custom_operator.cc 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/custom_operator.h"

#include <algorithm>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

28
#include "paddle/fluid/eager/api/utils/global_utils.h"
29
#include "paddle/fluid/framework/attribute.h"
30
#include "paddle/fluid/framework/convert_utils.h"
31 32 33
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
34
#include "paddle/fluid/framework/phi_utils.h"
35
#include "paddle/fluid/framework/tensor.h"
36
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
37 38
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
#include "paddle/fluid/string/string_helper.h"
39 40
#include "paddle/phi/api/all.h"
#include "paddle/phi/core/compat/convert_utils.h"
41
#include "paddle/phi/core/tensor_utils.h"
42
#include "paddle/utils/any.h"
H
HongyuJia 已提交
43 44 45
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
46

47
#include "gflags/gflags.h"
48
#include "paddle/phi/api/include/operants_manager.h"
49 50 51 52
#include "paddle/phi/api/include/tensor_operants.h"

DECLARE_string(tensor_operants_mode);

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
namespace paddle {
namespace framework {

namespace detail {

// dynamic lib load func
template <typename T>
static T* DynLoad(void* handle, std::string name) {
  T* func = reinterpret_cast<T*>(dlsym(handle, name.c_str()));
#if !defined(_WIN32)
  auto errorno = dlerror();
#else
  auto errorno = GetLastError();
#endif  // !_WIN32
  PADDLE_ENFORCE_NOT_NULL(
68 69 70 71
      func,
      platform::errors::NotFound(
          "Failed to load dynamic operator library, error message(%s).",
          errorno));
72 73 74
  return func;
}

75
inline static bool IsDuplicableVar(const std::string& var_name) {
76 77 78 79
  std::string suffix = kTensorVectorSuffix;
  return var_name.rfind(suffix) != std::string::npos;
}

80 81
inline static std::string NoGrad(const std::string& var_name,
                                 bool is_double_grad = false) {
82
  std::string suffix = kGradVarSuffix;
83 84 85 86 87 88 89 90
  std::string new_out_suffix = kDoubleGradNewOutSuffix;
  std::string tmp_var_name(var_name);
  if (is_double_grad &&
      (tmp_var_name.rfind(new_out_suffix) != std::string::npos)) {
    tmp_var_name = tmp_var_name.substr(
        0, tmp_var_name.size() - /*kDoubleGradNewOutSuffix length*/ 4);
  }
  return tmp_var_name.substr(0, tmp_var_name.size() - kGradVarSuffixSize);
91 92
}

93 94 95 96 97 98 99 100 101 102 103
inline static bool IsGradVar(const std::string& var_name, bool is_double_grad) {
  std::string suffix = kGradVarSuffix;
  if (!is_double_grad) {
    return var_name.rfind(suffix) != std::string::npos;
  } else {
    // for double grad cases, the X@GRAD is not a grad var, X@GRAD@GRAD is a
    // grad var, here we remove a @GRAD suffix
    return NoGrad(var_name).rfind(suffix) != std::string::npos;
  }
}

104 105
inline static bool IsMemberOf(const std::vector<std::string>& vec,
                              const std::string& name) {
106 107 108
  return std::find(vec.cbegin(), vec.cend(), name) != vec.cend();
}

109
static std::vector<std::string> ParseAttrStr(const std::string& attr) {
110
  auto split_pos = attr.find_first_of(":");
111 112
  PADDLE_ENFORCE_NE(split_pos,
                    std::string::npos,
113 114 115 116 117 118 119 120 121 122
                    platform::errors::InvalidArgument(
                        "Invalid attribute string format. Attribute string "
                        "format is `<name>:<type>`."));

  std::vector<std::string> rlt;
  // 1. name
  rlt.emplace_back(string::trim_spaces(attr.substr(0, split_pos)));
  // 2. type
  rlt.emplace_back(string::trim_spaces(attr.substr(split_pos + 1)));

123
  VLOG(3) << "attr name: " << rlt[0] << ", attr type str: " << rlt[1];
124 125 126 127

  return rlt;
}

128 129 130 131 132
}  // namespace detail

////////////////// Kernel Define ////////////////////

// custom op kernel call function define
133 134 135 136 137 138 139
static void RunKernelFunc(
    const framework::ExecutionContext& ctx,
    const paddle::KernelFunc& func,
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::vector<std::string>& attrs,
    const std::unordered_map<std::string, std::string>& inplace_map) {
140
  VLOG(3) << "Custom Operator: Start run KernelFunc.";
141 142
  // prepare CustomOpKernelContext
  paddle::CustomOpKernelContext kernel_ctx;
143
  for (auto& in_name : inputs) {
144
    VLOG(3) << "Custom Operator: input name - " << in_name;
145
    if (detail::IsDuplicableVar(in_name)) {
146 147
      // return const std::vector<const phi::DenseTensor*>
      auto vec_x = ctx.MultiInput<phi::DenseTensor>(in_name);
148 149
      PADDLE_ENFORCE_NE(vec_x.empty(),
                        true,
150 151
                        platform::errors::NotFound(
                            "Input vector<tensor> (%s) is empty.", in_name));
152
      std::vector<paddle::Tensor> custom_vec_in;
153 154 155
      for (size_t i = 0; i < vec_x.size(); ++i) {
        auto* x = vec_x[i];
        PADDLE_ENFORCE_NOT_NULL(
156 157 158 159 160 161 162
            x,
            platform::errors::NotFound(
                "The %d-th tensor in input vector<tensor> (%s) is nullptr.",
                i,
                in_name));
        PADDLE_ENFORCE_EQ(x->IsInitialized(),
                          true,
163 164 165
                          platform::errors::InvalidArgument(
                              "The %d-th tensor in input vector<tensor> (%s) "
                              "is not initialized.",
166 167
                              i,
                              in_name));
168
        paddle::Tensor custom_t;
169
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*x));
170 171
        custom_vec_in.emplace_back(custom_t);
      }
172
      kernel_ctx.EmplaceBackInputs(std::move(custom_vec_in));
173
    } else {
174
      auto* x = ctx.Input<phi::DenseTensor>(in_name);
175 176 177 178 179
      PADDLE_ENFORCE_NOT_NULL(
          x,
          platform::errors::NotFound("Input tensor (%s) is nullptr.", in_name));
      PADDLE_ENFORCE_EQ(x->IsInitialized(),
                        true,
180 181
                        platform::errors::InvalidArgument(
                            "Input tensor (%s) is not initialized.", in_name));
182
      paddle::Tensor custom_in;
183
      custom_in.set_impl(std::make_shared<phi::DenseTensor>(*x));
184 185 186 187 188 189 190 191 192 193
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (custom_in.is_gpu_pinned()) {
        VLOG(3) << "Custom Operator: custom input is gpu pinned tensor";
        auto gpu_place = phi::GPUPlace(platform::GetCurrentDeviceId());
        auto custom_gpu_in = custom_in.copy_to(gpu_place, true);
        kernel_ctx.EmplaceBackInput(std::move(custom_gpu_in));
      } else {
        kernel_ctx.EmplaceBackInput(std::move(custom_in));
      }
#else
194
      kernel_ctx.EmplaceBackInput(std::move(custom_in));
195
#endif
196
    }
197 198
  }

