auto_mixed_precision_pass.cc 31.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
16 17 18

#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/operator.h"
19 20 21 22 23 24
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/errors.h"
25 26 27
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/device_manager.h"
#endif
28 29 30 31 32 33 34

namespace paddle {
namespace framework {
namespace ir {

namespace {

35
using VarType = AutoMixedPrecisionPass::VarType;
36 37 38 39 40 41 42 43 44 45 46 47 48 49

bool PhiKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  const auto& kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.count(op_type) == 0) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static phi::Backend ConvertPlaceToBackend(const phi::Place& place) {
  switch (place.GetType()) {
    case phi::AllocationType::CPU:
      return phi::Backend::CPU;
    case phi::AllocationType::GPU:
      return phi::Backend::GPU;
    case phi::AllocationType::XPU:
      return phi::Backend::XPU;
    case phi::AllocationType::NPU:
      return phi::Backend::NPU;
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Cannot convert place(%d).", static_cast<int>(place.GetType())));
  }
  return phi::Backend::UNDEFINED;
}

67
bool KernelSupportPrecision(
68
    const std::string& op_type,
69
    phi::Backend backend,
70 71 72 73
    phi::DataType precision,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto phi_op_type = phi::TransToPhiKernelName(op_type);

74 75 76 77 78 79
  bool support =
      PhiKernelSupportPrecision(phi_op_type, backend, precision, layout);
  if (backend == phi::Backend::GPU) {
    support |= PhiKernelSupportPrecision(
        phi_op_type, phi::Backend::GPUDNN, precision, layout);
  }
80 81 82 83 84
  if (!support) {
    const auto& all_kernels = framework::OperatorWithKernel::AllOpKernels();
    auto it = all_kernels.find(op_type);
    if (it != all_kernels.end()) {
      for (const auto& kern_pair : it->second) {
85
        if (ConvertPlaceToBackend(kern_pair.first.place_) == backend &&
86 87 88 89 90 91 92 93 94 95 96
            kern_pair.first.data_type_ ==
                framework::TransToProtoVarType(precision)) {
          support = true;
          break;
        }
      }
    }
  }
  return support;
}

97 98 99 100 101 102 103
inline bool VarNodeHasDtype(Node* var_node) {
  auto type = var_node->Var()->GetType();
  return (type == VarType::SELECTED_ROWS) || (type == VarType::LOD_TENSOR) ||
         (type == VarType::LOD_TENSOR_ARRAY) || (type == VarType::STRINGS) ||
         (type == VarType::VOCAB);
}

104
inline bool IsFP32AndFP64(VarType::Type type) {
105 106 107
  return (type == VarType::FP64) || (type == VarType::FP32);
}

108
inline bool IsFP16AndBFP16(VarType::Type type) {
109 110 111 112 113
  return (type == VarType::FP16) || (type == VarType::BF16);
}

};  // namespace

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
void DoInsertCastOp(Graph* graph,
                    Node* var_node,
                    Node* op_node,
                    VarType::Type from_type,
                    VarType::Type to_type,
                    framework::BlockDesc* block_desc,
                    int* suffix,
                    std::unordered_map<Node*, Node*>* cache) {
  if (from_type == to_type) return;

  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (cache->count(var_node) == 0) {
    // insert cast op between var_node and op_node
    std::string cast_input_name = var_node->Var()->Name();
    std::string cast_output_name =
        var_node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(var_node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*cache)[var_node] = cast_output_node;
  }
  op_node->Op()->Rename(var_node->Name(), cache->at(var_node)->Name());
  IR_NODE_LINK_TO(var_node, cache->at(var_node)->inputs[0]);
  IR_NODE_LINK_TO(cache->at(var_node), op_node);

  IR_NODE_UNLINK(var_node, op_node);
}

166 167 168 169
bool OpSupportPrecision(const std::string& op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& black_list) {
170 171
  return black_list.count(op_type) == 0 &&
         KernelSupportPrecision(op_type, backend, precision);
172 173 174 175 176
}

// The set of ops that support fp16 calculation and are considered
// numerically-dangerous, slower and whose effects may also be observed in
// downstream ops.
177
// ref to python/paddle/fluid/contrib/mixed_precision/fp16_lists.py
178
void AutoMixedPrecisionPass::SetDefaultBlacklist() const {
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  black_list_.insert({
      // numerically-dangerous
      "exp",
      "square",
      "log",
      "mean",
      "sum",
      "cos_sim",
      "softmax_with_cross_entropy",
      "sigmoid_cross_entropy_with_logits",
      "c_softmax_with_cross_entropy",
      "cross_entropy",
      "cross_entropy2",
      // slower than fp32
      "conv2d_transpose",
      // default fp32 can avoid return inf when the sum value large than 65504
      "reduce_sum",
  });
}

199
void AutoMixedPrecisionPass::Init(Graph* graph) const {
200
  if (Has("enable_gpu_mixed") && Get<bool>("enable_gpu_mixed")) {
201
    backend_ = phi::Backend::GPU;
202 203 204 205 206
  } else if (Has("enable_xpu_mixed") && Get<bool>("enable_xpu_mixed")) {
    backend_ = phi::Backend::XPU;
  } else if (Has("enable_custom_device_mixed") &&
             Get<bool>("enable_custom_device_mixed")) {
    // transform Backend::CUSTOM to actual backend.
207 208 209 210 211 212 213 214 215 216 217 218
// Here, we only consider one custom backend.
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_type = phi::DeviceManager::GetAllCustomDeviceTypes()[0];
    backend_ = static_cast<phi::Backend>(
        static_cast<size_t>(phi::Backend::NUM_BACKENDS) +
        phi::CustomRegisteredDeviceMap::Instance()
            .GetOrRegisterGlobalDeviceTypeId(device_type));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Paddle is not compiled with CustomDevice. "
        "Cannot enable custom_device_mixed."));
#endif
219
  }
220
  skip_pass_ = backend_ == phi::Backend::UNDEFINED;
221 222 223

  low_precision_ = static_cast<phi::DataType>(Get<int>("mixed_precision_mode"));

224 225
  black_list_ = Get<std::unordered_set<std::string>>("mixed_black_list");
  SetDefaultBlacklist();
226 227 228 229 230 231 232 233
  VLOG(4) << "black_list has ";
  for (const auto& name : black_list_) {
    VLOG(4) << " - " << name;
  }

  if (Has("keep_io_types")) {
    keep_io_types_ = Get<bool>("keep_io_types");
  }
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

  auto graph_size = graph->SubGraphsSize();
  VLOG(4) << "graph size: " << graph_size;
  subgraphes_.resize(graph_size);
  all_op_nodes_.resize(graph_size);

  for (size_t i = 0; i < graph_size; i++) {
    subgraphes_[i] = graph->GetSubGraph(i);
    all_op_nodes_[i] = TopologySortOperations(*subgraphes_[i]);
    VLOG(4) << "subgraph " << i << " has " << all_op_nodes_[i].size()
            << "op nodes";
    for (auto* var_node : subgraphes_[i]->Nodes()) {
      if (!var_node->IsVar()) continue;

      auto var_name = var_node->Var()->Name();
      if (real_vars_.count(var_name) == 0) {
        real_vars_[var_name] = var_node;
        VLOG(4) << var_name << " is in graph " << i;
      }
    }
  }
}

257 258 259 260 261 262 263 264 265 266
void AutoMixedPrecisionPass::ApplyImpl(Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the graph "
                              "should not be nullptr."));
  PADDLE_ENFORCE_EQ(graph->IsMainGraph(),
                    true,
                    platform::errors::PreconditionNotMet(
                        "During the auto_mixed_precision_pass, the graph "
                        "should be main graph."));
267

268
  FusePassBase::Init("auto_mixed_precision", graph);
269 270 271

  Init(graph);
  VLOG(4) << "Init done";
272 273 274 275 276 277

  if (skip_pass_) {
    VLOG(3) << "Skip auto_mixed_precision_pass.";
    return;
  }

