Allocation>> edge_type_graph_;
  std::shared_ptr<phi::Allocation> d_sorted_keys_;
  std::shared_ptr<phi::Allocation> d_sorted_idx_;
  std::shared_ptr<phi::Allocation> d_offset_;
  std::shared_ptr<phi::Allocation> d_merged_cnts_;
  std::shared_ptr<phi::Allocation> d_buf_;

  // sage mode batch data
  std::vector<std::shared_ptr<phi::Allocation>> inverse_vec_;
  std::vector<std::shared_ptr<phi::Allocation>> final_sage_nodes_vec_;
1079
  std::vector<std::shared_ptr<phi::Allocation>> node_degree_vec_;
L
lxsbupt 已提交
1080 1081 1082 1083 1084
  std::vector<int> uniq_instance_vec_;
  std::vector<int> total_instance_vec_;
  std::vector<std::vector<std::shared_ptr<phi::Allocation>>> graph_edges_vec_;
  std::vector<std::vector<std::vector<int>>> edges_split_num_vec_;

1085
  int excluded_train_pair_len_;
L
lxsbupt 已提交
1086 1087 1088
  int64_t reindex_table_size_;
  int sage_batch_count_;
  int sage_batch_num_;
D
danleifeng 已提交
1089
  int ins_buf_pair_len_;
L
lxsbupt 已提交
1090

D
danleifeng 已提交
1091 1092 1093 1094 1095 1096 1097
  // size of a d_walk buf
  size_t buf_size_;
  int repeat_time_;
  std::vector<int> window_step_;
  BufState buf_state_;
  int batch_size_;
  int slot_num_;
L
lxsbupt 已提交
1098 1099
  std::vector<int> h_slot_feature_num_map_;
  int fea_num_per_node_;
D
danleifeng 已提交
1100 1101 1102
  int shuffle_seed_;
  int debug_mode_;
  bool gpu_graph_training_;
L
lxsbupt 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
  bool sage_mode_;
  std::vector<int> samples_;
  bool epoch_finish_;
  std::vector<uint64_t> host_vec_;
  std::vector<uint64_t> h_device_keys_len_;
  uint64_t h_train_metapath_keys_len_;
  uint64_t train_table_cap_;
  uint64_t infer_table_cap_;
  uint64_t copy_unique_len_;
  int total_row_;
  size_t infer_node_start_;
  size_t infer_node_end_;
1115 1116 1117
  std::set<int> infer_node_type_index_set_;
  std::string infer_node_type_;
  bool get_degree_;
D
danleifeng 已提交
1118 1119
};

W
Wang Guibao 已提交
1120 1121
class DataFeed {
 public:
1122 1123 1124
  DataFeed() {
    mutex_for_pick_file_ = nullptr;
    file_idx_ = nullptr;
H
hutuxian 已提交
1125 1126
    mutex_for_fea_num_ = nullptr;
    total_fea_num_ = nullptr;
1127
  }
W
Wang Guibao 已提交
1128
  virtual ~DataFeed() {}
H
hutuxian 已提交
1129
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
1130
  virtual bool CheckFile(const char* filename UNUSED) {
1131 1132
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(CheckFile) is not implemented."));
W
Wang Guibao 已提交
1133 1134 1135 1136 1137 1138
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;
D
dongdaxiang 已提交
1139

W
Wang Guibao 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

H
hutuxian 已提交
1155 1156 1157
  // This function is used for binding feed_vec memory in a given scope
  virtual void AssignFeedVar(const Scope& scope);

P
pangengzheng 已提交
1158 1159 1160 1161
  virtual std::vector<std::string> GetInputVarNames() {
    return std::vector<std::string>();
  }

1162
  // This function will do nothing at default
G
Galaxy1458 已提交
1163
  virtual void SetInputPvChannel(void* channel UNUSED) {}
1164
  // This function will do nothing at default
G
Galaxy1458 已提交
1165
  virtual void SetOutputPvChannel(void* channel UNUSED) {}
1166
  // This function will do nothing at default
G
Galaxy1458 已提交
1167
  virtual void SetConsumePvChannel(void* channel UNUSED) {}
1168