199 200 201 202 203
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
204
      kernel_ctx.EmplaceBackAttr(ctx.Attr<bool>(attr_name));
205
    } else if (attr_type_str == "int") {
206
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int>(attr_name));
207
    } else if (attr_type_str == "float") {
208
      kernel_ctx.EmplaceBackAttr(ctx.Attr<float>(attr_name));
209
    } else if (attr_type_str == "int64_t") {
210
      kernel_ctx.EmplaceBackAttr(ctx.Attr<int64_t>(attr_name));
211
    } else if (attr_type_str == "std::string") {
212
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::string>(attr_name));
213
    } else if (attr_type_str == "std::vector<int>") {
214
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int>>(attr_name));
215
    } else if (attr_type_str == "std::vector<float>") {
216
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<float>>(attr_name));
217
    } else if (attr_type_str == "std::vector<int64_t>") {
218
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<int64_t>>(attr_name));
219
    } else if (attr_type_str == "std::vector<std::string>") {
220
      kernel_ctx.EmplaceBackAttr(ctx.Attr<std::vector<std::string>>(attr_name));
221 222 223 224 225
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
226
          "`std::vector<float>`, `std::vector<int64_t>`, "
227 228 229 230 231
          "`std::vector<std::string>`, Please check whether "
          "the attribute data type and data type string are matched.",
          attr_type_str));
    }
  }
232

233 234
  VLOG(3) << "Custom Operator: push outputs into CustomOpKernelContext.";
  // cache the target tensor pointers
235
  std::vector<phi::DenseTensor*> true_out_ptrs;
236 237 238 239 240 241 242 243
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      PADDLE_ENFORCE(i == 0UL && outputs.size() == 1UL,
                     platform::errors::PreconditionNotMet(
                         "If custom operator's outputs contains `paddle::Vec("
                         ")` type, "
                         "it only can hold one output."));
244
      auto vec_out = ctx.MultiOutput<phi::DenseTensor>(out_name);
245 246
      PADDLE_ENFORCE_NE(vec_out.empty(),
                        true,
247 248
                        platform::errors::NotFound(
                            "Output vector<tensor> (%s) is empty.", out_name));
249
      std::vector<paddle::Tensor> custom_vec_out;
250 251 252 253 254
      for (size_t j = 0; j < vec_out.size(); ++j) {
        auto* out = vec_out[j];
        PADDLE_ENFORCE_NOT_NULL(
            out,
            platform::errors::NotFound(
255 256
                "The %d-th tensor in output vector<tensor> (%s) is nullptr.",
                j,
257 258
                out_name));
        true_out_ptrs.emplace_back(out);
259
        paddle::Tensor custom_t;
260
        // here only can copy the output tensor into context
261
        custom_t.set_impl(std::make_shared<phi::DenseTensor>(*out));
262 263 264 265
        custom_vec_out.emplace_back(custom_t);
      }
      kernel_ctx.EmplaceBackOutputs(std::move(custom_vec_out));
    } else {
266
      auto* out = ctx.Output<phi::DenseTensor>(out_name);
267 268 269
      PADDLE_ENFORCE_NOT_NULL(out,
                              platform::errors::NotFound(
                                  "Output tensor (%s) is nullptr.", out_name));
270
      true_out_ptrs.emplace_back(out);
271
      paddle::Tensor custom_out;
272
      // here only can copy the output tensor into context
273
      custom_out.set_impl(std::make_shared<phi::DenseTensor>(*out));
274 275 276
      kernel_ctx.EmplaceBackOutput(std::move(custom_out));
    }
  }
277

278 279
  try {
    VLOG(3) << "Custom Operator: Run ComputeFunc.";
280 281

    FLAGS_tensor_operants_mode = "phi";
282 283
    if (paddle::OperantsManager::Instance().phi_operants.get() == nullptr) {
      paddle::OperantsManager::Instance().phi_operants.reset(
284 285 286 287
          new paddle::operants::PhiTensorOperants());
      VLOG(4) << "Initialize phi tensor operants successfully";
    }

288 289
    // handle inplace case
    kernel_ctx.MapPlainOutputs(inputs, outputs, inplace_map);
290
    func(&kernel_ctx);
291
    kernel_ctx.AssignInplaceOutputs();
292 293 294 295