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  SetOpUniqueType();
  VLOG(4) << "SetOpUniqueType done";
  GetOpPrecision();
  VLOG(4) << "GetOpPrecision done";
  UpdateOpPrecision();
  VLOG(4) << "UpdateOpPrecision done";
  SetVarPrecision();
  VLOG(4) << "SetVarPrecision done";
  ConvertWeightsData();
  VLOG(4) << "ConvertWeightsData done";
  ProcessOpWithDtypeAttr();
  VLOG(4) << "ProcessOpWithDtypeAttr done";
  InsertCastOp();
  VLOG(4) << "InsertCastOp done";
  RestoreOpOriginType();
  VLOG(4) << "RestoreOpOriginType done";
294 295 296
  LOG(INFO) << "The number of ops run at low precision ["
            << op_run_low_precision_.size() << "/" << op_original_type_.size()
            << "]";
297 298
}

299
void AutoMixedPrecisionPass::SetOpUniqueType() const {
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
  int suffix = 0;
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();

      if (op_type == "feed" || op_type == "fetch") continue;

      std::string unique_type = op_type + "_" + std::to_string(suffix++);
      op_original_type_[unique_type] = op_type;
      op_node->Op()->SetType(unique_type);
      op_node->Op()->Flush();
      VLOG(4) << "change op type: " << op_type << " ---> " << unique_type;
    }
  }
}

316
void AutoMixedPrecisionPass::RestoreOpOriginType() const {
317 318 319 320 321 322 323 324 325 326 327
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
      op_node->Op()->SetType(GetOpOriginalType(op_type));
      op_node->Op()->Flush();
      VLOG(4) << "restore op type: " << op_type << " ---> "
              << op_node->Op()->Type();
    }
  }
}

328
inline std::string AutoMixedPrecisionPass::GetOpOriginalType(
329 330 331 332 333 334 335
    const std::string& op_type) const {
  if (op_original_type_.count(op_type)) {
    return op_original_type_.at(op_type);
  }
  return op_type;
}

336
void AutoMixedPrecisionPass::ProcessOpWithDtypeAttr() const {
337 338 339
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

      if (op_node->Op()->HasAttr("in_dtype")) {
        auto* var_node = op_node->inputs[0];
        auto* real_var_node = real_vars_[var_node->Var()->Name()];
        if (IsFP16AndBFP16(real_var_node->Var()->GetDataType())) {
          op_node->Op()->SetAttr(
              "in_dtype",
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
          op_node->Op()->Flush();
          VLOG(4) << "process op with in_dtype attr: " << op_type << " ( "
                  << static_cast<int>(real_var_node->Var()->GetDataType())
                  << " --->" << static_cast<int>(low_precision_) << " )";
        }
      }

355
      if (op_run_low_precision_.count(op_type) == 0) continue;
356 357 358

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
359
        if (IsFP32AndFP64(static_cast<VarType::Type>(dtype))) {
360 361
          op_node->Op()->SetAttr(
              "dtype",
362
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
363 364
          op_node->Op()->Flush();
          VLOG(4) << "process op with dtype attr: " << op_type << " ( " << dtype
365
                  << " --->" << static_cast<int>(low_precision_) << " )";
366
        }
367
      } else if (op_node->Op()->HasAttr("out_dtype")) {
368
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
369
        if (IsFP32AndFP64(static_cast<VarType::Type>(out_dtype))) {
370 371
          op_node->Op()->SetAttr(
              "out_dtype",
372
              static_cast<int>(framework::TransToProtoVarType(low_precision_)));
373 374
          op_node->Op()->Flush();
          VLOG(4) << "process op with out_dtype attr: " << op_type << " ( "
375
                  << out_dtype << " --->" << static_cast<int>(low_precision_)
376 377 378 379 380 381 382
                  << " )";
        }
      }
    }
  }
}

