auc_op.h 4.8 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
T
update  
typhoonzero 已提交
26
class AucKernel : public framework::OpKernel {
T
typhoonzero 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* inference = ctx.Input<Tensor>("Inference");
    auto* inference_prob = ctx.Input<Tensor>("InferenceProb");
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
      thresholds_list[i] = (float)i / (num_thresholds - 1);
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

    const int* inference_data = inference->data<int>();
T
update  
typhoonzero 已提交
48
    const T* inference_prob_data = inference_prob->data<T>();
T
typhoonzero 已提交
49 50 51 52 53 54 55 56
    const T* label_data = label->data<T>();

    size_t num_samples = inference->dims()[0];
    size_t class_dim = inference->dims()[1];

    // create local tensor for storing the curve: TP, FN, TN, FP
    // TODO(typhoonzero): put these tensors in Scope
    // TODO(typhoonzero): use op to caculate these values.
T
update  
typhoonzero 已提交
57
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
58 59 60 61 62 63

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

T
update  
typhoonzero 已提交
64 65 66 67
    int* tp_data = true_positive.mutable_data<int>(ctx.GetPlace());
    int* fn_data = false_negative.mutable_data<int>(ctx.GetPlace());
    int* tn_data = true_negative.mutable_data<int>(ctx.GetPlace());
    int* fp_data = false_positive.mutable_data<int>(ctx.GetPlace());
T
typhoonzero 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    for (auto thresh = thresholds_list.begin(); thresh != thresholds_list.end();
         thresh++) {
      size_t idx_thresh = thresh - thresholds_list.begin();
      // caculate TP, FN, TN, FP for current thresh
      int tp, fn, tn, fp = 0;
      for (size_t i = 0; i < num_samples; i++) {
        for (size_t j = 0; j < class_dim; j++) {
          if (inference_data[i * class_dim + j] == label_data[i]) {
            if (inference_prob_data[i * class_dim + j] >= (*thresh)) {
              tp++;
            } else {
              tn++;
            }
          } else {
            if (inference_prob_data[i * class_dim + j] >= (*thresh)) {
              fp++;
            } else {
              fn++;
            }
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
104 105 106
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
107
    for (int i = 0; i < num_thresholds; i++) {
T
update  
typhoonzero 已提交
108 109 110 111 112
      tp_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
113 114 115 116 117 118 119 120
    }

    if (curve == "ROC") {
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i - 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
121
    } else if (curve == "PR") {
T
typhoonzero 已提交
122 123 124 125 126 127 128 129 130 131 132
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle