build_strategy.cc 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18 19 20
#include <glog/logging.h>
#include <memory>

#include "paddle/fluid/framework/details/memory_reuse_types.h"
21
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
22
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
25
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/framework/ir/graph_helper.h"
W
WangZhen 已提交
27
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
28 29 30 31 32 33
#include "paddle/fluid/framework/ir/graph_viz_pass.h"

namespace paddle {
namespace framework {
namespace details {

34
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
35 36
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
37
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
38 39
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
40 41
}

42 43 44 45
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
S
sneaxiy 已提交
46 47 48 49
    if (strategy_.enable_sequential_execution_) {
      AppendPass("sequential_execution_pass");
    }

X
Xin Pan 已提交
50
    // Add a graph viz pass to record a graph.
51 52 53 54 55 56 57
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass("graph_viz_pass");
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
      viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    }

X
Xin Pan 已提交
58
    // Add op fusion.
59 60 61
    if (strategy.fuse_relu_depthwise_conv_) {
      AppendPass("fuse_relu_depthwise_conv_pass");
    }
62
    if (strategy.fuse_elewise_add_act_ops_) {
X
Xin Pan 已提交
63
      auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
X
Xin Pan 已提交
64
      // Add a graph viz pass to record a graph.
65
      if (!strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
66
        auto viz_pass = AppendPass("graph_viz_pass");
67 68
        const std::string graph_path = string::Sprintf(
            "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
X
Xin Pan 已提交
69 70
        viz_pass->Set<std::string>("graph_viz_path",
                                   new std::string(graph_path));
71 72 73
      }
    }

74 75 76 77
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE(strategy_.trainer_id_ >= 0, "trainer_id_ >= 0");
78
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
79 80 81 82 83 84
      PADDLE_ENFORCE((unsigned)(strategy_.trainer_id_) <
                         strategy_.trainers_endpoints_.size(),
                     "trainer_id_ < endpoints_ size");
    }
    VLOG(1) << "CollectiveContext:" << context->String();

D
dzhwinter 已提交
85 86 87 88 89 90 91 92
    // NOTE(dzh): memory optimize should be a runtime pass.
    // However, after multi_devices_pass, VarHandle, OpHandle is
    // the de-fact IR, any reuse on Graph is meaningless.
    // A side-effect of that, memory optimize cannot forsee the fetched vars
    // , so fetchlist should be set persistable before call the Run interface.
    if (strategy.memory_optimize_) {
      auto analysis_var_pass = AppendPass("analysis_var_pass");
    }
93 94

    AppendMultiDevPass(strategy);
95

X
Xin Pan 已提交
96
    // Add a graph print pass to record a graph with device info.
97 98
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
D
dzhwinter 已提交
99 100 101 102 103
      const std::string graph_path =
          string::Sprintf("%s%s", strategy_.debug_graphviz_path_.c_str(),
                          "_multi_devices_graph");
      multi_devices_print_pass->Set<std::string>(kGraphvizPath,
                                                 new std::string(graph_path));
104 105 106 107 108
      multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
          "graph_printer", new details::GraphvizSSAGraphPrinter);
    }

    // Verify that the graph is correct for multi-device executor.
Y
Yancey1989 已提交
109 110 111
    auto multi_devices_pass = AppendPass("multi_devices_check_pass");
    multi_devices_pass->Set<bool>(kEnablePG,
                                  new bool(strategy.enable_parallel_graph_));
S
sneaxiy 已提交
112

113 114 115 116
    if (SeqOnlyAllReduceOps(strategy)) {
      AppendPass("all_reduce_deps_pass");
    }

S
sneaxiy 已提交
117 118 119
    if (strategy_.remove_unnecessary_lock_) {
      AppendPass("modify_op_lock_and_record_event_pass");
    }
120 121
  }

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  // Convert graph to run on multi-devices.
  void AppendMultiDevPass(const BuildStrategy &strategy) {
    ir::Pass *multi_devices_pass;
    if (strategy_.is_distribution_) {
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
      if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
        multi_devices_pass =
            AppendPass("allreduce_mode_multi_devices_pass").get();
      } else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
        multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get();
      } else {
        PADDLE_THROW("Unknown reduce strategy.");
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

141 142 143 144
 private:
  BuildStrategy strategy_;
};

145
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
146 147
    bool finalize_strategy) const {
  if (is_finalized_) {
148 149
    return pass_builder_;
  }
150
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
151 152
  if (finalize_strategy) {
    is_finalized_ = true;
153
  }
X
fix  
Xin Pan 已提交
154
  return pass_builder_;
155 156
}

157 158 159 160
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
  return framework::details::MultiDevSSAGraphBuilder().count(pass_name) > 0;
}

161 162
std::unique_ptr<ir::Graph> BuildStrategy::Apply(
    const ProgramDesc &main_program, const std::vector<platform::Place> &places,
163
    const std::string &loss_var_name, const std::vector<Scope *> &local_scopes,
164
    const size_t &nranks,
P
peizhilin 已提交
165
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
166 167 168 169
    const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
    const bool use_cuda) const {
#endif
170 171
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
172 173 174

  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
175 176 177 178 179 180 181
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLossVarName);
      pass->SetNotOwned<const std::string>(kLossVarName, &loss_var_name);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
182
                                                    &local_scopes);
183 184
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
185 186
      pass->Erase(kEnablePG);
      pass->Set<bool>(kEnablePG, new bool(true));
Y
Yancey1989 已提交
187

P
peizhilin 已提交
188
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
fix  
Xin Pan 已提交
189 190 191
      platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase("nccl_ctxs");
      pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
192
#endif
193

D
dzhwinter 已提交
194 195 196 197 198 199 200 201 202 203 204
    } else if (pass->Type() == "analysis_var_pass") {
      const std::vector<OpDesc *> *all_op_descs =
          new std::vector<OpDesc *>(main_program.Block(0).AllOps());
      graph->Set<const std::vector<OpDesc *>>(kAllOpDescs,
                                              all_op_descs);  // take ownership
      graph->Set<GraphNodePool>(kGraphNodePool,
                                new GraphNodePool);  // take ownership

      pass->Erase(kAllOpDescs);
      pass->SetNotOwned<const std::vector<OpDesc *>>(kAllOpDescs, all_op_descs);

S
sneaxiy 已提交
205
    } else if (pass->Type() == "sequential_execution_pass") {
206 207
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
208 209 210 211 212 213

      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
    } else if (pass->Type() == "all_reduce_deps_pass") {
214 215
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
216

S
sneaxiy 已提交
217 218 219 220
      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
221 222 223 224 225 226
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
X
fix  
Xin Pan 已提交
227 228 229
    }
    graph = pass->Apply(std::move(graph));
  }
230 231
  return graph;
}
D
dzhwinter 已提交
232

233 234 235 236
}  // namespace details
}  // namespace framework
}  // namespace paddle

237
USE_PASS(fuse_relu_depthwise_conv_pass);
238 239
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
240
USE_PASS(multi_batch_merge_pass);
241 242 243
USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(allreduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass);
244 245
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
D
dzhwinter 已提交
246
USE_PASS(analysis_var_pass);
S
sneaxiy 已提交
247
USE_PASS(sequential_execution_pass);
248
USE_PASS(all_reduce_deps_pass);
S
sneaxiy 已提交
249
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
250
USE_PASS(lock_free_optimize_pass);
W
WangZhen 已提交
251
USE_PASS(graph_to_program_pass);