    // sync output tensor data into original output
    auto* calc_outs = kernel_ctx.AllMutableOutput();
    PADDLE_ENFORCE_EQ(
296 297
        true_out_ptrs.size(),
        calc_outs->size(),
298 299 300 301
        platform::errors::InvalidArgument(
            "The number of element in custom operator outputs is wrong, "
            "expected contains %d Tensors, but actually contains %d "
            "Tensors.",
302 303
            true_out_ptrs.size(),
            calc_outs->size()));
304 305 306
    for (size_t i = 0; i < true_out_ptrs.size(); ++i) {
      auto* true_out = true_out_ptrs.at(i);
      auto calc_out =
307
          std::dynamic_pointer_cast<phi::DenseTensor>(calc_outs->at(i).impl());
308
      // assign meta info
309
      auto* true_out_meta = phi::DenseTensorUtils::GetMutableMeta(true_out);
310 311 312
      true_out_meta->dims = calc_out->dims();
      true_out_meta->dtype = calc_out->dtype();
      true_out_meta->layout = calc_out->layout();
313 314
      true_out_meta->offset = calc_out->offset();
      // lod no need to be reset
315 316 317
      // reset holder if needed
      if (true_out->Holder() != calc_out->Holder()) {
        true_out->ResetHolder(calc_out->Holder());
318
      }
319 320 321 322 323 324 325
    }
  } catch (platform::EnforceNotMet& exception) {
    throw std::move(exception);
  } catch (std::exception& ex) {
    PADDLE_THROW(platform::errors::External("%s", ex.what()));
  } catch (...) {
    PADDLE_THROW(platform::errors::Fatal(
326
        "Custom operator raises an unknown exception in runtime."));
327 328 329
  }
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static void RunInferShapeFunc(framework::InferShapeContext* ctx,
                              const paddle::InferShapeFunc& func,
                              const std::vector<std::string>& inputs,
                              const std::vector<std::string>& outputs,
                              const std::vector<std::string>& attrs) {
  std::vector<std::vector<int64_t>> input_shapes;
  std::vector<std::vector<std::vector<int64_t>>> vec_input_shapes;

  VLOG(3) << "Custom Operator: InferShape - get input ddim.";
  for (auto& in_name : inputs) {
    if (detail::IsDuplicableVar(in_name)) {
      OP_INOUT_CHECK(ctx->HasInputs(in_name), "Input", in_name, "Custom");
      auto vec_ddim = ctx->GetInputsDim(in_name);
      std::vector<std::vector<int64_t>> vec_shape;
      vec_shape.reserve(vec_ddim.size());
345 346
      std::transform(vec_ddim.begin(),
                     vec_ddim.end(),
347 348
                     std::back_inserter(vec_shape),
                     [&](const DDim& ddim) -> std::vector<int64_t> {
349
                       return phi::vectorize(ddim);
350 351 352 353 354
                     });
      vec_input_shapes.emplace_back(vec_shape);
    } else {
      OP_INOUT_CHECK(ctx->HasInput(in_name), "Input", in_name, "Custom");
      auto ddim = ctx->GetInputDim(in_name);
355
      input_shapes.emplace_back(phi::vectorize(ddim));
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    }
  }

  std::vector<paddle::any> custom_attrs;
  for (auto& attr_str : attrs) {
    auto attr_name_and_type = detail::ParseAttrStr(attr_str);
    auto attr_name = attr_name_and_type[0];
    auto attr_type_str = attr_name_and_type[1];
    if (attr_type_str == "bool") {
      custom_attrs.emplace_back(ctx->Attrs().Get<bool>(attr_name));
    } else if (attr_type_str == "int") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int>(attr_name));
    } else if (attr_type_str == "float") {
      custom_attrs.emplace_back(ctx->Attrs().Get<float>(attr_name));
    } else if (attr_type_str == "int64_t") {
      custom_attrs.emplace_back(ctx->Attrs().Get<int64_t>(attr_name));
    } else if (attr_type_str == "std::string") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::string>(attr_name));
    } else if (attr_type_str == "std::vector<int>") {
      custom_attrs.emplace_back(ctx->Attrs().Get<std::vector<int>>(attr_name));
    } else if (attr_type_str == "std::vector<float>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<float>>(attr_name));
    } else if (attr_type_str == "std::vector<int64_t>") {
      // NOTE(chenweihang): InferShape can't support std::vector<int64_t>
      // attr type, because the input type is std::vector<int64_t>, only
      // can use one rule to parse std::vector<int64_t> parameter
      continue;
    } else if (attr_type_str == "std::vector<std::string>") {
      custom_attrs.emplace_back(
          ctx->Attrs().Get<std::vector<std::string>>(attr_name));
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported `%s` type value as custom attribute now. "
          "Supported data types include `bool`, `int`, `float`, "
          "`int64_t`, `std::string`, `std::vector<int>`, "
          "`std::vector<float>`, `std::vector<std::string>`, "
          "Please check whether the attribute data type and "
          "data type string are matched.",
          attr_type_str));
    }
  }

  VLOG(3) << "Custom Operator: InferShape - calc output ddim.";
  auto output_shapes = func(input_shapes, vec_input_shapes, custom_attrs);

  VLOG(3) << "Custom Operator: InferShape - set output ddim.";
  for (size_t i = 0; i < outputs.size(); ++i) {
    auto out_name = outputs[i];
    if (detail::IsDuplicableVar(out_name)) {
      std::vector<DDim> vec_ddim;
      vec_ddim.reserve(output_shapes.size());
408 409
      std::transform(output_shapes.begin(),
                     output_shapes.end(),
410 411
                     std::back_inserter(vec_ddim),
                     [&](const std::vector<int64_t>& shape) -> DDim {
412
                       return phi::make_ddim(shape);
413 414 415
                     });
      ctx->SetOutputsDim(out_name, vec_ddim);
    } else {
416
      ctx->SetOutputDim(out_name, phi::make_ddim(output_shapes[i]));
417 418 419 420
    }
  }
}

421 422 423 424 425 426 427 428 429
//////////////////// Operator Define /////////////////

class CustomOperator : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

  // Dummy infershape
  // Because it is a pure virtual function, it must be implemented
  void InferShape(framework::InferShapeContext* ctx) const override {
430
    VLOG(3) << "Custom Operator: Dummy infer shape of custom operator.";
431 432 433 434 435 436 437 438 439 440 441 442
  }

  /**
   * NOTE: [Skip the Kernel Selection]
   * Custom Op only registers one Op kernel on each device, so that the
   * data type selection and promotion that depends on GetExpectedKernelType,
   * as well as the adaptation of various other special situations,
   * need users to implement, to avoid users needs to implement
   * GetExpectedKernelType function when expanding other cases.
   * The RAW type is used here as the data type, indicating that
   * it can only be determined at runtime.
   */
443
  phi::KernelKey GetExpectedKernelType(
444
      const framework::ExecutionContext& ctx) const override {
445
    return phi::KernelKey(ctx.GetPlace());
446 447 448 449 450 451 452
  }

  /**
   * NOTE: [Skip Input Variable Cast for DataType]
   * Because the kernel data type is RAW, we should skip the cast for
   * data type difference when PrepareData.
   */
453
  phi::KernelKey GetKernelTypeForVar(
454
      const std::string& var_name,
455
      const phi::DenseTensor& tensor,
456 457 458 459
      const phi::KernelKey& expected_kernel_type) const override {
    return phi::KernelKey(phi::Backend::ALL_BACKEND,
                          tensor.layout(),
                          expected_kernel_type.dtype());
460 461 462 463 464 465 466 467 468 469 470 471
  }
};

class CustomOpMaker : public OpProtoAndCheckerMaker {
 public:
  explicit CustomOpMaker(const std::vector<std::string>& inputs,
                         const std::vector<std::string>& outputs,
                         const std::vector<std::string>& attrs)
      : inputs_(inputs), outputs_(outputs), attrs_(attrs) {}

  void Make() override {
    for (auto& in_name : inputs_) {
472 473 474 475 476 477
      if (detail::IsDuplicableVar(in_name)) {
        AddInput(in_name, "The input " + in_name + "of Custom operator.")
            .AsDuplicable();
      } else {
        AddInput(in_name, "The input " + in_name + "of Custom operator.");
      }
478 479
    }
    for (auto& out_name : outputs_) {
480 481 482 483 484 485
      if (detail::IsDuplicableVar(out_name)) {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.")
            .AsDuplicable();
      } else {
        AddOutput(out_name, "The output " + out_name + "of Custom Operator.");
      }
486
    }
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    for (auto& attr : attrs_) {
      auto attr_name_and_type = detail::ParseAttrStr(attr);
      auto attr_name = attr_name_and_type[0];
      auto attr_type_str = attr_name_and_type[1];
      if (attr_type_str == "bool") {
        AddAttr<bool>(attr_name, "custom operator bool attribute.")
            .SetDefault(false);
      } else if (attr_type_str == "int") {
        AddAttr<int>(attr_name, "custom operator int attribute.").SetDefault(1);
      } else if (attr_type_str == "float") {
        AddAttr<float>(attr_name, "custom operator float attribute.")
            .SetDefault(1.0f);
      } else if (attr_type_str == "int64_t") {
        AddAttr<int64_t>(attr_name, "custom operator int64_t attribute.")
            .SetDefault(1);
      } else if (attr_type_str == "std::string") {
        AddAttr<std::string>(attr_name, "custom operator int attribute.")
            .SetDefault("");
      } else if (attr_type_str == "std::vector<int>") {
        AddAttr<std::vector<int>>(attr_name,
                                  "custom operator std::vector<int> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<float>") {
        AddAttr<std::vector<float>>(
            attr_name, "custom operator std::vector<float> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<int64_t>") {
        AddAttr<std::vector<int64_t>>(
            attr_name, "custom operator std::vector<int64_t> attribute.")
            .SetDefault({});
      } else if (attr_type_str == "std::vector<std::string>") {
        AddAttr<std::vector<std::string>>(
            attr_name, "custom operator std::vector<std::string> attribute.")
            .SetDefault({});
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported `%s` type value as custom attribute now. "
            "Supported data types include `bool`, `int`, `float`, "
            "`int64_t`, `std::string`, `std::vector<int>`, "
526
            "`std::vector<float>`, `std::vector<int64_t>`, "
527 528 529 530 531
            "`std::vector<std::string>`, Please check whether "
            "the attribute data type and data type string are matched.",
            attr_type_str));
      }
    }
532 533 534
    AddComment(R"DOC(
Custom Operator.

