test_elementwise_mod_op.py 6.3 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20 21 22 23 24 25 26
import paddle.fluid.core as core
from op_test import OpTest

import random


class TestElementwiseModOp(OpTest):
27

28 29 30 31 32
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
33
        self.python_api = paddle.remainder
34 35 36 37 38 39 40 41 42 43 44 45 46 47
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
48 49 50 51
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
52 53 54 55 56 57 58

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
59
        self.dtype = np.int32
60 61 62 63 64 65

    def init_axis(self):
        pass


class TestElementwiseModOp_scalar(TestElementwiseModOp):
66

67 68 69 70 71 72 73 74
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


75
class TestElementwiseModOpFloat(TestElementwiseModOp):
76

77 78 79 80 81 82
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
83
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
84 85

    def test_check_output(self):
86 87 88 89
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


class TestElementwiseModOpFp16(TestElementwiseModOp):

    def init_dtype(self):
        self.dtype = np.float16

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def test_check_output(self):
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
107 108 109


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
110

111 112 113 114
    def init_dtype(self):
        self.dtype = np.float64


S
ShenLiang 已提交
115
class TestRemainderOp(unittest.TestCase):
116

117 118 119
    def _executed_api(self, x, y, name=None):
        return paddle.remainder(x, y, name)

S
ShenLiang 已提交
120 121 122 123 124
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

125
            y_1 = self._executed_api(x, y, name='div_res')
S
ShenLiang 已提交
126
            self.assertEqual(('div_res' in y_1.name), True)
127 128

    def test_dygraph(self):
S
ShenLiang 已提交
129 130 131 132 133
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
134
            z = self._executed_api(x, y)
S
ShenLiang 已提交
135 136 137 138 139 140 141 142 143 144
            np_z = z.numpy()
            z_expected = np.array([0, 3, 2, 1])
            self.assertEqual((np_z == z_expected).all(), True)

            np_x = np.array([-3.3, 11.5, -2, 3.5])
            np_y = np.array([-1.2, 2., 3.3, -2.3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = x % y
            z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
145
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
146 147 148 149 150 151 152

            np_x = np.array([-3, 11, -2, 3])
            np_y = np.array([-1, 2, 3, -2])
            x = paddle.to_tensor(np_x, dtype="int64")
            y = paddle.to_tensor(np_y, dtype="int64")
            z = x % y
            z_expected = np.array([0, 1, 1, -1])
153
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
154

155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
class TestRemainderInplaceOp(TestRemainderOp):

    def _executed_api(self, x, y, name=None):
        return x.remainder_(y, name)


class TestRemainderInplaceBroadcastSuccess(unittest.TestCase):

    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.remainder_(y)
        numpy_result = self.x_numpy % self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestRemainderInplaceBroadcastSuccess2(TestRemainderInplaceBroadcastSuccess
                                            ):

    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestRemainderInplaceBroadcastSuccess3(TestRemainderInplaceBroadcastSuccess
                                            ):

    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


195 196
if __name__ == '__main__':
    unittest.main()