extension.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the extention functions
16

L
Li Fuchen 已提交
17
import numpy as np
18 19 20 21 22 23 24 25

from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
)
26 27
from ...fluid.framework import (
    _in_legacy_dygraph,
28
    _non_static_mode,
29 30
    in_dygraph_mode,
)
31 32 33 34 35
from ...fluid.layer_helper import LayerHelper
from ...framework import convert_np_dtype_to_dtype_, core
from ...static import Variable
from ...tensor.creation import assign
from ...tensor.layer_function_generator import templatedoc
36

37 38
__all__ = []

39

L
Li Fuchen 已提交
40 41
def diag_embed(input, offset=0, dim1=-2, dim2=-1):
    """
42 43
    This OP creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2)
    are filled by ``input``. By default, a 2D plane formed by the last two dimensions
L
Li Fuchen 已提交
44
    of the returned tensor will be selected.
45

L
Li Fuchen 已提交
46
    The argument ``offset`` determines which diagonal is generated:
47

L
Li Fuchen 已提交
48 49 50
    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
51

L
Li Fuchen 已提交
52
    Args:
53
        input(Tensor|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64.
L
Li Fuchen 已提交
54 55 56
        offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal).
        dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2.
        dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1.
57

L
Li Fuchen 已提交
58
    Returns:
59
        Tensor, the output data type is the same as input data type.
60

L
Li Fuchen 已提交
61 62
    Examples:
        .. code-block:: python
63

L
Li Fuchen 已提交
64 65
            import paddle.nn.functional as F
            import numpy as np
66

L
Li Fuchen 已提交
67
            diag_embed = np.random.randn(2, 3).astype('float32')
68 69
            # [[ 0.7545889 , -0.25074545,  0.5929117 ],
            #  [-0.6097662 , -0.01753256,  0.619769  ]]
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

            data1 = F.diag_embed(diag_embed)
            data1.numpy()
            # [[[ 0.7545889 ,  0.        ,  0.        ],
            #  [ 0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ]],

            # [[-0.6097662 ,  0.        ,  0.        ],
            #  [ 0.        , -0.01753256,  0.        ],
            #  [ 0.        ,  0.        ,  0.619769  ]]]

            data2 = F.diag_embed(diag_embed, offset=-1, dim1=0, dim2=2)
            data2.numpy()
            # [[[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.7545889 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.25074545,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.5929117 ,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [-0.6097662 ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        , -0.01753256,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.619769  ,  0.        ]]]

            data3 = F.diag_embed(diag_embed, offset=1, dim1=0, dim2=2)
            data3.numpy()
            # [[[ 0.        ,  0.7545889 ,  0.        ,  0.        ],
            #   [ 0.        , -0.6097662 ,  0.        ,  0.        ]],
            #
            #  [[ 0.        ,  0.        , -0.25074545,  0.        ],
            #   [ 0.        ,  0.        , -0.01753256,  0.        ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.5929117 ],
            #   [ 0.        ,  0.        ,  0.        ,  0.619769  ]],
            #
            #  [[ 0.        ,  0.        ,  0.        ,  0.        ],
            #   [ 0.        ,  0.        ,  0.        ,  0.        ]]]
L
Li Fuchen 已提交
106 107 108 109
    """
    if not isinstance(input, Variable):
        input = assign(input)

110
    if in_dygraph_mode():
111
        return _C_ops.diag_embed(input, offset, dim1, dim2)
112
    elif in_dynamic_mode():
113 114 115
        return _legacy_C_ops.diag_embed(
            input, "offset", offset, "dim1", dim1, "dim2", dim2
        )
116 117 118 119

    inputs = {'Input': [input]}
    attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2}

L
Li Fuchen 已提交
120
    def __check_input(input, offset, dim1, dim2):
121 122 123 124 125 126
        check_dtype(
            input.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'diag_embed',
        )
L
Li Fuchen 已提交
127 128

        input_shape = list(input.shape)
129 130 131 132
        assert len(input_shape) >= 1, (
            "Input must be at least 1-dimensional, "
            "But received Input's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
133

134 135
        assert np.abs(dim1) <= len(input_shape), (
            "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
136
            % (-(len(input_shape) + 1), len(input_shape), dim1)
137
        )
L
Li Fuchen 已提交
138

139 140
        assert np.abs(dim2) <= len(input_shape), (
            "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
141
            % (-(len(input_shape) + 1), len(input_shape), dim2)
142
        )
L
Li Fuchen 已提交
143 144 145

        dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1
        dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1
146 147 148 149
        assert dim1_ != dim2_, (
            "dim1 and dim2 cannot be the same dimension."
            "But received dim1 = %d, dim2 = %d\n" % (dim1, dim2)
        )
L
Li Fuchen 已提交
150