535
According to the phi::DenseTensor operation function implemented by the user
536
independently of the framework, it is encapsulated into a framework
H
HongyuJia 已提交
537 538
operator to adapt to various execution scenarios such as dynamic graph
mode, static graph mode, and inference mode.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

)DOC");
  }

 private:
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
  std::vector<std::string> attrs_;
};

template <typename T>
class CustomGradOpMaker;

template <>
class CustomGradOpMaker<OpDesc> : public SingleGradOpMaker<OpDesc> {
 public:
  explicit CustomGradOpMaker(
556 557
      const OpDesc& fwd_op,
      const std::unordered_set<std::string>& no_grad_set,
558
      std::unordered_map<std::string, std::string>* grad_to_var,
559 560
      const std::vector<BlockDesc*>& grad_block,
      const std::string& name,
561
      const std::vector<std::string>& inputs,
562 563
      const std::vector<std::string>& outputs,
      bool is_double_grad)
564 565 566
      : SingleGradOpMaker<OpDesc>(fwd_op, no_grad_set, grad_to_var, grad_block),
        name_(name),
        inputs_(inputs),
567 568
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
569 570 571 572 573 574 575 576 577

 protected:
  void Apply(GradOpPtr<OpDesc> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
578
      VLOG(3) << "Custom Operator: GradOpDescMaker - input: " << in_name;
579
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
595
      VLOG(3) << "Custom Operator: GradOpDescMaker - output: " << out_name;
596
      if (detail::IsDuplicableVar(out_name)) {
597
        grad_op->SetOutput(
598 599 600
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_),
                            /*drop_empty_grad=*/false));
601
      } else {
602 603 604
        grad_op->SetOutput(
            out_name,
            this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
605
      }
606
    }
607
    grad_op->SetAttrMap(this->Attrs());
608 609 610 611 612 613
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
614
  bool is_double_grad_{false};
615 616 617 618 619 620 621 622 623 624 625 626
};

template <>
class CustomGradOpMaker<imperative::OpBase>
    : public SingleGradOpMaker<imperative::OpBase> {
 public:
  explicit CustomGradOpMaker(
      const std::string& type,
      const imperative::NameVarBaseMap& var_base_map_in,
      const imperative::NameVarBaseMap& var_base_map_out,
      const AttributeMap& attrs,
      const std::map<std::string, std::string>& inplace_map,
627 628 629 630
      const std::string& name,
      const std::vector<std::string>& inputs,
      const std::vector<std::string>& outputs,
      bool is_double_grad)
631 632 633 634
      : SingleGradOpMaker<imperative::OpBase>(
            type, var_base_map_in, var_base_map_out, attrs, inplace_map),
        name_(name),
        inputs_(inputs),
635 636
        outputs_(outputs),
        is_double_grad_(is_double_grad) {}
637 638 639 640 641 642 643 644 645 646 647 648 649 650

 protected:
  // TODO(chenweihang): The code is duplicated with the previous one, because
  // ere OpMaker's Input, Output and other methods are protected. Putting the
  // function implementation outside the class will cause the method to be
  // uncallable,
  // so it is still implemented in the class for the time being.
  void Apply(GradOpPtr<imperative::OpBase> grad_op) const override {
    grad_op->SetType(name_);

    auto fwd_op_inputs = this->InputNames();
    auto fwd_op_outputs = this->OutputNames();

    for (auto& in_name : inputs_) {
651
      VLOG(3) << "Custom Operator: GradOpBaseMaker - input: " << in_name;
652
      if (!detail::IsGradVar(in_name, is_double_grad_)) {
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        if (detail::IsMemberOf(fwd_op_inputs, in_name)) {
          grad_op->SetInput(in_name, this->Input(in_name));
        } else if (detail::IsMemberOf(fwd_op_outputs, in_name)) {
          grad_op->SetInput(in_name, this->Output(in_name));
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "The input tensor name `%s` is invalid, expected it is the input "
              "or output of forward operator.",
              in_name));
        }
      } else {
        grad_op->SetInput(in_name, this->OutputGrad(detail::NoGrad(in_name)));
      }
    }
    for (auto& out_name : outputs_) {
668
      VLOG(3) << "Custom Operator: GradOpBaseMaker - output: " << out_name;
669 670
      grad_op->SetOutput(
          out_name, this->InputGrad(detail::NoGrad(out_name, is_double_grad_)));
671
    }
672
    grad_op->SetAttrMap(this->Attrs());
673 674 675 676 677 678
  }

 private:
  std::string name_;
  std::vector<std::string> inputs_;
  std::vector<std::string> outputs_;
679
  bool is_double_grad_{false};
680 681 682 683
};

//////////// Operator and Kernel Register //////////////

684 685 686
static void RegisterOperatorKernelWithPlace(
    const std::string& name,
    const OperatorWithKernel::OpKernelFunc& op_kernel_func,
687 688
    const proto::VarType::Type type,
    const platform::Place& place) {
689
  OpKernelType key(type, place);
690
  VLOG(3) << "Custom Operator: op kernel key: " << key;
691
  OperatorWithKernel::AllOpKernels()[name][key] = op_kernel_func;
692 693
}

694 695 696 697 698 699 700 701
static void RegisterOperatorKernel(
    const std::string& name,
    const paddle::KernelFunc& kernel_func,
    const std::vector<std::string>& inputs,
    const std::vector<std::string>& outputs,
    const std::vector<std::string>& attrs,
    const std::unordered_map<std::string, std::string>& inplace_map,
    void* dso_handle) {
702
  VLOG(3) << "Custom Operator: op name in kernel: " << name;
703 704 705 706 707
  // NOTE [ Dummy Op Kernel Key ]
  // TODO(chenweihang): Because execute engine need get device context based
  // op_kernel_key.place_, so we should register kernel for each
  // device. But this is not entirely correct, if user only give a cpu kernel,
  // but call api in gpu device, it will cause error.
708 709 710
  OperatorWithKernel::OpKernelFunc op_kernel_func;
  if (kernel_func) {
    VLOG(3) << "Register custom operator " << name << " with kernel func";
711
    op_kernel_func = [kernel_func, inputs, outputs, attrs, inplace_map](
712
                         const framework::ExecutionContext& ctx) {
713
      VLOG(3) << "Custom Operator: run custom kernel func in lambda.";
714
      RunKernelFunc(ctx, kernel_func, inputs, outputs, attrs, inplace_map);
715 716 717 718 719 720 721 722 723 724 725 726 727
    };
  } else {
    VLOG(3) << "Register custom operator " << name
            << " with raw op kernel func";
    PADDLE_ENFORCE_NOT_NULL(
        dso_handle,
        platform::errors::InvalidArgument(
            "The dso handle must be provided if kernel_func is nullptr."));
    using OpKernelFuncPtr = void(const framework::ExecutionContext&);
    auto symbol_name = "PD_" + name + "_raw_op_kernel_func";
    auto* func = detail::DynLoad<OpKernelFuncPtr>(dso_handle, symbol_name);
    op_kernel_func = func;
  }
728 729
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CPUPlace());
730
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
731 732
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::CUDAPlace());
733
#endif
734 735 736 737
#if defined(PADDLE_WITH_XPU)
  RegisterOperatorKernelWithPlace(
      name, op_kernel_func, proto::VarType::RAW, platform::XPUPlace());
#endif
H
HongyuJia 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  for (const auto& dev_type : device_types) {
    for (size_t dev_id = 0;
         dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
         dev_id++) {
      RegisterOperatorKernelWithPlace(name,
                                      op_kernel_func,
                                      proto::VarType::RAW,
                                      platform::CustomPlace(dev_type, dev_id));
    }
  }
#endif
751 752
}

