gather.cu.h 11.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16

17
#include <vector>
18

19 20 21
#include "paddle/fluid/memory/memcpy.h"
// TODO(paddle-dev): move gpu_primitives.h to phi
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
W
Wang Xin 已提交
22
#include "paddle/phi/backends/gpu/gpu_primitives.h"
23 24
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
25
#include "paddle/phi/kernels/funcs/math_function.h"
Z
zchen0211 已提交
26

27 28
namespace phi {
namespace funcs {
Z
zchen0211 已提交
29

30
template <typename T, typename IndexT = int>
31 32 33 34
__global__ void GatherCUDAKernel(const T* params,
                                 const IndexT* indices,
                                 T* output,
                                 size_t index_size,
35
                                 size_t slice_size) {
36 37 38
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
39
    IndexT gather_i = indices[indices_i];
Z
Zeng Jinle 已提交
40
    int64_t params_i = gather_i * slice_size + slice_i;
Z
zchen0211 已提交
41 42 43 44
    *(output + i) = *(params + params_i);
  }
}

45
template <typename T, typename IndexT = int>
46
__global__ void GatherNdCUDAKernel(const T* input,
47
                                   const Dim<DDim::kMaxRank> input_dims,
48 49 50 51
                                   const IndexT* indices,
                                   T* output,
                                   size_t remain_size,
                                   size_t slice_size,
52
                                   size_t end_size) {
53 54 55
  CUDA_KERNEL_LOOP_TYPE(i, remain_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
Z
Zeng Jinle 已提交
56
    int64_t gather_i = 0;
57 58 59
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      auto index_value = indices[indices_i * end_size + j];
60 61 62 63 64
      PADDLE_ENFORCE(
          index_value >= 0 && index_value < input_dims[j],
          "The index is out of bounds, "
          "please check whether the dimensions of index and "
          "input meet the requirements. It should "
65
          "be less than [%d] and greater than or equal to 0, but received [%d]",
66 67
          input_dims[j],
          index_value);
68 69 70
      gather_i += (index_value * temp);
      temp *= input_dims[j];
    }
Z
Zeng Jinle 已提交
71
    int64_t input_i = gather_i + slice_i;
72 73 74 75
    *(output + i) = *(input + input_i);
  }
}

Z
zchen0211 已提交
76 77 78 79
/**
 * A thin wrapper on gpu tensor
 * Return a new tensor from source tensor, gathered according to index
 * input[src]: type-T source Tensor
80
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
81 82
 * return: output tensor
 */
83
template <typename T, typename IndexT = int>
84 85 86 87
void GPUGather(const phi::GPUContext& ctx,
               const DenseTensor& src,
               const DenseTensor& index,
               DenseTensor* output) {
Z
Zeng Jinle 已提交
88
  if (index.dims().size() == 2) {
89 90 91 92 93
    PADDLE_ENFORCE_EQ(
        index.dims()[1],
        1,
        phi::errors::InvalidArgument("If the index's rank of gather_op is 2,"
                                     " the second dimension should be 1."));
C
chengduo 已提交
94
  }
Y
Yibing Liu 已提交
95

96
  // index size
97
  int64_t index_size = index.dims().size() == 0 ? 1 : index.dims()[0];
Z
zchen0211 已提交
98

99
  auto src_dims = src.dims();
Z
zchen0211 已提交
100 101

  // slice size
102
  int64_t slice_size = 1;
Z
zchen0211 已提交
103 104
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

105
  const T* p_src = src.data<T>();
106
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
107 108 109
  T* p_output = output->data<T>();

  int block = 512;
110
  int64_t n = slice_size * index_size;
111
  dim3 grid = dim3((n + block - 1) / block);
112
  phi::backends::gpu::LimitGridDim(ctx, &grid);
Z
zchen0211 已提交
113

114
  GatherCUDAKernel<T, IndexT><<<grid, block, 0, ctx.stream()>>>(
115
      p_src, p_index, p_output, index_size, slice_size);
Z
zchen0211 已提交
116 117
}