1169
  // This function will do nothing at default
G
Galaxy1458 已提交
1170
  virtual void SetInputChannel(void* channel UNUSED) {}
J
jiaqi 已提交
1171
  // This function will do nothing at default
G
Galaxy1458 已提交
1172
  virtual void SetOutputChannel(void* channel UNUSED) {}
1173
  // This function will do nothing at default
G
Galaxy1458 已提交
1174
  virtual void SetConsumeChannel(void* channel UNUSED) {}
1175
  // This function will do nothing at default
G
Galaxy1458 已提交
1176
  virtual void SetThreadId(int thread_id UNUSED) {}
1177
  // This function will do nothing at default
G
Galaxy1458 已提交
1178
  virtual void SetThreadNum(int thread_num UNUSED) {}
1179
  // This function will do nothing at default
G
Galaxy1458 已提交
1180 1181 1182 1183 1184 1185
  virtual void SetParseInsId(bool parse_ins_id UNUSED) {}
  virtual void SetParseUid(bool parse_uid UNUSED) {}
  virtual void SetParseContent(bool parse_content UNUSED) {}
  virtual void SetParseLogKey(bool parse_logkey UNUSED) {}
  virtual void SetEnablePvMerge(bool enable_pv_merge UNUSED) {}
  virtual void SetCurrentPhase(int current_phase UNUSED) {}
D
danleifeng 已提交
1186
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
L
lxsbupt 已提交
1187 1188 1189
  virtual void InitGraphResource() {}
  virtual void InitGraphTrainResource() {}
  virtual void SetDeviceKeys(std::vector<uint64_t>* device_keys, int type) {
D
danleifeng 已提交
1190 1191
    gpu_graph_data_generator_.SetDeviceKeys(device_keys, type);
  }
L
lxsbupt 已提交
1192 1193
#endif

D
danleifeng 已提交
1194 1195 1196
  virtual void SetGpuGraphMode(int gpu_graph_mode) {
    gpu_graph_mode_ = gpu_graph_mode;
  }
1197 1198 1199
  virtual void SetFileListMutex(std::mutex* mutex) {
    mutex_for_pick_file_ = mutex;
  }
H
hutuxian 已提交
1200
  virtual void SetFeaNumMutex(std::mutex* mutex) { mutex_for_fea_num_ = mutex; }
1201
  virtual void SetFileListIndex(size_t* file_index) { file_idx_ = file_index; }
H
hutuxian 已提交
1202
  virtual void SetFeaNum(uint64_t* fea_num) { total_fea_num_ = fea_num; }
1203 1204 1205 1206 1207 1208
  virtual const std::vector<std::string>& GetInsIdVec() const {
    return ins_id_vec_;
  }
  virtual const std::vector<std::string>& GetInsContentVec() const {
    return ins_content_vec_;
  }
P
pangengzheng 已提交
1209 1210 1211
  virtual void SetCurBatchSize(const int batch_size) {
    batch_size_ = batch_size;
  }
1212
  virtual int GetCurBatchSize() { return batch_size_; }
L
lxsbupt 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  virtual int GetGraphPathNum() {
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
    return gpu_graph_data_generator_.GetPathNum();
#else
    return 0;
#endif
  }

#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
  virtual const std::vector<uint64_t>* GetHostVec() {
    return &(gpu_graph_data_generator_.GetHostVec());
  }

  virtual void clear_gpu_mem() { gpu_graph_data_generator_.clear_gpu_mem(); }

  virtual bool get_epoch_finish() {
    return gpu_graph_data_generator_.get_epoch_finish();
  }

  virtual void ResetPathNum() { gpu_graph_data_generator_.ResetPathNum(); }

  virtual void ClearSampleState() {
    gpu_graph_data_generator_.ClearSampleState();
  }

  virtual void ResetEpochFinish() {
    gpu_graph_data_generator_.ResetEpochFinish();
  }

  virtual void DoWalkandSage() {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(DoWalkandSage) is not implemented."));
  }
#endif

  virtual bool IsTrainMode() { return train_mode_; }
1249
  virtual void LoadIntoMemory() {
1250 1251
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(LoadIntoMemory) is not implemented."));
1252
  }
1253 1254 1255 1256
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
  virtual const paddle::platform::Place& GetPlace() const { return place_; }
1257

P
pangengzheng 已提交
1258
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
P
pangengzheng 已提交
1259 1260 1261 1262
  virtual MiniBatchGpuPack* get_pack(MiniBatchGpuPack* last_pack) {
    return nullptr;
  }

P
pangengzheng 已提交
1263 1264 1265 1266
  virtual void PackToScope(MiniBatchGpuPack* pack, const Scope* scope) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(PackToScope) is not implemented."));
  }
P
pangengzheng 已提交
1267
  virtual void SetInsIdVec(MiniBatchGpuPack* pack) {}
P
pangengzheng 已提交
1268 1269
#endif

1270 1271
  virtual void DumpWalkPath(std::string dump_path UNUSED,
                            size_t dump_rate UNUSED) {
1272 1273 1274 1275
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(DumpWalkPath) is not implemented."));
  }

W
Wang Guibao 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);
1288
  virtual void CopyToFeedTensor(void* dst, const void* src, size_t size);
W
Wang Guibao 已提交
1289

1290 1291 1292
  std::vector<std::string> filelist_;
  size_t* file_idx_;
  std::mutex* mutex_for_pick_file_;
H
hutuxian 已提交
1293 1294 1295
  std::mutex* mutex_for_fea_num_ = nullptr;
  uint64_t* total_fea_num_ = nullptr;
  uint64_t fea_num_ = 0;
W
Wang Guibao 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
1306
  std::vector<std::vector<int>> use_slots_shape_;
1307 1308
  std::vector<int> inductive_shape_index_;
  std::vector<int> total_dims_without_inductive_;
H
hutuxian 已提交
1309 1310
  // For the inductive shape passed within data
  std::vector<std::vector<int>> multi_inductive_shape_index_;
W
Wang Guibao 已提交
1311 1312 1313 1314
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
1315
  std::vector<phi::DenseTensor*> feed_vec_;
W
Wang Guibao 已提交
1316

1317
  phi::DenseTensor* rank_offset_;
1318

W
Wang Guibao 已提交
1319 1320 1321 1322 1323 1324
  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
1325
  bool finish_set_filelist_;
W
Wang Guibao 已提交
1326
  bool finish_start_;
1327
  std::string pipe_command_;
T
Thunderbrook 已提交
1328 1329
  std::string so_parser_name_;
  std::vector<SlotConf> slot_conf_;
1330 1331
  std::vector<std::string> ins_id_vec_;
  std::vector<std::string> ins_content_vec_;
1332
  platform::Place place_;
1333
  std::string uid_slot_;
1334 1335 1336

  // The input type of pipe reader, 0 for one sample, 1 for one batch
  int input_type_;
D
danleifeng 已提交
1337 1338 1339 1340
  int gpu_graph_mode_ = 0;
#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
  GraphDataGenerator gpu_graph_data_generator_;
#endif
L
lxsbupt 已提交
1341
  bool train_mode_;
W
Wang Guibao 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
D
dongdaxiang 已提交
1363
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
W
Wang Guibao 已提交
1364
  // This function is used to put instance to vec_ins
1365 1366
  virtual void AddInstanceToInsVec(T* vec_ins,
                                   const T& instance,
W
Wang Guibao 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
D
dongdaxiang 已提交
1379
  std::shared_ptr<FILE> fp_;
W
Wang Guibao 已提交
1380
  size_t queue_size_;
1381
  string::LineFileReader reader_;
W
Wang Guibao 已提交
1382
  // The queue for store parsed data
1383
  std::shared_ptr<paddle::framework::ChannelObject<T>> queue_;
W
Wang Guibao 已提交
1384 1385
};

1386
template <typename T>
J
jiaqi 已提交
1387
class InMemoryDataFeed : public DataFeed {
1388 1389 1390
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
H
hutuxian 已提交
1391
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
1392 1393
  virtual bool Start();
  virtual int Next();
1394 1395 1396 1397
  virtual void SetInputPvChannel(void* channel);
  virtual void SetOutputPvChannel(void* channel);
  virtual void SetConsumePvChannel(void* channel);

J
jiaqi 已提交
1398 1399 1400
  virtual void SetInputChannel(void* channel);
  virtual void SetOutputChannel(void* channel);
  virtual void SetConsumeChannel(void* channel);
1401 1402
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
1403
  virtual void SetParseInsId(bool parse_ins_id);
1404
  virtual void SetParseUid(bool parse_uid);
1405
  virtual void SetParseContent(bool parse_content);
1406 1407 1408
  virtual void SetParseLogKey(bool parse_logkey);
  virtual void SetEnablePvMerge(bool enable_pv_merge);
  virtual void SetCurrentPhase(int current_phase);
1409
  virtual void LoadIntoMemory();
T
Thunderbrook 已提交
1410
  virtual void LoadIntoMemoryFromSo();
Y
yaoxuefeng 已提交
1411 1412 1413 1414 1415
  virtual void SetRecord(T* records) { records_ = records; }
  int GetDefaultBatchSize() { return default_batch_size_; }
  void AddBatchOffset(const std::pair<int, int>& offset) {
    batch_offsets_.push_back(offset);
  }
X
xujiaqi01 已提交
1416

1417 1418 1419
 protected:
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
1420 1421 1422 1423 1424 1425 1426
  virtual void ParseOneInstanceFromSo(const char* str UNUSED,
                                      T* instance UNUSED,
                                      CustomParser* parser UNUSED) {}
  virtual int ParseInstanceFromSo(int len UNUSED,
                                  const char* str UNUSED,
                                  std::vector<T>* instances UNUSED,
                                  CustomParser* parser UNUSED) {
T
Thunderbrook 已提交
1427 1428
    return 0;
  }
J
jiaqi 已提交
1429
  virtual void PutToFeedVec(const std::vector<T>& ins_vec) = 0;
Y
yaoxuefeng 已提交
1430
  virtual void PutToFeedVec(const T* ins_vec, int num) = 0;
1431

Y
yaoxuefeng 已提交
1432 1433 1434 1435 1436
  std::vector<std::vector<float>> batch_float_feasigns_;
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns_;
  std::vector<std::vector<size_t>> offset_;
  std::vector<bool> visit_;

1437 1438
  int thread_id_;
  int thread_num_;
1439
  bool parse_ins_id_;
1440
  bool parse_uid_;
1441
  bool parse_content_;
1442 1443 1444
  bool parse_logkey_;
  bool enable_pv_merge_;
  int current_phase_{-1};  // only for untest
J
jiaqi 已提交
1445 1446 1447 1448 1449
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  paddle::framework::ChannelObject<T>* input_channel_;
  paddle::framework::ChannelObject<T>* output_channel_;
  paddle::framework::ChannelObject<T>* consume_channel_;
1450 1451 1452 1453

  paddle::framework::ChannelObject<PvInstance>* input_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* output_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* consume_pv_channel_;
Y
yaoxuefeng 已提交
1454 1455 1456 1457 1458

  std::vector<std::pair<int, int>> batch_offsets_;
  uint64_t offset_index_ = 0;
  bool enable_heterps_ = false;
  T* records_ = nullptr;
1459 1460
};

W
Wang Guibao 已提交
1461 1462 1463 1464 1465
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
H
hutuxian 已提交
1466
  void Init(const std::string& type, size_t reserved_size = 0) {
W
Wang Guibao 已提交
1467 1468 1469
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
H
hutuxian 已提交
1470 1471 1472
      if (reserved_size) {
        float_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
1473 1474
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
H
hutuxian 已提交
1475 1476 1477
      if (reserved_size) {
        uint64_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
1478 1479 1480
    }
    type_ = type;
  }
H
hutuxian 已提交
1481 1482 1483 1484
  void InitOffset(size_t max_batch_size = 0) {
    if (max_batch_size > 0) {
      offset_.reserve(max_batch_size + 1);
    }
W
Wang Guibao 已提交
1485 1486 1487 1488 1489 1490
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
1491
  std::vector<size_t>& MutableOffset() { return offset_; }
W
Wang Guibao 已提交
1492 1493 1494 1495 1496 1497 1498 1499
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
H
hutuxian 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
  void CopyValues(const float* input, size_t size) {
    CheckFloat();
    float_feasign_.resize(size);
    memcpy(float_feasign_.data(), input, size * sizeof(float));
  }
  void CopyValues(const uint64_t* input, size_t size) {
    CheckUint64();
    uint64_feasign_.resize(size);
    memcpy(uint64_feasign_.data(), input, size * sizeof(uint64_t));
  }
W
Wang Guibao 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
H
hutuxian 已提交
1523 1524 1525 1526 1527 1528 1529 1530
  void AppendValues(const uint64_t* input, size_t size) {
    CheckUint64();
    offset_.push_back(offset_.back() + size);
    uint64_feasign_.insert(uint64_feasign_.end(), input, input + size);
  }
  void AppendValues(const float* input, size_t size) {
    CheckFloat();
    offset_.push_back(offset_.back() + size);
1531