753 754
void RegisterOperatorWithMetaInfo(const std::vector<OpMetaInfo>& op_meta_infos,
                                  void* dso_handle) {
755 756 757 758 759 760
  /* Op register */
  OpInfo info;

  auto& base_op_meta = op_meta_infos.front();

  auto op_name = OpMetaInfoHelper::GetOpName(base_op_meta);
761 762

  if (OpInfoMap::Instance().Has(op_name)) {
763
    LOG(WARNING) << "Operator (" << op_name << ") has been registered.";
764 765 766
    return;
  }

767 768 769
  auto& op_inputs = OpMetaInfoHelper::GetInputs(base_op_meta);
  auto& op_outputs = OpMetaInfoHelper::GetOutputs(base_op_meta);
  auto& op_attrs = OpMetaInfoHelper::GetAttrs(base_op_meta);
770
  auto& op_inplace_map = OpMetaInfoHelper::GetInplaceMap(base_op_meta);
771 772 773 774
  auto& kernel_fn = OpMetaInfoHelper::GetKernelFn(base_op_meta);
  auto& infer_shape_func = OpMetaInfoHelper::GetInferShapeFn(base_op_meta);
  auto& infer_dtype_func = OpMetaInfoHelper::GetInferDtypeFn(base_op_meta);

775 776
  VLOG(3) << "Custom Operator: forward, op name: " << op_name;
  VLOG(3) << "Custom Operator: forward, op inputs: "
777
          << string::join_strings(op_inputs, ',');
778
  VLOG(3) << "Custom Operator: forward, op outputs: "
779
          << string::join_strings(op_outputs, ',');
780
  VLOG(3) << "Custom Operator: forward, op attrs: "
781
          << string::join_strings(op_attrs, ',');
782 783 784 785 786 787
  if (!op_inplace_map.empty()) {
    VLOG(3) << "Custom Operator: forward, op inplace_map: "
            << string::join_strings(op_inplace_map, ',', [](auto& pair) {
                 return pair.first + ": " + pair.second;
               });
  }
788 789

  // Op
790 791
  info.creator_ = [](const std::string& op_name,
                     const VariableNameMap& inputs,
792 793 794 795 796 797 798 799 800 801 802 803 804
                     const VariableNameMap& outputs,
                     const AttributeMap& attrs) {
    return new CustomOperator(op_name, inputs, outputs, attrs);
  };

  // OpMaker
  info.proto_ = new proto::OpProto;
  info.proto_->set_type(op_name);

  info.checker_ = new OpAttrChecker();
  CustomOpMaker custom_maker(op_inputs, op_outputs, op_attrs);
  custom_maker(info.proto_, info.checker_);
  PADDLE_ENFORCE_EQ(
805 806
      info.proto_->IsInitialized(),
      true,
807 808
      platform::errors::PreconditionNotMet(
          "Fail to initialize %s's OpProto, because %s is not initialized.",
809 810
          op_name,
          info.proto_->InitializationErrorString()));
811

812 813 814 815 816 817 818
  // Inplace
  if (!op_inplace_map.empty()) {
    info.infer_inplace_ = [op_inplace_map](bool use_cuda) {
      return op_inplace_map;
    };
  }

819
  // InferShape
820 821 822 823
  if (infer_shape_func == nullptr) {
    // use default InferShape
    info.infer_shape_ = [op_inputs, op_outputs](InferShapeContext* ctx) {
      PADDLE_ENFORCE_EQ(
824 825
          op_inputs.size(),
          1UL,
826 827 828
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
829 830 831
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
832 833 834
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));
      PADDLE_ENFORCE_EQ(
835 836
          op_outputs.size(),
          1UL,
837 838 839
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
840 841 842
              "and only one output without setting the InferShapeFn. "
              "At this time, the input shape will be directly set to "
              "the output shape.\n"
843 844 845
              "Please set the InferShapeFn of custom "
              "operator by .SetInferShapeFn(PD_INFER_SHAPE(...))"));

846
      VLOG(3) << "Custom Operator: Default InferShape - share ddim.";
847 848 849
      ctx->ShareDim(op_inputs[0], op_outputs[0]);
    };
  } else {
850 851
    info.infer_shape_ = [op_inputs, op_outputs, op_attrs, infer_shape_func](
                            InferShapeContext* ctx) {
852
      RunInferShapeFunc(ctx, infer_shape_func, op_inputs, op_outputs, op_attrs);
853 854
    };
  }
855 856

