fused_gemm_epilogue_op.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/phi/kernels/funcs/fused_gemm_epilogue.h"
19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class FusedGemmEpilogueOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueOp");
31 32 33 34
    OP_INOUT_CHECK(
        ctx->HasInput("Bias"), "Output", "Bias", "FusedGemmEpilogueOp");
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FusedGemmEpilogueOp");
35 36 37 38 39 40 41 42

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto bias_dims = ctx->GetInputDim("Bias");
    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

    PADDLE_ENFORCE_EQ(
43 44
        y_dims.size(),
        2,
45 46 47 48 49 50
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
51 52
        x_dims.size(),
        2,
53 54 55 56 57 58
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
59 60
        bias_dims.size(),
        1,
61 62 63 64 65
        platform::errors::InvalidArgument(
            "The Input tensor bias's dimension of FusedGemmEpilogueOp "
            " should be == 1, but got %d.",
            bias_dims.size()));

66 67
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      trans_y ? y_dims[0] : y_dims[1],
68 69 70 71
                      platform::errors::InvalidArgument(
                          "The Input tensor bias's dimension 0"
                          " should be == Y[-1], but got bias's shape = [%s] "
                          "and Y's shape = [%s]",
72 73
                          bias_dims,
                          y_dims));
74 75 76 77 78 79 80 81

    auto x_mat_dims =
        phi::flatten_to_2d(x_dims, trans_x ? 1 : x_dims.size() - 1);

    int K_from_x = trans_x ? x_mat_dims[0] : x_mat_dims[1];
    int K_from_y = trans_y ? y_dims[1] : y_dims[0];

    PADDLE_ENFORCE_EQ(
82 83
        K_from_x,
        K_from_y,
84 85 86
        platform::errors::InvalidArgument(
            "The last dimension of X should be equal with Y's first dimension."
            "But received X[-1] = [%d], Y[0] = [%d].",
87 88
            K_from_x,
            K_from_y));
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    std::vector<int64_t> out_dims;
    out_dims.reserve(static_cast<size_t>(x_dims.size()));
    if (trans_x) {
      for (int i = 1; i < x_dims.size(); ++i) out_dims.push_back(x_dims[i]);
    } else {
      for (int i = 0; i < x_dims.size() - 1; ++i) out_dims.push_back(x_dims[i]);
    }

    if (trans_y) {
      out_dims.push_back(y_dims[0]);
    } else {
      out_dims.push_back(y_dims[1]);
    }
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
104

105
    auto activation = ctx->Attrs().Get<std::string>("activation");
106
    if (ctx->HasOutput("ReserveSpace")) {
107
      ctx->SetOutputDim("ReserveSpace", phi::make_ddim(out_dims));
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

      if (activation == "none") {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The ReserveSpace would not be used when activation = \"none\""));
      } else {
        int min_size_of_n = activation == "relu" ? 128 : 8;
        int N_size = trans_y ? y_dims[0] : y_dims[1];
        PADDLE_ENFORCE_EQ(
            N_size % min_size_of_n,
            0,
            platform::errors::InvalidArgument(
                "The output dimension N (X(MxK) * Y(KxN) = C(MxN)) "
                "should be multiple of %d when auxiliary_key given "
                "and activation=%s, but got N = %d.",
                min_size_of_n,
                activation,
                N_size));
      }
126 127 128
    }
  }

129
  phi::KernelKey GetExpectedKernelType(
130 131
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
132
    return phi::KernelKey(data_type, ctx.GetPlace());
133 134 135 136 137 138 139 140 141 142 143 144
  }
};

class FusedGemmEpilogueOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor X of Out = Act((X * Y) + Bias).");
    AddInput("Y", "The input tensor Y of Out = Act((X * Y) + Bias).");
    AddInput("Bias", "The input tensor bias of Out = Act((X * Y) + Bias).");

    AddOutput("Out", "The output tensor Out of Out = Act((X * Y) + Bias).");
    AddOutput("ReserveSpace",
145 146 147
              R"DOC(Reserve GPU space to place
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue op. If not given (empty string), the
148 149 150 151 152 153
        auxiliary mode would not be enable.)DOC")
        .AsDispensable()
        .AsExtra();

    AddAttr<bool>(
        "trans_x",
154 155 156
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
157 158 159 160
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
161 162 163
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
164 165 166 167 168
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);

    AddAttr<std::string>(
        "activation",
169 170
        R"DOC((string, default none), The activation function. It could be
    one of {none, relu, gelu}. When none is given, Act would be null
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogue Operator
This operator is used to perform Activeation(Elementwise_add(Matmul(X, Y), bias)).
It is equal to paddle.nn.Linear + Activation (None, ReLU or GeLU).