H
hutuxian 已提交
1532 1533
    float_feasign_.insert(float_feasign_.end(), input, input + size);
  }
W
Wang Guibao 已提交
1534
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
1535
  std::vector<float>& MutableFloatData() { return float_feasign_; }
W
Wang Guibao 已提交
1536
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
1537
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
W
Wang Guibao 已提交
1538
  const std::string& GetType() const { return type_; }
H
hutuxian 已提交
1539
  size_t GetBatchSize() { return offset_.size() - 1; }
1540
  std::string& MutableType() { return type_; }
W
Wang Guibao 已提交
1541

X
xujiaqi01 已提交
1542 1543
  std::string DebugString() {
    std::stringstream ss;
W
wanghuancoder 已提交
1544

1545 1546
    ss << "\ntype: " << type_ << "\n";
    ss << "offset: ";
X
xujiaqi01 已提交
1547 1548 1549 1550
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
1551
    ss << "]\ndata: [";
X
xujiaqi01 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

W
Wang Guibao 已提交
1565 1566
 private:
  void CheckType(const std::string& type) const {
1567 1568
    PADDLE_ENFORCE_EQ((type == "uint64" || type == "float"),
                      true,
1569 1570 1571 1572
                      platform::errors::InvalidArgument(
                          "MultiSlotType error, expect type is uint64 or "
                          "float, but received type is %s.",
                          type));
W
Wang Guibao 已提交
1573 1574
  }
  void CheckFloat() const {
1575
    PADDLE_ENFORCE_EQ(
1576 1577
        type_[0],
        'f',
1578 1579
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to float slot.", type_));
W
Wang Guibao 已提交
1580 1581
  }
  void CheckUint64() const {
1582
    PADDLE_ENFORCE_EQ(
1583 1584
        type_[0],
        'u',
1585 1586
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to uint64 slot.", type_));
W
Wang Guibao 已提交
1587 1588 1589 1590 1591 1592 1593
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

J
jiaqi 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const MultiSlotType& ins) {
  ar << ins.GetType();
#ifdef _LINUX
  ar << ins.GetOffset();
#else
  const auto& offset = ins.GetOffset();
  ar << (uint64_t)offset.size();
  for (const size_t& x : offset) {
    ar << (const uint64_t)x;
  }
#endif
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           MultiSlotType& ins) {
  ar >> ins.MutableType();
#ifdef _LINUX
  ar >> ins.MutableOffset();
#else
  auto& offset = ins.MutableOffset();
  offset.resize(ar.template Get<uint64_t>());
  for (size_t& x : offset) {
    uint64_t t;
    ar >> t;
Y
yaoxuefeng 已提交
1624
    x = static_cast<size_t>(t);
J
jiaqi 已提交
1625 1626 1627 1628 1629 1630 1631
  }
#endif
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
  return ar;
}

1632 1633
struct RecordCandidate {
  std::string ins_id_;
T
Thunderbrook 已提交
1634
  std::unordered_multimap<uint16_t, FeatureFeasign> feas_;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
  size_t shadow_index_ = -1;  // Optimization for Reservoir Sample

  RecordCandidate() {}
  RecordCandidate(const Record& rec,
                  const std::unordered_set<uint16_t>& slot_index_to_replace) {
    for (const auto& fea : rec.uint64_feasigns_) {
      if (slot_index_to_replace.find(fea.slot()) !=
          slot_index_to_replace.end()) {
        feas_.insert({fea.slot(), fea.sign()});
      }
    }
  }
1647 1648

  RecordCandidate& operator=(const Record& rec) {
1649
    feas_.clear();
1650 1651
    ins_id_ = rec.ins_id_;
    for (auto& fea : rec.uint64_feasigns_) {
1652
      feas_.insert({fea.slot(), fea.sign()});
1653 1654 1655 1656 1657 1658 1659 1660
    }
    return *this;
  }
};

class RecordCandidateList {
 public:
  RecordCandidateList() = default;
1661
  RecordCandidateList(const RecordCandidateList& UNUSED) {}
1662