  // Infer Dtype
857
  if (infer_dtype_func == nullptr) {
858
    // use default InferDtype
859 860
    info.infer_var_type_ = [op_inputs, op_outputs](InferVarTypeContext* ctx) {
      PADDLE_ENFORCE_EQ(
861 862
          op_inputs.size(),
          1UL,
863 864 865
          platform::errors::Unavailable(
              "Your custom operator contains multiple inputs. "
              "We only allow a custom operator that contains only one input "
866 867 868
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
869 870 871
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));
      PADDLE_ENFORCE_EQ(
872 873
          op_outputs.size(),
          1UL,
874 875 876
          platform::errors::Unavailable(
              "Your custom operator contains multiple outputs. "
              "We only allow a custom operator that contains only one input "
877 878 879
              "and only one output without setting the InferDtypeFn. "
              "At this time, the input dtype will be directly set to "
              "the output dtype.\n"
880 881 882
              "Please set the InferDtypeFn of custom "
              "operator by .SetInferDtypeFn(PD_INFER_DTYPE(...))"));

883
      VLOG(3) << "Custom Operator: InferDtype - share dtype.";
884 885 886 887
      auto dtype = ctx->GetInputDataType(op_inputs[0]);
      ctx->SetOutputDataType(op_outputs[0], dtype);
    };
  } else {
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    info.infer_var_type_ =
        [op_inputs, op_outputs, infer_dtype_func](InferVarTypeContext* ctx) {
          std::vector<DataType> input_dtypes;
          std::vector<std::vector<DataType>> vec_input_dtypes;

          VLOG(3) << "Custom Operator: InferDtype - get input dtype.";
          for (auto& in_name : op_inputs) {
            if (detail::IsDuplicableVar(in_name)) {
              std::vector<DataType> vec_custom_dtype;
              for (size_t i = 0; i < ctx->InputSize(in_name); ++i) {
                auto dtype = ctx->GetInputDataType(in_name, i);
                vec_custom_dtype.emplace_back(
                    paddle::framework::TransToPhiDataType(dtype));
              }
              vec_input_dtypes.emplace_back(vec_custom_dtype);
            } else {
              auto dtype = ctx->GetInputDataType(in_name);
              input_dtypes.emplace_back(
                  paddle::framework::TransToPhiDataType(dtype));
            }
908
          }
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
          VLOG(3) << "Custom Operator: InferDtype - infer output dtype.";
          auto output_dtypes = infer_dtype_func(input_dtypes, vec_input_dtypes);

          VLOG(3) << "Custom Operator: InferDtype - set output dtype.";
          for (size_t i = 0; i < op_outputs.size(); ++i) {
            auto out_name = op_outputs[i];
            if (detail::IsDuplicableVar(out_name)) {
              for (size_t j = 0; j < output_dtypes.size(); ++j) {
                auto dtype =
                    paddle::framework::TransToProtoVarType(output_dtypes[i]);
                ctx->SetOutputDataType(out_name, dtype, j);
              }
            } else {
              ctx->SetOutputDataType(
                  out_name,
                  paddle::framework::TransToProtoVarType(output_dtypes[i]));
            }
927
          }
928
        };
929
  }
930 931

  // Kernel func
932 933 934 935 936 937 938
  RegisterOperatorKernel(op_name,
                         kernel_fn,
                         op_inputs,
                         op_outputs,
                         op_attrs,
                         op_inplace_map,
                         dso_handle);
939 940 941 942 943 944 945 946 947

  // If grad op or double grad op exists
  std::string cur_op_name = op_name;
  for (size_t i = 1; i < op_meta_infos.size(); ++i) {
    auto& cur_grad_op = op_meta_infos[i];

    auto& grad_op_name = OpMetaInfoHelper::GetOpName(cur_grad_op);
    auto& grad_op_inputs = OpMetaInfoHelper::GetInputs(cur_grad_op);
    auto& grad_op_outputs = OpMetaInfoHelper::GetOutputs(cur_grad_op);
948
    auto& grad_op_attrs = OpMetaInfoHelper::GetAttrs(cur_grad_op);
949
    auto& grad_op_inplace_map = OpMetaInfoHelper::GetInplaceMap(cur_grad_op);
950
    auto& grad_kernel_fn = OpMetaInfoHelper::GetKernelFn(cur_grad_op);
951
    auto& grad_infer_shape_fn = OpMetaInfoHelper::GetInferShapeFn(cur_grad_op);
952

953 954
    VLOG(3) << "Custom Operator: backward, op name: " << grad_op_name;
    VLOG(3) << "Custom Operator: backward, op inputs: "
955
            << string::join_strings(grad_op_inputs, ',');
956
    VLOG(3) << "Custom Operator: backward, op outputs: "
957
            << string::join_strings(grad_op_outputs, ',');
958 959 960 961 962 963 964 965
    VLOG(3) << "Custom Operator: backward, op attrs: "
            << string::join_strings(grad_op_attrs, ',');
    if (!op_inplace_map.empty()) {
      VLOG(3) << "Custom Operator: backward, op inplace_map: "
              << string::join_strings(grad_op_inplace_map, ',', [](auto& pair) {
                   return pair.first + ": " + pair.second;
                 });
    }
966

967 968
    bool is_double_grad = (i == 2);

969
    // GradOpDescMaker
970 971 972 973 974 975
    info.grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const OpDesc& fwd_op,
            const std::unordered_set<std::string>& no_grad_set,
            std::unordered_map<std::string, std::string>* grad_to_var,
            const std::vector<BlockDesc*>& grad_block) {
976 977 978 979 980 981 982 983
          CustomGradOpMaker<paddle::framework::OpDesc> maker(fwd_op,
                                                             no_grad_set,
                                                             grad_to_var,
                                                             grad_block,
                                                             grad_op_name,
                                                             grad_op_inputs,
                                                             grad_op_outputs,
                                                             is_double_grad);
984 985
          return maker();
        };
986 987