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

class FusedGemmEpilogueGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
192 193
    OP_INOUT_CHECK(
        ctx->HasInput("DOut"), "Input", "DOut", "FusedGemmEpilogueGradOp");
194 195 196 197 198 199 200
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "FusedGemmEpilogueGradOp");
    OP_INOUT_CHECK(ctx->HasOutput("DY"), "Output", "DY", "FusedGemmEpilogueOp");

    auto dout_dims = ctx->GetInputDim("DOut");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
201 202 203
    auto trans_x = ctx->Attrs().Get<bool>("trans_x");
    auto trans_y = ctx->Attrs().Get<bool>("trans_y");

204
    PADDLE_ENFORCE_GE(
205 206
        dout_dims.size(),
        2,
207 208 209 210 211 212
        platform::errors::InvalidArgument(
            "The Input tensor DOut's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            dout_dims.size()));

    PADDLE_ENFORCE_EQ(
213 214
        y_dims.size(),
        2,
215 216 217 218 219 220
        platform::errors::InvalidArgument(
            "The Input tensor Y's dimension of FusedGemmEpilogueGradOp "
            " should be 2, but got %d.",
            y_dims.size()));

    PADDLE_ENFORCE_GE(
221 222
        x_dims.size(),
        2,
223 224 225 226 227 228
        platform::errors::InvalidArgument(
            "The Input tensor X's dimension of FusedGemmEpilogueGradOp "
            " should be >= 2, but got %d.",
            x_dims.size()));

    PADDLE_ENFORCE_EQ(
229 230
        dout_dims.size(),
        x_dims.size(),
231 232 233 234
        platform::errors::InvalidArgument(
            "The Input tensor DOut's and X's dimension of "
            "FusedGemmEpilogueGradOp "
            " should be the same, but got DOut's dim = %d and X's = %d.",
235 236
            dout_dims.size(),
            x_dims.size()));
237 238 239 240 241

    auto dout_mat_dims = phi::flatten_to_2d(dout_dims, dout_dims.size() - 1);
    auto x_mat_dims = phi::flatten_to_2d(x_dims, x_dims.size() - 1);

    PADDLE_ENFORCE_EQ(
242 243
        dout_mat_dims[1],
        trans_y ? y_dims[0] : y_dims[1],
244 245 246
        platform::errors::InvalidArgument(
            "The last dimension of DOut should be equal with Y's last"
            "dimension. But received DOut[-1] = [%d], Y[1] = [%d].",
247 248
            dout_mat_dims[1],
            y_dims[1]));
249 250

    PADDLE_ENFORCE_EQ(
251 252
        dout_mat_dims[0],
        trans_x ? x_mat_dims[1] : x_mat_dims[0],
253 254 255
        platform::errors::InvalidArgument(
            "The first dimension of DOut should be equal with X's first"
            "dimension. But received DOut[0] = [%d], Y[0] = [%d].",
256 257
            dout_mat_dims[0],
            x_mat_dims[0]));
258 259 260

    auto activation_grad = ctx->Attrs().Get<std::string>("activation_grad");
    if (activation_grad != "none" && !ctx->HasInput("ReserveSpace")) {
261 262
      PADDLE_ENFORCE_EQ(true,
                        false,
263 264
                        platform::errors::InvalidArgument(
                            "The ReserveSpace should not be empty. "
265
                            "when activation == {relu_grad, gelu_grad}."));
266 267 268
    }

    if (ctx->HasOutput("DX")) {
269
      ctx->SetOutputDim("DX", x_dims);
270
    }
271
    ctx->SetOutputDim("DY", y_dims);
272 273

    if (ctx->HasOutput("DBias")) {
274 275
      int64_t dbias_dim = trans_y ? y_dims[0] : y_dims[1];
      ctx->SetOutputDim("DBias", phi::make_ddim({dbias_dim}));
276 277 278
    }
  }

