eigen_test.cc 3.3 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yi Wang 已提交
14 15 16 17

#include "paddle/framework/eigen.h"
#include <gtest/gtest.h>

Y
Yi Wang 已提交
18 19
namespace paddle {
namespace framework {
Y
Yi Wang 已提交
20

Y
Yi Wang 已提交
21 22
TEST(EigenDim, From) {
  EigenDim<3>::Type ed = EigenDim<3>::From(make_ddim({1, 2, 3}));
Q
qijun 已提交
23 24 25
  ASSERT_EQ(1, ed[0]);
  ASSERT_EQ(2, ed[1]);
  ASSERT_EQ(3, ed[2]);
Y
Yi Wang 已提交
26
}
Y
Yi Wang 已提交
27

Y
Yi Wang 已提交
28
TEST(Eigen, Tensor) {
Y
Yi Wang 已提交
29
  Tensor t;
Y
Yi Wang 已提交
30
  float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
Y
Yi Wang 已提交
31 32 33 34
  for (int i = 0; i < 1 * 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

Y
Yi Wang 已提交
35
  EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
Q
qijun 已提交
36

Q
qijun 已提交
37 38 39
  ASSERT_EQ(1, et.dimension(0));
  ASSERT_EQ(2, et.dimension(1));
  ASSERT_EQ(3, et.dimension(2));
Q
qijun 已提交
40 41 42 43

  for (int i = 0; i < 1; i++) {
    for (int j = 0; j < 2; j++) {
      for (int k = 0; k < 3; k++) {
Q
qijun 已提交
44
        ASSERT_NEAR((i * 2 + j) * 3 + k, et(i, j, k), 1e-6f);
Q
qijun 已提交
45 46 47 48 49
      }
    }
  }
}

L
liaogang 已提交
50 51 52 53 54 55 56 57 58 59 60
TEST(Eigen, ScalarFrom) {
  Tensor t;
  int* p = t.mutable_data<int>(make_ddim({1}), platform::CPUPlace());
  *p = static_cast<int>(100);

  EigenScalar<int>::Type es = EigenScalar<int>::From(t);

  ASSERT_EQ(0, es.dimension(0));
  ASSERT_EQ(100, es(0));
}

Q
qijun 已提交
61 62 63 64 65 66 67 68 69
TEST(Eigen, VectorFrom) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({6}), platform::CPUPlace());
  for (int i = 0; i < 6; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenVector<float>::Type ev = EigenVector<float>::From(t);

Q
qijun 已提交
70
  ASSERT_EQ(6, ev.dimension(0));
Q
qijun 已提交
71 72

  for (int i = 0; i < 6; i++) {
Q
qijun 已提交
73
    ASSERT_NEAR(i, ev(i), 1e-6f);
Q
qijun 已提交
74 75 76 77 78 79 80 81 82 83 84 85
  }
}

TEST(Eigen, VectorFlatten) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
  for (int i = 0; i < 1 * 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenVector<float>::Type ev = EigenVector<float>::Flatten(t);

Q
qijun 已提交
86
  ASSERT_EQ(1 * 2 * 3, ev.dimension(0));
Q
qijun 已提交
87

Q
qijun 已提交
88
  for (int i = 0; i < 1 * 2 * 3; i++) {
Q
qijun 已提交
89
    ASSERT_NEAR(i, ev(i), 1e-6f);
Q
qijun 已提交
90
  }
Y
Yi Wang 已提交
91 92
}

Q
qijun 已提交
93 94 95 96 97 98 99 100
TEST(Eigen, Matrix) {
  Tensor t;
  float* p = t.mutable_data<float>(make_ddim({2, 3}), platform::CPUPlace());
  for (int i = 0; i < 2 * 3; i++) {
    p[i] = static_cast<float>(i);
  }

  EigenMatrix<float>::Type em = EigenMatrix<float>::From(t);
Y
Yi Wang 已提交
101

Q
qijun 已提交
102 103
  ASSERT_EQ(2, em.dimension(0));
  ASSERT_EQ(3, em.dimension(1));
Q
qijun 已提交
104 105 106

  for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 3; j++) {
Q
qijun 已提交
107
      ASSERT_NEAR(i * 3 + j, em(i, j), 1e-6f);
Q
qijun 已提交
108 109 110
    }
  }
}
Y
Yi Wang 已提交
111

F
WIP  
fengjiayi 已提交
112 113
TEST(Eigen, MatrixReshape) {
  Tensor t;
F
fengjiayi 已提交
114
  float* p = t.mutable_data<float>({2, 3, 6, 4}, platform::CPUPlace());
F
WIP  
fengjiayi 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  for (int i = 0; i < 2 * 3 * 6 * 4; ++i) {
    p[i] = static_cast<float>(i);
  }

  EigenMatrix<float>::Type em = EigenMatrix<float>::Reshape(t, 2);

  ASSERT_EQ(2 * 3, em.dimension(0));
  ASSERT_EQ(6 * 4, em.dimension(1));

  for (int i = 0; i < 2 * 3; i++) {
    for (int j = 0; j < 6 * 4; j++) {
      ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f);
    }
  }
}

Q
qijun 已提交
131
}  // namespace framework
Y
Yi Wang 已提交
132
}  // namespace paddle