mp_layers.py 18.9 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid import core
W
wangxiaoning 已提交
17
from paddle.nn import Layer
W
wuhuachaocoding 已提交
18
from paddle.nn import functional as F
19

W
wuhuachaocoding 已提交
20
from ...base import topology as tp
21 22
from . import mp_ops
from .random import get_rng_state_tracker
W
wuhuachaocoding 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

__all__ = []

# Follow this paper to achieve the file:
# Shoeybi M, Patwary M, Puri R, et al. Megatron-lm: Training multi-billion parameter
# language models using model parallelism[J]. arXiv preprint arXiv:1909.08053, 2019. (https://arxiv.org/abs/1909.08053)


def is_fused_matmul_bias_supported():
    if paddle.is_compiled_with_cuda() and not paddle.is_compiled_with_rocm():
        return hasattr(core.ops, 'fused_gemm_epilogue')
    else:
        return False


class VocabParallelEmbedding(Layer):
    """Embedding mp parallelized in the vocabulary dimension.
    this class is used for splitting embedding in mp group.

    Args:
        num_embeddings(int): One element which indicate the size of the dictionary of embeddings.
        embedding_dim(int): One element which indicate the size of each embedding vector respectively.
        weight_attr(ParamAttr|None): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
        mp_group(Group): The tensor parallel group.
        name(str, optional): For detailed information, please refer
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
63
              super().__init__()
W
wuhuachaocoding 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

90 91 92 93 94 95 96 97
    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        weight_attr=None,
        mp_group=None,
        name=None,
    ):
98
        super().__init__()
W
wuhuachaocoding 已提交
99

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
115 116

        self.origin_num_embeddings = num_embeddings
117
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
118

119 120 121
        assert (
            num_embeddings % self.world_size == 0
        ), "The length of the vocabulary must be divisible by the parallelism degree of MP"
W
wuhuachaocoding 已提交
122 123 124 125 126 127 128 129 130 131 132

        per_part_size = num_embeddings // self.world_size

        self.vocab_start_index = self.rank * per_part_size
        self._dtype = self._helper.get_default_dtype()
        self._size = [per_part_size, embedding_dim]
        self._weight_attr = weight_attr
        self._name = name

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
133 134 135 136 137 138
                self.weight = self.create_parameter(
                    attr=self._weight_attr,
                    shape=self._size,
                    dtype=self._dtype,
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
139
        else:
140 141 142 143 144 145
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=self._size,
                dtype=self._dtype,
                is_bias=False,
            )
W
wuhuachaocoding 已提交
146 147

        self.weight.is_distributed = True if self.is_mp else False
148 149
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 0)
W
wuhuachaocoding 已提交
150 151 152 153 154 155 156

    def forward(self, x):
        if self.is_mp:
            output_parallel = mp_ops._c_lookup_table(
                self.weight,
                x,
                start_index=self.vocab_start_index,
157 158 159 160 161 162 163 164
                name=self._name,
            )
            output = mp_ops._mp_allreduce(
                output_parallel,
                group=self.model_parallel_group,
                use_calc_stream=True,
                use_model_parallel=True,
            )
W
wuhuachaocoding 已提交
165
        else:
166 167 168 169 170 171 172
            output = F.embedding(
                x,
                weight=self.weight,
                padding_idx=None,
                sparse=False,
                name=self._name,
            )
W
wuhuachaocoding 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        return output


class ColumnParallelLinear(Layer):
    """Linear layer with mp parallelized(column).
    this class is used for splitting Linear Layer in mp group, column split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        gather_output(bool): whether to do allgahter for the output of each rank.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
199
              super().__init__()
W
wuhuachaocoding 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

226 227 228 229 230 231 232 233 234 235 236
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=None,
        gather_output=True,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
237
        super().__init__()
W
wuhuachaocoding 已提交
238

239 240 241 242 243 244 245 246 247 248
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
W
wuhuachaocoding 已提交
249
        self._name = name
250
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
251 252 253 254 255

        self.gather_output = gather_output
        assert out_features % self.world_size == 0, (
            "Number of column of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
256 257 258
                out_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
259 260 261 262 263 264 265 266 267 268 269
        self.output_size_per_partition = out_features // self.world_size