151
    __check_input(input, offset, dim1, dim2)
L
Li Fuchen 已提交
152 153 154 155
    helper = LayerHelper("diag_embed", **locals())

    out = helper.create_variable_for_type_inference(dtype=input.dtype)

156 157 158 159 160 161
    helper.append_op(
        type='diag_embed',
        inputs={'Input': [input]},
        attrs={'offset': offset, 'dim1': dim1, 'dim2': dim2},
        outputs={'Out': [out]},
    )
L
Li Fuchen 已提交
162 163
    out.stop_gradient = True
    return out
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204


def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    r"""
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:

    .. math::

        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    .. code-block:: text

        Case:

        Consider input:
            x = [3, 1, 1, 0]    max_len = 4

        then we get out:
            mask = [[1, 1, 1, 0],
                    [1, 0, 0, 0],
                    [1, 0, 0, 0],
                    [0, 0, 0, 0]]

    Args:
        x (Variable): Input tensor of sequence_mask layer, \
            whose elements are integers less than :code:`maxlen`. \
            Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
        maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \
             ``int64`` by default.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

205
    Returns:
206
            Tensor, The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen] \
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            and data type of :code:`dtype`. The data type should be bool, float32, float64, int8, \
            int32 or int64.

    Examples:
        .. code-block:: python

            import paddle

            lengths = paddle.to_tensor([10, 9, 8])
            mask = paddle.nn.functional.sequence_mask(lengths)

            print(mask.numpy())
            # [[1 1 1 1 1 1 1 1 1 1]
            #  [1 1 1 1 1 1 1 1 1 0]
            #  [1 1 1 1 1 1 1 1 0 0]]

    """

    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        if maxlen is not None:
            if isinstance(maxlen, core.eager.Tensor):
                attrs = ('out_dtype', dtype)
231
                out = _legacy_C_ops.sequence_mask(x, maxlen, *attrs)
232 233
            else:
                attrs = ('out_dtype', dtype, 'maxlen', maxlen)
234
                out = _legacy_C_ops.sequence_mask(x, None, *attrs)
235 236 237 238 239 240 241 242 243 244 245 246 247 248
            out.stop_gradient = True
            return out

    helper = LayerHelper('sequence_mask', **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

249 250 251
    helper.append_op(
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs
    )
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    out.stop_gradient = True
    return out


def gather_tree(ids, parents):
    r"""
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:
                gather_tree(ids, parents)
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
            A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle

            ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]])

            parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]])

            final_sequences = paddle.nn.functional.gather_tree(ids, parents)
            # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]]

    """
318 319 320 321 322 323 324
    if ids.ndim != 3:
        raise ValueError(
            "The input ids must be a 3D tensor with shape [length, batch_size, beam_size]"
        )
    if ids.ndim != parents.ndim:
        raise ValueError("The ids's shape must be the same as parents' shape. ")

325
    if in_dygraph_mode():
326
        return _C_ops.gather_tree(ids, parents)
327 328
    else:
        if _in_legacy_dygraph():
329
            return _legacy_C_ops.gather_tree(ids, parents)
330 331
        else:
            helper = LayerHelper('gather_tree', **locals())
332 333 334 335 336 337
            check_variable_and_dtype(
                ids, 'ids', ['int32', 'int64'], 'gather_tree'
            )
            check_variable_and_dtype(
                parents, 'parents', ['int32', 'int64'], 'gather_tree'
            )
338 339
            out = helper.create_variable_for_type_inference(dtype=ids.dtype)

340 341 342 343 344
            helper.append_op(
                type="gather_tree",
                inputs={"Ids": ids, "Parents": parents},
                outputs={"Out": out},
            )
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

            return out


@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
    """

    **Temporal Shift Operator**

    ${comment}

    Args:
        x(Tensor): ${x_comment}
        seg_num(int): ${seg_num_comment}
        shift_ratio(float): ${shift_ratio_comment}
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Returns:
        out(Tensor): The temporal shifting result is a tensor with the
        same shape and same data type as the input.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
    """
    if data_format not in ["NCHW", "NHWC"]:
381 382 383 384
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. "
            "Received Attr(data_format): {}.".format(data_format)
        )
C
ccrrong 已提交
385
    if in_dygraph_mode():
386
        return _C_ops.temporal_shift(x, seg_num, shift_ratio, data_format)
387
    if _non_static_mode():
388 389 390 391 392 393 394 395 396
        return _legacy_C_ops.temporal_shift(
            x,
            'seg_num',
            seg_num,
            'shift_ratio',
            shift_ratio,
            'data_format',
            data_format,
        )
397 398 399 400 401 402 403 404 405 406 407

    helper = LayerHelper("temporal_shift", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
    check_type(seg_num, 'seg_num', int, 'temporal_shift')
    check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

408 409 410 411 412 413 414 415 416 417
    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={
            "seg_num": seg_num,
            "shift_ratio": shift_ratio,
            "data_format": data_format,
        },
    )
418
    return out