279
  phi::KernelKey GetExpectedKernelType(
280 281
      const framework::ExecutionContext& ctx) const {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
282
    return phi::KernelKey(data_type, ctx.GetPlace());
283 284 285 286 287 288 289 290 291 292 293
  }
};

class FusedGemmEpilogueGradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("DOut",
             "The input grad tensor to Out of Out = (Act(X) * Y) + bias");
    AddInput("X", "The input tensor X of Out = (Act(X) * Y) + bias");
    AddInput("Y", "The input tensor Y of Out = (Act(X) * Y) + bias");
    AddInput("ReserveSpace",
294 295 296
             R"DOC(A GPU space to fetch
        auxiliary data pointer. It is used to pass auxiliary data pointer
        for fused_gemm_epilogue_grad op. If not given (empty string), the
297 298 299 300 301 302 303 304 305 306
        auxiliary mode would not be enable.)DOC")
        .AsDispensable();

    AddOutput("DX", "The output grad tensor to X of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
    AddOutput("DY",
              "The output grad tensor to Y of Out = (Act(X) * Y) + bias.");
    AddOutput("DBias",
              "The output grad tensor to bias of Out = (Act(X) * Y) + bias.")
        .AsDispensable();
307 308
    AddAttr<bool>(
        "trans_x",
309 310 311
        R"DOC((bool, default false), Whether to transpose input tensor X
    or not. The input tensor X coulbe be more than two dimension. When
    set trans_x=true, it would fully reverse X. For instant: X with shpae
312 313 314 315
    [d0, d1, d2, d3] -> [d3, d2, d1, d0].)DOC")
        .SetDefault(false);
    AddAttr<bool>(
        "trans_y",
316 317 318
        R"DOC((bool, default false), Whether to transpose input tensor Y
    or not. The input tensor Y should be two dimension. When
    set trans_y=true, it would transpose Y. For instant: Y with shpae
319 320
    [d0, d1] -> [d1, d0].)DOC")
        .SetDefault(false);
321 322 323

    AddAttr<std::string>(
        "activation_grad",
324 325
        R"DOC((string, default none), The backward activation function. It could be
    one of {none, relu_grad, gelu_grad}. When none is given, The backward Act would
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    be null operations)DOC")
        .SetDefault("none");

    AddComment(R"DOC(
FusedGemmEpilogueGrad Operator
This operator is used to perform backward of Elementwise_add(Matmul(Activeation(X), Y), bias).
It is equal to Activation (None, ReLU or GeLU) + paddle.nn.Linear.

Note:
X could be more than two dimension and would be flatten to 2D for computing.
X with shape [d0, d1, d2, d3] -> X_2D with shape [d0*d1*d2, d3]
)DOC");
  }
};

341 342 343 344 345 346 347 348 349 350 351 352
template <typename T>
class FusedGemmEpilogueOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    const auto& act_type = this->template Attr<std::string>("activation");

    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
353
    if (act_type != "none") {
354
      op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
355
    }
356 357 358 359 360 361 362 363 364 365
    op->SetInput("DOut", this->OutputGrad("Out"));

    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DY", this->InputGrad("Y"));
    op->SetOutput("DBias", this->InputGrad("Bias"));

    op->SetAttrMap(this->Attrs());
  }
};

366 367 368 369
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
370
REGISTER_OPERATOR(
371 372
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueOp,
373 374 375
    ops::FusedGemmEpilogueOpMaker,
    ops::FusedGemmEpilogueOpGradMaker<paddle::framework::OpDesc>,
    ops::FusedGemmEpilogueOpGradMaker<paddle::imperative::OpBase>);
376 377
REGISTER_OPERATOR(fused_gemm_epilogue_grad,
                  ops::FusedGemmEpilogueGradOp,
378
                  ops::FusedGemmEpilogueGradOpMaker);