        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[in_features, self.output_size_per_partition],
                    attr=self._weight_attr,
                    dtype=self._dtype,
270 271
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
272 273 274 275 276
        else:
            self.weight = self.create_parameter(
                shape=[in_features, self.output_size_per_partition],
                attr=self._weight_attr,
                dtype=self._dtype,
277 278
                is_bias=False,
            )
W
wuhuachaocoding 已提交
279 280 281

        self.weight.is_distributed = True if self.is_mp else False

282 283 284
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 1)

W
wuhuachaocoding 已提交
285 286 287 288 289 290
        if has_bias:
            # initialize bias to zero like Megatron
            self.bias = self.create_parameter(
                shape=[self.output_size_per_partition],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
291 292
                is_bias=True,
            )
W
wuhuachaocoding 已提交
293
            self.bias.is_distributed = True if self.is_mp else False
294 295
            if self.bias.is_distributed:
                setattr(self.bias, "split_axis", 0)
W
wuhuachaocoding 已提交
296 297 298 299 300 301 302 303 304 305 306
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in ColumnParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
307 308
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
309
            from paddle.incubate.nn.functional import fused_linear
310

W
wuhuachaocoding 已提交
311 312 313 314 315
            self.linear = fused_linear

    def forward(self, x):
        # use inner api to process identity
        if self.is_mp:
316 317 318
            input_parallel = mp_ops._c_identity(
                x, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
319 320 321
        else:
            input_parallel = x

322 323 324
        output_parallel = self.linear(
            input_parallel, self.weight, self.bias, name=self._name
        )
W
wuhuachaocoding 已提交
325 326

        if self.gather_output and self.is_mp:
327 328 329
            output = mp_ops._c_concat(
                output_parallel, group=self.model_parallel_group
            )
W
wuhuachaocoding 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
        else:
            output = output_parallel
        return output


class RowParallelLinear(Layer):
    """Linear layer with mp parallelized(row).
    this class is used for splitting Linear Layer in mp group, row split the weight of the Linear layer.

    Args:
        in_features(int): The number of input units.
        out_features(int): The number of output units.
        weight_attr(ParamAttr|None): The attribute for the learnable weight of this layer. The default value is None
            and the weight will be initialized to zero. For detailed information, please refer to paddle.ParamAttr.
        has_bias(bool): whether to add bias.
        input_is_parallel(bool): whether the input has alreadly been splitted across the mp group.
        fuse_matmul_bias(bool): whether to fuse matmul and bias.
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        import paddle
        from paddle.distributed import fleet

        class SimpleMPNet(paddle.nn.Layer):
           def __init__(self, vocab_size, hidden_size, inner_size, output_size):
358
              super().__init__()
W
wuhuachaocoding 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
              self.linear1 = fleet.meta_parallel.ColumnParallelLinear(
                    hidden_size,
                    inner_size,
                    gather_output=False,
                    has_bias=True)

              self.linear2 = fleet.meta_parallel.RowParallelLinear(
                    inner_size,
                    hidden_size,
                    input_is_parallel=True,
                    has_bias=True)

              self.linear3 = paddle.nn.Linear(hidden_size, output_size)

              self.embedding = fleet.meta_parallel.VocabParallelEmbedding(
                                vocab_size,
                                hidden_size)

           def forward(self, x):
              x = self.embedding(x)
              x = self.linear1(x)
              x = self.linear2(x)
              x = self.linear3(x)
              return x
    """

385 386 387 388 389 390 391 392 393 394 395
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        has_bias=True,
        input_is_parallel=False,
        fuse_matmul_bias=False,
        mp_group=None,
        name=None,
    ):
396
        super().__init__()
W
wuhuachaocoding 已提交
397 398 399 400 401 402 403 404

        self.in_features = in_features
        self.out_features = out_features
        self.input_is_parallel = input_is_parallel
        self._weight_attr = weight_attr
        self._dtype = self._helper.get_default_dtype()
        self._name = name