383
void AutoMixedPrecisionPass::GetOpPrecision() const {
384 385 386
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
      auto op_type = op_node->Op()->Type();
387
      bool support_low_precision = true;
388 389
      if (GetOpOriginalType(op_type) == "feed" ||
          GetOpOriginalType(op_type) == "fetch") {
390
        support_low_precision = !keep_io_types_;
391
      } else {
392 393
        support_low_precision = OpSupportPrecision(
            GetOpOriginalType(op_type), backend_, low_precision_, black_list_);
394 395 396 397
      }

      if (op_node->Op()->HasAttr("dtype")) {
        auto dtype = op_node->Op()->GetAttrIfExists<int>("dtype");
398 399 400
        support_low_precision =
            support_low_precision &&
            IsFP32AndFP64(static_cast<VarType::Type>(dtype));
401 402
      } else if (op_node->Op()->HasAttr("out_dtype")) {
        auto out_dtype = op_node->Op()->GetAttrIfExists<int>("out_dtype");
403 404
        support_low_precision =
            support_low_precision &&
405 406
            IsFP32AndFP64(static_cast<VarType::Type>(out_dtype));
      }
407

408 409 410 411 412 413
      // If scale op's "scale" and "bias" attr value exceed the range of fp16
      // and bf16, it cannot run at low precision.
      if (GetOpOriginalType(op_node->Op()->Type()) == "scale") {
        auto scale = op_node->Op()->GetAttrIfExists<float>("scale");
        auto bias = op_node->Op()->GetAttrIfExists<float>("bias");
        if (low_precision_ == phi::DataType::FLOAT16) {
414 415
          support_low_precision =
              support_low_precision &&
416 417 418
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::float16>(bias));
        } else if (low_precision_ == phi::DataType::BFLOAT16) {
419 420
          support_low_precision =
              support_low_precision &&
421 422
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(scale)) &&
              phi::dtype::isfinite(static_cast<phi::dtype::bfloat16>(bias));
423 424 425
        }
      }

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      // if op's input var and output var is not dense tensor, the op should
      // not run at low precision.
      for (auto* in_var_node : op_node->inputs) {
        CHECK_EQ(in_var_node->IsVar(), true);
        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
        if (real_in_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_in_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }
      for (auto* out_var_node : op_node->outputs) {
        CHECK_EQ(out_var_node->IsVar(), true);
        auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
        if (real_out_var_node->Var()->Persistable()) continue;

        support_low_precision =
            support_low_precision &&
            (real_out_var_node->Var()->GetType() == VarType::LOD_TENSOR);
      }

447 448 449
      if (support_low_precision) {
        op_run_low_precision_.insert(op_type);
        VLOG(4) << "support precision: " << op_type << " run at low precision";
450
      } else {
451 452
        VLOG(4) << "support precision: " << op_type
                << " not run at low precision";
453 454 455 456 457
      }
    }
  }
}

458 459
void AutoMixedPrecisionPass::UpdateOpPrecision() const {
  std::unordered_set<std::string> vars_should_not_low_precision;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

  // var -> the var's all input op
  std::unordered_map<std::string, std::vector<Node*>> var_input_ops;

  auto GetVarInputOps = [&] {
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
        auto op_type = op_node->Op()->Type();

        if (GetOpOriginalType(op_type) == "fetch") continue;
        if (op_node->Op()->HasAttr("sub_block")) continue;

        for (auto* var_node : op_node->outputs) {
          CHECK_EQ(var_node->IsVar(), true);
          if (var_node->Var()->Persistable()) continue;
          if (!VarNodeHasDtype(var_node)) continue;

          var_input_ops[var_node->Var()->Name()].push_back(op_node);
          VLOG(4) << "var input ops: " << var_node->Var()->Name()
                  << " is output of " << op_type;
        }

482 483 484
        // the select_input op's input var should not convert to low precision.
        // when op's output var is select_input op's input var, the op should
        // not run at low precision.
485 486 487 488 489 490
        if (GetOpOriginalType(op_node->Op()->Type()) == "select_input") {
          for (auto* in_var_node : op_node->inputs) {
            CHECK_EQ(in_var_node->IsVar(), true);
            if (in_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(in_var_node)) continue;