1663
  size_t Size() { return cur_size_; }
1664 1665 1666
  void ReSize(size_t length);

  void ReInit();
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
  void ReInitPass() {
    for (size_t i = 0; i < cur_size_; ++i) {
      if (candidate_list_[i].shadow_index_ != i) {
        candidate_list_[i].ins_id_ =
            candidate_list_[candidate_list_[i].shadow_index_].ins_id_;
        candidate_list_[i].feas_.swap(
            candidate_list_[candidate_list_[i].shadow_index_].feas_);
        candidate_list_[i].shadow_index_ = i;
      }
    }
    candidate_list_.resize(cur_size_);
  }
1679 1680

  void AddAndGet(const Record& record, RecordCandidate* result);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
  void AddAndGet(const Record& record, size_t& index_result) {  // NOLINT
    // std::unique_lock<std::mutex> lock(mutex_);
    size_t index = 0;
    ++total_size_;
    auto fleet_ptr = FleetWrapper::GetInstance();
    if (!full_) {
      candidate_list_.emplace_back(record, slot_index_to_replace_);
      candidate_list_.back().shadow_index_ = cur_size_;
      ++cur_size_;
      full_ = (cur_size_ == capacity_);
    } else {
      index = fleet_ptr->LocalRandomEngine()() % total_size_;
      if (index < capacity_) {
        candidate_list_.emplace_back(record, slot_index_to_replace_);
        candidate_list_[index].shadow_index_ = candidate_list_.size() - 1;
      }
    }
    index = fleet_ptr->LocalRandomEngine()() % cur_size_;
    index_result = candidate_list_[index].shadow_index_;
  }
  const RecordCandidate& Get(size_t index) const {
    PADDLE_ENFORCE_LT(
1703 1704
        index,
        candidate_list_.size(),
1705 1706
        platform::errors::OutOfRange("Your index [%lu] exceeds the number of "
                                     "elements in candidate_list[%lu].",
1707 1708
                                     index,
                                     candidate_list_.size()));
1709 1710 1711 1712 1713 1714
    return candidate_list_[index];
  }
  void SetSlotIndexToReplace(
      const std::unordered_set<uint16_t>& slot_index_to_replace) {
    slot_index_to_replace_ = slot_index_to_replace;
  }
1715 1716

 private:
1717 1718 1719 1720 1721 1722 1723
  size_t capacity_ = 0;
  std::mutex mutex_;
  bool full_ = false;
  size_t cur_size_ = 0;
  size_t total_size_ = 0;
  std::vector<RecordCandidate> candidate_list_;
  std::unordered_set<uint16_t> slot_index_to_replace_;
1724 1725
};

J
jiaqi 已提交
1726 1727
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
1728
                                           const FeatureFeasign& fk) {
J
jiaqi 已提交
1729 1730 1731 1732 1733 1734 1735
  ar << fk.uint64_feasign_;
  ar << fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
1736
                                           FeatureFeasign& fk) {
J
jiaqi 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
  ar >> fk.uint64_feasign_;
  ar >> fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureItem& fi) {
  ar << fi.sign();
  ar << fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureItem& fi) {
  ar >> fi.sign();
  ar >> fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const Record& r) {
  ar << r.uint64_feasigns_;
  ar << r.float_feasigns_;
  ar << r.ins_id_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           Record& r) {
  ar >> r.uint64_feasigns_;
  ar >> r.float_feasigns_;
  ar >> r.ins_id_;
  return ar;
}

W
Wang Guibao 已提交
1776 1777 1778 1779 1780 1781 1782 1783
// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
H
hutuxian 已提交
1784
  virtual void Init(const DataFeedDesc& data_feed_desc);
W
Wang Guibao 已提交
1785 1786 1787
  virtual bool CheckFile(const char* filename);

 protected:
D
dongdaxiang 已提交
1788
  virtual void ReadThread();
W
Wang Guibao 已提交
1789 1790 1791 1792
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
D
dongdaxiang 已提交
1793
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
W
Wang Guibao 已提交
1794 1795
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};
1796

J
jiaqi 已提交
1797
class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
1798 1799 1800
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
H
hutuxian 已提交
1801
  virtual void Init(const DataFeedDesc& data_feed_desc);
Y
yaoxuefeng 已提交
1802
  // void SetRecord(Record* records) { records_ = records; }
1803

1804
 protected:
J
jiaqi 已提交
1805 1806
  virtual bool ParseOneInstance(Record* instance);
  virtual bool ParseOneInstanceFromPipe(Record* instance);
1807 1808 1809
  virtual void ParseOneInstanceFromSo(const char* str UNUSED,
                                      Record* instance UNUSED,
                                      CustomParser* parser UNUSED) {}
1810 1811
  virtual int ParseInstanceFromSo(int len,
                                  const char* str,
T
Thunderbrook 已提交
1812 1813
                                  std::vector<Record>* instances,
                                  CustomParser* parser);
J
jiaqi 已提交
1814
  virtual void PutToFeedVec(const std::vector<Record>& ins_vec);
1815 1816 1817 1818
  virtual void GetMsgFromLogKey(const std::string& log_key,
                                uint64_t* search_id,
                                uint32_t* cmatch,
                                uint32_t* rank);
Y
yaoxuefeng 已提交
1819
  virtual void PutToFeedVec(const Record* ins_vec, int num);
1820 1821
};

