scatter.cu.h 8.9 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16
#include <unordered_set>
17
#include <vector>
18

19
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
W
Wang Xin 已提交
20
#include "paddle/phi/backends/gpu/gpu_primitives.h"
21 22
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zchen0211 已提交
24

25 26
namespace phi {
namespace funcs {
27

28
template <typename T, typename IndexT = int>
29 30 31 32
__global__ void ScatterInitCUDAKernel(const IndexT* indices,
                                      T* output,
                                      size_t index_size,
                                      size_t slice_size) {
Z
Zeng Jinle 已提交
33 34 35
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
36
    IndexT scatter_i = indices[indices_i];
37 38 39 40 41 42 43 44

    PADDLE_ENFORCE(scatter_i >= 0,
                   "The index is out of bounds, "
                   "please check whether the dimensions of index and "
                   "input meet the requirements. It should "
                   "be greater than or equal to 0, but received [%d]",
                   scatter_i);

Z
Zeng Jinle 已提交
45
    int64_t out_i = scatter_i * slice_size + slice_i;
46 47 48
    *(output + out_i) = static_cast<T>(0);
  }
}
Z
zchen0211 已提交
49

50
template <typename T, typename IndexT = int>
51 52 53 54 55 56
__global__ void ScatterCUDAKernel(const T* params,
                                  const IndexT* indices,
                                  T* output,
                                  size_t index_size,
                                  size_t slice_size,
                                  bool overwrite) {
Z
Zeng Jinle 已提交
57 58 59
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
60
    IndexT scatter_i = indices[indices_i];
61 62 63 64 65 66 67 68

    PADDLE_ENFORCE(scatter_i >= 0,
                   "The index is out of bounds, "
                   "please check whether the dimensions of index and "
                   "input meet the requirements. It should "
                   "be greater than or equal to 0, but received [%d]",
                   scatter_i);

Z
Zeng Jinle 已提交
69
    int64_t out_i = scatter_i * slice_size + slice_i;
70 71 72
    if (overwrite) {
      *(output + out_i) = *(params + i);
    } else {
W
Wang Xin 已提交
73
      phi::CudaAtomicAdd(output + out_i, *(params + i));
74
    }
Z
zchen0211 已提交
75 76 77
  }
}

78
template <typename T, typename IndexT = int>
79 80 81
__global__ void ScatterNdCUDAKernel(const T* update,
                                    const IndexT* indices,
                                    T* output,
82
                                    const Dim<DDim::kMaxRank> output_dims,
83 84
                                    size_t remain_size,
                                    size_t slice_size,
85
                                    size_t end_size) {
Z
Zeng Jinle 已提交
86 87 88 89
  CUDA_KERNEL_LOOP_TYPE(i, remain_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
    int64_t gather_i = 0;
90 91 92
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = indices[indices_i * end_size + j];
93 94 95 96 97 98 99

      PADDLE_ENFORCE(
          index_value >= 0 && index_value < output_dims[j],
          "The index is out of bounds, "
          "please check whether the dimensions of index and "
          "input meet the requirements. It should "
          "be less than [%d] and greater or equal to 0, but received [%d]",
100 101
          output_dims[j],
          index_value);
102

103 104 105
      gather_i += (index_value * temp);
      temp *= output_dims[j];
    }
Z
Zeng Jinle 已提交
106
    int64_t output_i = gather_i + slice_i;
W
Wang Xin 已提交
107
    phi::CudaAtomicAdd(output + output_i, *(update + i));
108 109 110
  }
}

Z
zchen0211 已提交
111 112 113 114 115
/**
 * A thin wrapper on gpu tensor
 * Return a new updated tensor from source tensor, scatter-assigned according to
 * index
 * input[src]: type-T source Tensor
116
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
117 118
 * return: output tensor
 */
119
template <typename T, typename IndexT = int>
120 121 122 123
void GPUScatterAssign(const phi::GPUContext& ctx,
                      const DenseTensor& src,
                      const DenseTensor& index,
                      DenseTensor* output,
124
                      bool overwrite = true) {
125
  if (index.dims().size() == 2) {
126 127 128 129 130 131 132
    PADDLE_ENFORCE_EQ(
        index.dims()[1],
        1,
        phi::errors::InvalidArgument("index.dims()[1] should be 1 when "
                                     "index.dims().size() = 2 in scatter_op."
                                     "But received value is [%d]",
                                     index.dims()[1]));
133
  } else {
134 135 136 137 138 139 140
    PADDLE_ENFORCE_EQ(
        index.dims().size() == 1 || index.dims().size() == 0,
        true,
        phi::errors::InvalidArgument(
            "index.dims().size() should be 0, 1 or 2 in scatter_op."
            "But received value is [%d]",
            index.dims().size()));
141
  }
142 143

  int64_t index_size = index.dims().size() == 0 ? 1 : index.dims()[0];
Z
zchen0211 已提交
144