491
            vars_should_not_low_precision.insert(in_var_node->Var()->Name());
492 493
          }
        }
494 495

        // when op_1 only support cpu kernel. if op_2's intput var is op_1's
496
        // output var, then op_2 should not run at low precision.
497
        if (GetOpOriginalType(op_type) != "feed" &&
498 499
            !KernelSupportPrecision(
                GetOpOriginalType(op_type), backend_, phi::DataType::FLOAT32)) {
500 501 502 503 504 505 506 507
          for (auto* out_var_node : op_node->outputs) {
            CHECK_EQ(out_var_node->IsVar(), true);
            if (out_var_node->Var()->Persistable()) continue;
            if (!VarNodeHasDtype(out_var_node)) continue;

            vars_should_not_low_precision.insert(out_var_node->Var()->Name());
          }
        }
508 509 510 511 512 513 514 515 516 517
      }
    }
  };
  GetVarInputOps();

  bool precision_updated = false;
  do {
    precision_updated = false;
    for (const auto& nodes : all_op_nodes_) {
      for (auto* op_node : nodes) {
518
        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);
          if (!VarNodeHasDtype(in_var_node)) continue;

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          if (real_in_var_node->Var()->Persistable()) continue;

          if (vars_should_not_low_precision.count(
                  real_in_var_node->Var()->Name())) {
            op_run_low_precision_.erase(op_node->Op()->Type());
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
                    << " should not run at low precision.";
            break;
          }
        }

        if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) continue;

539 540 541 542 543 544 545
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);
          if (!VarNodeHasDtype(out_var_node)) continue;

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          if (real_out_var_node->Var()->Persistable()) continue;

546
          bool not_run_low_precision = false;
547 548
          const auto& input_op_nodes =
              var_input_ops[real_out_var_node->Var()->Name()];
549 550 551
          if (vars_should_not_low_precision.count(
                  real_out_var_node->Var()->Name())) {
            not_run_low_precision = true;
552 553
          } else {
            for (auto* node : input_op_nodes) {
554 555
              if (op_run_low_precision_.count(node->Op()->Type()) == 0) {
                not_run_low_precision = true;
556 557 558 559
                break;
              }
            }
          }
560 561
          if (not_run_low_precision) {
            op_run_low_precision_.erase(op_node->Op()->Type());
562 563
            precision_updated = true;
            VLOG(4) << op_node->Op()->Type()
564
                    << " should not run at low precision.";
565 566 567 568 569 570 571 572 573
            break;
          }
        }
      }
    }
  } while (precision_updated);
}

// special ops, its weights should not be low precision.
574 575
bool AutoMixedPrecisionPass::InputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
  auto* op_desc = op_node->Op();
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Input("Bias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Mean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Scale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("Variance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  } else if (GetOpOriginalType(op_desc->Type()) == "fused_multi_transformer") {
    auto vecs = op_desc->Input("LnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("LnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnScale");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Input("FFNLnBias");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
612 613 614 615 616 617 618 619 620 621 622 623 624 625

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
    }
  }

626 627 628
  return false;
}

629 630
bool AutoMixedPrecisionPass::OutputVarsNotConvert(
    Node* op_node, const std::string& var_name) const {
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
  auto* op_desc = op_node->Op();
  // batch_norm's input and output (variance and mean) are the same.
  if (GetOpOriginalType(op_desc->Type()) == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
      return true;
    }
  }
651 652 653 654 655 656 657 658 659 660 661 662 663 664

  if (backend_ == phi::Backend::XPU) {
    if (GetOpOriginalType(op_desc->Type()) == "layer_norm") {
      auto vecs = op_desc->Output("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Output("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_name) != vecs.end()) {
        return true;
      }
    }
  }