Y
yaoxuefeng 已提交
1822 1823 1824
class SlotRecordInMemoryDataFeed : public InMemoryDataFeed<SlotRecord> {
 public:
  SlotRecordInMemoryDataFeed() {}
P
pangengzheng 已提交
1825
  virtual ~SlotRecordInMemoryDataFeed();
P
pangengzheng 已提交
1826 1827
  void Init(const DataFeedDesc& data_feed_desc) override;
  void LoadIntoMemory() override;
Y
yaoxuefeng 已提交
1828 1829 1830
  void ExpandSlotRecord(SlotRecord* ins);

 protected:
P
pangengzheng 已提交
1831 1832
  bool Start() override;
  int Next() override;
1833 1834 1835 1836
  bool ParseOneInstance(SlotRecord* instance UNUSED) override { return false; }
  bool ParseOneInstanceFromPipe(SlotRecord* instance UNUSED) override {
    return false;
  }
Y
yaoxuefeng 已提交
1837 1838
  // virtual void ParseOneInstanceFromSo(const char* str, T* instance,
  //                                    CustomParser* parser) {}
1839
  void PutToFeedVec(const std::vector<SlotRecord>& ins_vec UNUSED) override {}
Y
yaoxuefeng 已提交
1840 1841 1842 1843 1844

  virtual void LoadIntoMemoryByCommand(void);
  virtual void LoadIntoMemoryByLib(void);
  virtual void LoadIntoMemoryByLine(void);
  virtual void LoadIntoMemoryByFile(void);
P
pangengzheng 已提交
1845
  void SetInputChannel(void* channel) override {
Y
yaoxuefeng 已提交
1846 1847 1848
    input_channel_ = static_cast<ChannelObject<SlotRecord>*>(channel);
  }
  bool ParseOneInstance(const std::string& line, SlotRecord* rec);
P
pangengzheng 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857
  void PutToFeedVec(const SlotRecord* ins_vec, int num) override;
  void AssignFeedVar(const Scope& scope) override;
  std::vector<std::string> GetInputVarNames() override {
    std::vector<std::string> var_names;
    for (int i = 0; i < use_slot_size_; ++i) {
      var_names.push_back(used_slots_info_[i].slot);
    }
    return var_names;
  }
1858
#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
P
pangengzheng 已提交
1859 1860
  void BuildSlotBatchGPU(const int ins_num, MiniBatchGpuPack* pack);

P
pangengzheng 已提交
1861 1862
  virtual MiniBatchGpuPack* get_pack(MiniBatchGpuPack* last_pack);

P
pangengzheng 已提交
1863 1864 1865
  virtual void PackToScope(MiniBatchGpuPack* pack,
                           const Scope* scope = nullptr);

1866 1867
  void FillSlotValueOffset(const int ins_num,
                           const int used_slot_num,
1868 1869
                           size_t* slot_value_offsets,
                           const int* uint64_offsets,
1870 1871
                           const int uint64_slot_size,
                           const int* float_offsets,
1872
                           const int float_slot_size,
P
pangengzheng 已提交
1873 1874
                           const UsedSlotGpuType* used_slots,
                           cudaStream_t stream);
1875 1876 1877
  void CopyForTensor(const int ins_num,
                     const int used_slot_num,
                     void** dest,
1878
                     const size_t* slot_value_offsets,
1879 1880 1881 1882 1883 1884 1885 1886
                     const uint64_t* uint64_feas,
                     const int* uint64_offsets,
                     const int* uint64_ins_lens,
                     const int uint64_slot_size,
                     const float* float_feas,
                     const int* float_offsets,
                     const int* float_ins_lens,
                     const int float_slot_size,
P
pangengzheng 已提交
1887 1888
                     const UsedSlotGpuType* used_slots,
                     cudaStream_t stream);
1889
#endif
L
lxsbupt 已提交
1890 1891 1892 1893 1894

