api_predict.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os, sys
import numpy as np
from optparse import OptionParser
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import sparse_binary_vector
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
  python api_predict.py -h
"""

26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class QuickStartPrediction():
    def __init__(self, train_conf, dict_file, model_dir=None, label_file=None):
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """
        self.train_conf = train_conf
        self.dict_file = dict_file
        self.word_dict = {}
        self.dict_dim = self.load_dict()
        self.model_dir = model_dir
        if model_dir is None:
            self.model_dir = os.path.dirname(train_conf)

        self.label = None
        if label_file is not None:
            self.load_label(label_file)

        conf = parse_config(train_conf, "is_predict=1")
        self.network = swig_paddle.GradientMachine.createFromConfigProto(
            conf.model_config)
        self.network.loadParameters(self.model_dir)
        input_types = [sparse_binary_vector(self.dict_dim)]
        self.converter = DataProviderConverter(input_types)

    def load_dict(self):
        """
        Load dictionary from self.dict_file.
        """
        for line_count, line in enumerate(open(self.dict_file, 'r')):
            self.word_dict[line.strip().split('\t')[0]] = line_count
        return len(self.word_dict)

    def load_label(self, label_file):
        """
        Load label.
        """
        self.label = {}
        for v in open(label_file, 'r'):
            self.label[int(v.split('\t')[1])] = v.split('\t')[0]

    def get_index(self, data):
        """
        transform word into integer index according to the dictionary.
        """
        words = data.strip().split()
74
        word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
75 76 77 78 79 80 81 82 83
        return word_slot

    def batch_predict(self, data_batch):
        input = self.converter(data_batch)
        output = self.network.forwardTest(input)
        prob = output[0]["id"].tolist()
        print("predicting labels is:")
        print prob

84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def option_parser():
    usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
    parser = OptionParser(usage="usage: %s [options]" % usage)
    parser.add_option(
        "-n",
        "--tconf",
        action="store",
        dest="train_conf",
        help="network config")
    parser.add_option(
        "-d",
        "--dict",
        action="store",
        dest="dict_file",
        help="dictionary file")
    parser.add_option(
        "-b",
        "--label",
        action="store",
        dest="label",
        default=None,
        help="dictionary file")
    parser.add_option(
        "-c",
        "--batch_size",
        type="int",
        action="store",
        dest="batch_size",
        default=1,
        help="the batch size for prediction")
    parser.add_option(
        "-w",
        "--model",
        action="store",
        dest="model_path",
        default=None,
        help="model path")
    return parser.parse_args()


def main():
    options, args = option_parser()
    train_conf = options.train_conf
    batch_size = options.batch_size
    dict_file = options.dict_file
    model_path = options.model_path
    label = options.label
    swig_paddle.initPaddle("--use_gpu=0")
    predict = QuickStartPrediction(train_conf, dict_file, model_path, label)

    batch = []
    labels = []
    for line in sys.stdin:
        [label, text] = line.split("\t")
        labels.append(int(label))
        batch.append([predict.get_index(text)])
141
    print("labels is:")
142 143 144
    print labels
    predict.batch_predict(batch)

145

146 147
if __name__ == '__main__':
    main()