118 119 120 121 122
template <typename T, typename IndexT = int>
void GPUGatherNd(const phi::GPUContext& ctx,
                 const DenseTensor& input,
                 const DenseTensor& index,
                 DenseTensor* output) {
123
  const auto gplace = ctx.GetPlace();
124
  auto cplace = phi::CPUPlace();
125 126 127 128 129 130 131 132 133 134 135 136 137

  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  auto input_dims = input.dims();
  auto input_dims_size = input_dims.size();

  const T* p_input = input.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
138 139
  auto remain_ddim = phi::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = phi::product(remain_ddim);
140 141 142 143 144 145
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < input_dims_size; ++i) {
    slice_size *= input_dims[i];
  }
  // source dim
146
  Dim<DDim::kMaxRank> g_input_dims;
147
  for (int i = 0; i < input_dims_size; ++i) {
148
    g_input_dims[i] = input_dims[i];
149 150 151
  }

  int block = 512;
152
  int64_t n = slice_size * remain_numel;
153
  dim3 grid = dim3((n + block - 1) / block);
154
  phi::backends::gpu::LimitGridDim(ctx, &grid);
155

156 157 158 159 160 161 162
  GatherNdCUDAKernel<T, IndexT><<<grid, block, 0, ctx.stream()>>>(p_input,
                                                                  g_input_dims,
                                                                  p_index,
                                                                  p_output,
                                                                  remain_numel,
                                                                  slice_size,
                                                                  end_size);
163 164
}

165
template <typename T, typename U>
166 167 168 169 170
__global__ void GatherGPUKernel(const T* input,
                                const U* index,
                                T* out,
                                int64_t outer_dim_size,
                                int64_t inner_dim_size,
171
                                int64_t out_index_dim_size,
172 173
                                int64_t input_index_dim_size,
                                int64_t size) {
174 175
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  int64_t outer_size = outer_dim_size * out_index_dim_size;
176
  for (; idx < size; idx += blockDim.x * gridDim.x) {
177 178 179 180
    int64_t inner_dim_index = idx / outer_size;
    int64_t next_idx = idx - outer_size * inner_dim_index;
    int64_t index_dim_index = next_idx / outer_dim_size;
    U index_val = index[index_dim_index];
181 182 183 184 185 186 187

    PADDLE_ENFORCE(
        index_val >= 0 && index_val < input_index_dim_size,
        "The index is out of bounds, "
        "please check whether the dimensions of index and "
        "input meet the requirements. It should "
        "be less than [%d] and greater than or equal to 0, but received [%d]",
188 189
        input_index_dim_size,
        index_val);
190

191 192
    int64_t out_dim_index = next_idx - outer_dim_size * index_dim_index;
    int64_t input_index =
193
        inner_dim_index * (outer_dim_size * input_index_dim_size) +
194
        index_val * outer_dim_size + out_dim_index;
195 196 197 198 199
    out[idx] = input[input_index];
  }
}

template <typename T, typename U>
200 201 202
__global__ void GatherGradGPUKernel(const T* input,
                                    const U* index,
                                    T* out,
203 204 205
                                    int64_t outer_dim_size,
                                    int64_t inner_dim_size,
                                    int64_t input_index_dim_size,
206 207
                                    int64_t out_index_dim_size,
                                    int64_t size) {
208
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
209
  for (; idx < size; idx += blockDim.x * gridDim.x) {
210 211 212 213 214 215 216
    int64_t inner_dim_index = idx / (outer_dim_size * input_index_dim_size);
    int64_t next_idx = idx % (outer_dim_size * input_index_dim_size);
    int64_t index_dim_index = next_idx / (outer_dim_size);
    int64_t out_dim_index = next_idx % outer_dim_size;
    int64_t out_index =
        inner_dim_index * (outer_dim_size * out_index_dim_size) +
        index[index_dim_index] * outer_dim_size + out_dim_index;
W
Wang Xin 已提交
217
    phi::CudaAtomicAdd(out + out_index, *(input + idx));
218 219 220
  }
}