145
  auto src_dims = src.dims();
146
  phi::DDim output_dims(src_dims);
Z
zchen0211 已提交
147 148 149
  output_dims[0] = index_size;

  // slice size
150 151 152 153 154 155
  size_t slice_size = 1;
  if (index.dims().size() != 0) {
    for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
  } else {
    for (int i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];
  }
Z
zchen0211 已提交
156

157
  const T* p_src = src.data<T>();
158
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
159
  T* p_output = output->data<T>();
160

161
  const size_t& slice_bytes = slice_size * sizeof(T);
Z
1 api  
zchen0211 已提交
162

163
  // set block and grid num
Z
1 api  
zchen0211 已提交
164
  int block = 512;
Z
Zeng Jinle 已提交
165
  int64_t n = slice_size * index_size;
166
  dim3 grid = dim3((n + block - 1) / block);
167
  phi::backends::gpu::LimitGridDim(ctx, &grid);
Z
1 api  
zchen0211 已提交
168

169 170
  // if not overwrite mode, init data
  if (!overwrite) {
171
    ScatterInitCUDAKernel<T, IndexT><<<grid, block, 0, ctx.stream()>>>(
S
ShenLiang 已提交
172
        p_index, p_output, index_size, slice_size);
173 174
  }

175
  ScatterCUDAKernel<T, IndexT><<<grid, block, 0, ctx.stream()>>>(
176
      p_src, p_index, p_output, index_size, slice_size, overwrite);
Z
zchen0211 已提交
177 178
}

S
ShenLiang 已提交
179 180 181
// The function is only for scatter grad x,
// however update grad use gather
template <typename T, typename IndexT = int>
182 183 184
void GPUScatterGradForX(const phi::GPUContext& ctx,
                        const DenseTensor& index,
                        DenseTensor* output) {
Z
Zeng Jinle 已提交
185
  int64_t index_size = index.dims()[0];
S
ShenLiang 已提交
186 187
  auto dst_dims = output->dims();
  // slice size
Z
Zeng Jinle 已提交
188
  int64_t slice_size = 1;
S
ShenLiang 已提交
189 190 191 192 193 194 195 196 197
  for (int i = 1; i < dst_dims.size(); ++i) slice_size *= dst_dims[i];
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();
  const size_t& slice_bytes = slice_size * sizeof(T);

  // set block and grid num
  int64_t block = 512;
  int64_t n = slice_size * index_size;
  int64_t height = (n + block - 1) / block;
198
  dim3 grid = dim3((n + block - 1) / block);
199
  phi::backends::gpu::LimitGridDim(ctx, &grid);
S
ShenLiang 已提交
200

201
  ScatterInitCUDAKernel<T, IndexT><<<grid, block, 0, ctx.stream()>>>(
S
ShenLiang 已提交
202 203 204
      p_index, p_output, index_size, slice_size);
}

205 206 207 208 209
template <typename T, typename IndexT = int>
void GPUScatterNdAdd(const phi::GPUContext& ctx,
                     const DenseTensor& update,
                     const DenseTensor& index,
                     DenseTensor* output) {
210 211 212 213 214 215 216 217 218 219 220 221 222
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
223 224
  auto remain_ddim = phi::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = phi::product(remain_ddim);
225 226 227 228 229 230 231
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }
  const size_t slice_bytes = slice_size * sizeof(T);

232
  Dim<DDim::kMaxRank> g_output_dims;
233
  for (int i = 0; i < output_dims_size; ++i) {
234
    g_output_dims[i] = output_dims[i];
235
  }
236

237
  int block = 512;
Z
Zeng Jinle 已提交
238
  int64_t n = slice_size * remain_numel;
239
  dim3 grid = dim3((n + block - 1) / block);
240
  phi::backends::gpu::LimitGridDim(ctx, &grid);
241

242 243 244 245 246 247 248 249
  ScatterNdCUDAKernel<T, IndexT>
      <<<grid, block, 0, ctx.stream()>>>(p_update,
                                         p_index,
                                         p_output,
                                         g_output_dims,
                                         remain_numel,
                                         slice_size,
                                         end_size);
250 251
}

252
}  // namespace funcs
253
}  // namespace phi