#if defined(PADDLE_WITH_GPU_GRAPH) && defined(PADDLE_WITH_HETERPS)
  virtual void InitGraphResource(void);
  virtual void InitGraphTrainResource(void);
  virtual void DoWalkandSage();
P
pangengzheng 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
  void SetInsIdVec(MiniBatchGpuPack* pack) override {
    if (parse_ins_id_) {
      size_t ins_num = pack->ins_num();
      ins_id_vec_.clear();
      ins_id_vec_.resize(ins_num);
      for (size_t i = 0; i < ins_num; i++) {
        ins_id_vec_[i] = pack->get_lineid(i);
      }
    }
  }
L
lxsbupt 已提交
1905
#endif
P
pangengzheng 已提交
1906
  void DumpWalkPath(std::string dump_path, size_t dump_rate) override;
L
lxsbupt 已提交
1907

Y
yaoxuefeng 已提交
1908 1909 1910 1911 1912 1913 1914 1915
  float sample_rate_ = 1.0f;
  int use_slot_size_ = 0;
  int float_use_slot_size_ = 0;
  int uint64_use_slot_size_ = 0;
  std::vector<AllSlotInfo> all_slots_info_;
  std::vector<UsedSlotInfo> used_slots_info_;
  size_t float_total_dims_size_ = 0;
  std::vector<int> float_total_dims_without_inductives_;
1916 1917

#if defined(PADDLE_WITH_CUDA) && defined(PADDLE_WITH_HETERPS)
P
pangengzheng 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
  int pack_thread_num_{5};
  std::vector<std::thread> pack_threads_;
  std::vector<MiniBatchGpuPack*> pack_vec_;
  BlockingQueue<MiniBatchGpuPack*> free_pack_queue_;
  BlockingQueue<MiniBatchGpuPack*> using_pack_queue_;
  std::atomic<bool> pack_is_end_{false};
  std::atomic<uint64_t> pack_offset_index_{0};
  MiniBatchGpuPack* last_pack_{nullptr};
  std::atomic<bool> stop_token_{false};
  std::atomic<int> thread_count_{0};
  std::mutex pack_mutex_;

  // async infershape
  std::map<const Scope*, std::vector<phi::DenseTensor*>> scpoe_feed_vec_;
1932
#endif
Y
yaoxuefeng 已提交
1933 1934
};

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
class PaddleBoxDataFeed : public MultiSlotInMemoryDataFeed {
 public:
  PaddleBoxDataFeed() {}
  virtual ~PaddleBoxDataFeed() {}

 protected:
  virtual void Init(const DataFeedDesc& data_feed_desc);
  virtual bool Start();
  virtual int Next();
  virtual void AssignFeedVar(const Scope& scope);
  virtual void PutToFeedVec(const std::vector<PvInstance>& pv_vec);
  virtual void PutToFeedVec(const std::vector<Record*>& ins_vec);
  virtual int GetCurrentPhase();
  virtual void GetRankOffset(const std::vector<PvInstance>& pv_vec,
                             int ins_number);
  std::string rank_offset_name_;
  int pv_batch_size_;
1952 1953
};

1954
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && !defined(_WIN32)
H
hutuxian 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
template <typename T>
class PrivateInstantDataFeed : public DataFeed {
 public:
  PrivateInstantDataFeed() {}
  virtual ~PrivateInstantDataFeed() {}
  void Init(const DataFeedDesc& data_feed_desc) override;
  bool Start() override { return true; }
  int Next() override;

 protected:
  // The batched data buffer
  std::vector<MultiSlotType> ins_vec_;

  // This function is used to preprocess with a given filename, e.g. open it or
  // mmap
  virtual bool Preprocess(const std::string& filename) = 0;

  // This function is used to postprocess system resource such as closing file
  // NOTICE: Ensure that it is safe to call before Preprocess
  virtual bool Postprocess() = 0;

  // The reading and parsing method.
  virtual bool ParseOneMiniBatch() = 0;

  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec();
};

class MultiSlotFileInstantDataFeed
    : public PrivateInstantDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotFileInstantDataFeed() {}
  virtual ~MultiSlotFileInstantDataFeed() {}

 protected:
  int fd_{-1};
  char* buffer_{nullptr};
  size_t end_{0};
  size_t offset_{0};

  bool Preprocess(const std::string& filename) override;

  bool Postprocess() override;

  bool ParseOneMiniBatch() override;
};
#endif

W
Wang Guibao 已提交
2003 2004
}  // namespace framework
}  // namespace paddle