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
420

421
        self.is_mp = self.world_size > 1
W
wuhuachaocoding 已提交
422 423 424
        assert in_features % self.world_size == 0, (
            "Number of row of the weight for linear ({}) must be"
            " divisible by model parallel size ({})".format(
425 426 427
                in_features, self.world_size
            )
        )
W
wuhuachaocoding 已提交
428 429 430 431 432 433 434 435 436

        self.input_size_per_partition = in_features // self.world_size

        if self.is_mp and paddle.in_dynamic_mode():
            with get_rng_state_tracker().rng_state():
                self.weight = self.create_parameter(
                    shape=[self.input_size_per_partition, self.out_features],
                    attr=self._weight_attr,
                    dtype=self._dtype,
437 438
                    is_bias=False,
                )
W
wuhuachaocoding 已提交
439 440 441 442 443
        else:
            self.weight = self.create_parameter(
                shape=[self.input_size_per_partition, self.out_features],
                attr=self._weight_attr,
                dtype=self._dtype,
444 445
                is_bias=False,
            )
W
wuhuachaocoding 已提交
446 447

        self.weight.is_distributed = True if self.is_mp else False
448 449
        if self.weight.is_distributed:
            setattr(self.weight, "split_axis", 0)
W
wuhuachaocoding 已提交
450 451 452 453 454 455

        if has_bias:
            self.bias = self.create_parameter(
                shape=[self.out_features],
                attr=paddle.nn.initializer.Constant(value=0.0),
                dtype=self._dtype,
456 457
                is_bias=True,
            )
W
wuhuachaocoding 已提交
458 459 460 461 462 463 464 465 466 467 468
        else:
            self.bias = None

        self.linear = F.linear

        if fuse_matmul_bias:
            if not is_fused_matmul_bias_supported():
                raise NotImplementedError(
                    "You set fuse_matmul_bias=True in RowParallelLinear, "
                    "however, the paddle you are using not support this operation. "
                    "Please set fuse_matmul_bias=False or use paddle compiled "
469 470
                    "with cuda 11.6 or higher."
                )
W
wuhuachaocoding 已提交
471
            from paddle.incubate.nn.functional import fused_linear
472

W
wuhuachaocoding 已提交
473 474 475 476 477 478 479 480 481 482
            self.linear = fused_linear

    def forward(self, x):
        if self.input_is_parallel or (not self.is_mp):
            input_parallel = x
        else:
            # split last dim
            input_parallel = mp_ops._c_split(x, group=self.model_parallel_group)

        if self.is_mp:
483 484 485 486 487 488 489 490 491
            output_parallel = self.linear(
                input_parallel, self.weight, name=self._name
            )
            output_ = mp_ops._mp_allreduce(
                output_parallel,
                group=self.model_parallel_group,
                use_calc_stream=True,
                use_model_parallel=True,
            )
W
wuhuachaocoding 已提交
492 493
            output = output_ + self.bias if self.bias is not None else output_
        else:
494 495 496
            output = self.linear(
                input_parallel, self.weight, self.bias, name=self._name
            )
W
wuhuachaocoding 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

        return output


class ParallelCrossEntropy(Layer):
    """CrossEntropy with mp parallelized.
    this class is used for splitting softmax cross entropy in mp group.

    Args:
        mp_group(Group): The tensor parallel group.
        name(str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python
        loss_func = ParallelCrossEntropy()
        loss = loss_func(img, lable)
    """

    def __init__(self, mp_group=None, name=None):
517
        super().__init__()
W
wuhuachaocoding 已提交
518
        self.name = name
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        self.model_parallel_group = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_group()
            if mp_group is None
            else mp_group
        )
        self.world_size = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_world_size()
            if mp_group is None
            else mp_group.nranks
        )
        self.rank = (
            tp._HYBRID_PARALLEL_GROUP.get_model_parallel_rank()
            if mp_group is None
            else mp_group.rank
        )
W
wuhuachaocoding 已提交
534 535 536

    def forward(self, input, label):
        loss = mp_ops._c_softmax_with_cross_entropy(
537 538
            input, label, group=self.model_parallel_group
        )
W
wuhuachaocoding 已提交
539
        return loss