221
template <typename T, typename U>
222 223 224 225 226
void GatherV2CUDAFunction(const DenseTensor* input,
                          const DenseTensor* index,
                          const int axis,
                          DenseTensor* out,
                          const phi::GPUContext& ctx) {
227 228
  int64_t index_size = index->numel();
  int64_t input_size = input->numel();
229 230 231 232 233
  auto input_dim = input->dims();
  auto* input_data = input->data<T>();
  auto* index_data = index->data<U>();

  if (input->numel() == 0) return;
234 235

  int axis_index = axis;
236
  int64_t index_dim_size = input_dim[axis_index];
237

238 239 240
  int64_t inner_dim_size = 1;
  int64_t outer_dim_size = 1;
  std::vector<int64_t> out_dim_vec;
241 242 243 244 245

  for (int i = 0; i < axis_index; i++) {
    inner_dim_size *= input_dim[i];
    out_dim_vec.push_back(input_dim[i]);
  }
246 247 248
  if (index->dims().size() != 0) {
    out_dim_vec.push_back(index_size);
  }
249 250 251 252
  for (int i = axis_index + 1; i < input_dim.size(); i++) {
    outer_dim_size *= input_dim[i];
    out_dim_vec.push_back(input_dim[i]);
  }
253
  auto out_dim = phi::make_ddim(out_dim_vec);
254 255

  out->Resize(out_dim);
256
  auto* out_data = ctx.Alloc<T>(out);
257
  int64_t out_size = out->numel();
Z
Zeng Jinle 已提交
258
  if (out_size == 0) return;
259

260 261
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, out_size);
  auto stream = ctx.stream();
262 263 264 265 266 267 268 269 270 271
  GatherGPUKernel<T, U>
      <<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
          input_data,
          index_data,
          out_data,
          outer_dim_size,
          inner_dim_size,
          index_size,
          index_dim_size,
          out_size);
272 273
}

274
template <typename T, typename U>
275 276 277 278 279
void GatherV2GradCUDAFunction(const DenseTensor* input,
                              const DenseTensor* index,
                              const int axis,
                              DenseTensor* out,
                              const phi::GPUContext& ctx) {
280
  auto* index_data = index->data<U>();
281 282
  int64_t index_size = index->numel();
  int64_t input_size = input->numel();
283 284 285 286
  auto input_dim = input->dims();
  auto* input_data = input->data<T>();

  if (input->numel() == 0) return;
287
  int axis_index = axis;
288
  int64_t input_index_dim_size = input_dim[axis_index];
289

290 291
  int64_t inner_dim_size = 1;
  int64_t outer_dim_size = 1;
292 293 294 295 296 297 298 299

  for (int i = 0; i < axis_index; i++) {
    inner_dim_size *= input_dim[i];
  }
  for (int i = axis_index + 1; i < input_dim.size(); i++) {
    outer_dim_size *= input_dim[i];
  }

300
  auto* out_data = ctx.Alloc<T>(out);
301
  auto out_dim = out->dims();
302
  int64_t out_index_dim_size = out_dim[axis_index];
303
  phi::funcs::set_constant(ctx, out, 0.0);
304

305 306
  auto config = phi::backends::gpu::GetGpuLaunchConfig1D(ctx, input_size);
  auto stream = ctx.stream();
307 308 309 310 311 312 313 314 315 316
  GatherGradGPUKernel<T, U>
      <<<config.block_per_grid, config.thread_per_block, 0, stream>>>(
          input_data,
          index_data,
          out_data,
          outer_dim_size,
          inner_dim_size,
          input_index_dim_size,
          out_index_dim_size,
          input_size);
317
}
318 319 320

}  // namespace funcs
}  // namespace phi