665 666 667
  return false;
}

668
void AutoMixedPrecisionPass::SetVarPrecision() const {
669 670
  for (const auto& nodes : all_op_nodes_) {
    for (auto* op_node : nodes) {
671 672 673 674 675
      if (op_run_low_precision_.count(op_node->Op()->Type()) == 0) {
        continue;
      }

      if (GetOpOriginalType(op_node->Op()->Type()) != "feed") {
676 677 678 679 680 681
        for (auto* in_var_node : op_node->inputs) {
          CHECK_EQ(in_var_node->IsVar(), true);

          auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];
          auto in_var_name = real_in_var_node->Var()->Name();

682
          if (!IsFP32AndFP64(real_in_var_node->Var()->GetDataType())) continue;
683 684 685 686 687
          if (!VarNodeHasDtype(real_in_var_node)) continue;
          if (InputVarsNotConvert(op_node, in_var_name)) continue;

          if (real_in_var_node->Var()->Persistable()) {
            real_in_var_node->Var()->SetDataType(
688 689
                framework::TransToProtoVarType(low_precision_));
            vars_convert_to_low_precision_.insert(in_var_name);
690 691
          }
        }
692
      }
693

694
      if (GetOpOriginalType(op_node->Op()->Type()) != "fetch") {
695 696 697 698 699 700
        for (auto* out_var_node : op_node->outputs) {
          CHECK_EQ(out_var_node->IsVar(), true);

          auto* real_out_var_node = real_vars_[out_var_node->Var()->Name()];
          auto out_var_name = real_out_var_node->Var()->Name();

701
          if (!IsFP32AndFP64(real_out_var_node->Var()->GetDataType())) continue;
702 703 704 705
          if (!VarNodeHasDtype(real_out_var_node)) continue;
          if (OutputVarsNotConvert(op_node, out_var_name)) continue;

          real_out_var_node->Var()->SetDataType(
706
              framework::TransToProtoVarType(low_precision_));
707
          if (real_out_var_node->Var()->Persistable()) {
708
            vars_convert_to_low_precision_.insert(out_var_name);
709 710 711 712 713 714 715 716 717 718 719 720 721 722
          }
        }
      }
    }
  }

  // This code used to precess vars with the same name. Vars with the same
  // name should have the same data type.
  for (auto* subgraph : subgraphes_) {
    for (auto* var_node : subgraph->Nodes()) {
      if (!var_node->IsVar() || !var_node->Var()->Persistable()) continue;
      if (!VarNodeHasDtype(var_node)) continue;

      auto var_name = var_node->Var()->Name();
723
      if (vars_convert_to_low_precision_.count(var_name)) {
724
        var_node->Var()->SetDataType(
725
            framework::TransToProtoVarType(low_precision_));
726 727 728 729 730
      }
    }
  }
}

731
void AutoMixedPrecisionPass::ConvertWeightsData() const {
732
  auto* scope = param_scope();
733 734 735 736
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::PreconditionNotMet(
                              "During the auto_mixed_precision_pass, the scope "
                              "should not be null."));
737 738 739

  auto var_names = scope->LocalVarNames();
  for (const auto& var_name : var_names) {
740
    if (vars_convert_to_low_precision_.count(var_name)) {
741
      VLOG(4) << var_name << "'s data type was convert to low precision";
742 743

      auto* var = scope->FindLocalVar(var_name);
744 745 746 747
      CHECK_EQ(var->IsType<phi::DenseTensor>(), true);

      auto* origin_tensor = var->GetMutable<phi::DenseTensor>();

748 749 750
      phi::DenseTensor low_precision_tensor;
      low_precision_tensor.Resize(origin_tensor->dims());
      low_precision_tensor.set_type(low_precision_);
751