    // GradOpBaseMaker
988 989 990 991 992 993 994 995
    info.dygraph_grad_op_maker_ =
        [grad_op_name, grad_op_inputs, grad_op_outputs, is_double_grad](
            const std::string& type,
            const imperative::NameVarBaseMap& var_base_map_in,
            const imperative::NameVarBaseMap& var_base_map_out,
            const framework::AttributeMap& attrs,
            const framework::AttributeMap& default_attrs,
            const std::map<std::string, std::string>& inplace_map) {
996 997 998 999 1000 1001 1002 1003 1004
          CustomGradOpMaker<paddle::imperative::OpBase> maker(type,
                                                              var_base_map_in,
                                                              var_base_map_out,
                                                              attrs,
                                                              inplace_map,
                                                              grad_op_name,
                                                              grad_op_inputs,
                                                              grad_op_outputs,
                                                              is_double_grad);
1005 1006 1007
          maker.SetDygraphDefaultAttrsMap(default_attrs);
          return maker();
        };
1008 1009 1010 1011 1012

    /* Grad op register */
    OpInfo grad_info;

    // Grad Op
1013 1014 1015 1016 1017 1018
    grad_info.creator_ = [](const std::string& type,
                            const VariableNameMap& inputs,
                            const VariableNameMap& outputs,
                            const AttributeMap& attrs) {
      return new CustomOperator(type, inputs, outputs, attrs);
    };
1019

1020
    // Grad InferShape
1021
    if (grad_infer_shape_fn == nullptr) {
1022 1023
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
1024
                                is_double_grad](InferShapeContext* ctx) {
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        // 1. if forward input exists, gradient's shape is same with forward
        // input
        // default
        //    [Suitable for most situations]
        // 2. if forward input not exists, and only contains one grad input and
        // output,
        //    use grad input shape as grad output shape
        //    [Suitable for the situation that forward input is not used as
        //    backward input]
        for (auto& out_name : grad_op_outputs) {
1035
          auto fwd_name = detail::NoGrad(out_name, is_double_grad);
1036 1037
          if (detail::IsDuplicableVar(fwd_name)) {
            // Duplicable forward var must as backward input
1038 1039
            ctx->ShareDim(fwd_name, out_name);
          } else {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            if (ctx->HasInput(fwd_name)) {
              ctx->ShareDim(fwd_name, out_name);
            } else {
              PADDLE_ENFORCE_EQ(
                  grad_op_inputs.size() == 1UL && grad_op_outputs.size() == 1UL,
                  true,
                  platform::errors::Unavailable(
                      "Custom grad operator infershape error. "
                      "If a custom grad operator contains only one input and "
                      "only one output, the input shape will be directly set "
H
HongyuJia 已提交
1050 1051 1052
                      "to the output shape. Otherwise, Please set the forward "
                      "input as the grad operator's input or  set the "
                      "InferShapeFn of custom grad operator by "
1053 1054 1055
                      ".SetInferShapeFn(PD_INFER_SHAPE(...))"));
              ctx->ShareDim(grad_op_inputs[0], out_name);
            }
1056 1057
          }
        }
1058 1059
      };
    } else {
1060 1061 1062
      grad_info.infer_shape_ = [grad_op_inputs,
                                grad_op_outputs,
                                grad_op_attrs,
1063
                                grad_infer_shape_fn](InferShapeContext* ctx) {
1064 1065 1066 1067 1068
        RunInferShapeFunc(ctx,
                          grad_infer_shape_fn,
                          grad_op_inputs,
                          grad_op_outputs,
                          grad_op_attrs);
1069 1070
      };
    }
1071 1072

    // Kernel func
1073 1074 1075 1076 1077
    RegisterOperatorKernel(grad_op_name,
                           grad_kernel_fn,
                           grad_op_inputs,
                           grad_op_outputs,
                           grad_op_attrs,
1078
                           grad_op_inplace_map,
1079
                           dso_handle);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

    // update current info
    OpInfoMap::Instance().Insert(cur_op_name, info);
    cur_op_name = grad_op_name;
    info = grad_info;
  }
  // insert last info
  OpInfoMap::Instance().Insert(cur_op_name, info);
}

void RegisterOperatorWithMetaInfoMap(
1091
    const paddle::OpMetaInfoMap& op_meta_info_map, void* dso_handle) {
1092
  auto& meta_info_map = op_meta_info_map.GetMap();
1093
  VLOG(3) << "Custom Operator: size of op meta info map - "
1094 1095 1096
          << meta_info_map.size();
  // pair: {op_type, OpMetaInfo}
  for (auto& pair : meta_info_map) {
1097
    VLOG(3) << "Custom Operator: pair first -> op name: " << pair.first;
1098
    RegisterOperatorWithMetaInfo(pair.second, dso_handle);
1099 1100 1101 1102 1103 1104
  }
}

////////////////////// User APIs ///////////////////////

// load op api
1105 1106
const std::unordered_map<std::string, std::vector<OpMetaInfo>>&
LoadOpMetaInfoAndRegisterOp(const std::string& dso_name) {
1107
  void* handle = paddle::platform::dynload::GetOpDsoHandle(dso_name);
1108
  VLOG(3) << "load custom_op lib: " << dso_name;
1109 1110 1111 1112
  typedef OpMetaInfoMap& get_op_meta_info_map_t();
  auto* get_op_meta_info_map =
      detail::DynLoad<get_op_meta_info_map_t>(handle, "PD_GetOpMetaInfoMap");
  auto& op_meta_info_map = get_op_meta_info_map();
1113
  RegisterOperatorWithMetaInfoMap(op_meta_info_map, handle);
1114
  return op_meta_info_map.GetMap();
1115 1116 1117 1118
}

}  // namespace framework
}  // namespace paddle