752 753 754 755
      if (low_precision_ == phi::DataType::FLOAT16) {
        auto* low_precision_data =
            low_precision_tensor.mutable_data<phi::dtype::float16>(
                phi::CPUPlace{});
756 757 758
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
759 760
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
761 762
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
763 764
            low_precision_data[i] =
                static_cast<phi::dtype::float16>(origin_data[i]);
765 766
          }
        }
767
      } else if (low_precision_ == phi::DataType::BFLOAT16) {
768
        auto* low_precision_data =
769 770
            low_precision_tensor.mutable_data<phi::dtype::bfloat16>(
                phi::CPUPlace{});
771 772 773
        for (int64_t i = 0; i < origin_tensor->numel(); i++) {
          if (origin_tensor->dtype() == phi::DataType::FLOAT64) {
            auto* origin_data = origin_tensor->data<double>();
774 775
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
776 777
          } else if (origin_tensor->dtype() == phi::DataType::FLOAT32) {
            auto* origin_data = origin_tensor->data<float>();
778 779
            low_precision_data[i] =
                static_cast<phi::dtype::bfloat16>(origin_data[i]);
780
          }
781 782
        }
      }
783 784
      origin_tensor->clear();
      paddle::framework::TensorCopySync(
785
          low_precision_tensor, phi::CPUPlace{}, origin_tensor);
786 787 788 789
    }
  }
}

790
void AutoMixedPrecisionPass::InsertCastOp() const {
791 792 793 794 795 796 797 798 799 800 801 802 803
  int suffix = 0;
  std::unordered_map<Node*, Node*> cache;

  for (size_t i = 0; i < all_op_nodes_.size(); i++) {
    auto* block_desc = all_op_nodes_[i][0]->Op()->Block();
    CHECK_NOTNULL(block_desc);
    for (auto* op_node : all_op_nodes_[i]) {
      auto op_type = op_node->Op()->Type();

      if (GetOpOriginalType(op_type) == "feed") continue;
      if (op_node->Op()->HasAttr("sub_block")) continue;

      VLOG(4) << "process op: " << op_type
804
              << " run low precision: " << op_run_low_precision_.count(op_type);
805 806 807 808 809 810 811 812 813 814 815 816 817 818

      auto inputs = op_node->inputs;
      for (auto* in_var_node : inputs) {
        if (!in_var_node->IsVar()) continue;
        if (!VarNodeHasDtype(in_var_node)) continue;
        if (in_var_node->Var()->Persistable()) continue;

        auto* real_in_var_node = real_vars_[in_var_node->Var()->Name()];

        auto in_var_type = real_in_var_node->Var()->GetDataType();

        VLOG(4) << "process var: " << real_in_var_node->Var()->Name()
                << " with type " << in_var_type;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        if (IsFP32AndFP64(in_var_type) &&
            op_run_low_precision_.count(op_type)) {
          auto to_type = framework::TransToProtoVarType(low_precision_);
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
        } else if (IsFP16AndBFP16(in_var_type) &&
839
                   op_run_low_precision_.count(op_type) == 0) {
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
          auto to_type = VarType::FP32;
          auto* prev_op =
              in_var_node->inputs.empty() ? nullptr : in_var_node->inputs[0];
          if (prev_op && GetOpOriginalType(prev_op->Op()->Type()) == "cast") {
            in_var_node->Var()->SetDataType(to_type);
            prev_op->Op()->SetAttr("out_dtype", static_cast<int>(to_type));
            prev_op->Op()->Flush();
          } else {
            DoInsertCastOp(subgraphes_[i],
                           in_var_node,
                           op_node,
                           in_var_type,
                           to_type,
                           block_desc,
                           &suffix,
                           &cache);
          }
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
        }
      }

      // Special op.
      // fused_multi_transformer's input(CacheKV) and output(CacheKVOut) vars
      // have same name.
      if (GetOpOriginalType(op_type) == "fused_multi_transformer") {
        auto cache_kv_inputs = op_node->Op()->Input("CacheKV");
        auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut");
        CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
        for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
          op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
        }
      }
    }
  }
  VLOG(4) << "insert number of cast op: " << cache.size();
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

880 881
REGISTER_PASS(auto_mixed_precision_pass,
              paddle::framework::ir::AutoMixedPrecisionPass);