test_fill_api.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/pten/api/include/creation.h"
19

20
#include "paddle/pten/api/lib/utils/allocator.h"
21 22 23
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

24 25 26
namespace paddle {
namespace tests {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, full_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 0;

  float val = 1.0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::full_like(x, val, pten::DataType::FLOAT32);

  // 3. check result
51 52
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}

TEST(API, zeros_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 1;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
81
  auto out = paddle::experimental::zeros_like(x, pten::DataType::INT32);
82 83

  // 3. check result
84 85
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
86 87
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
88
  ASSERT_EQ(out.type(), pten::DataType::INT32);
89 90 91 92
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
93
  auto* actual_result = dense_out->data<int32_t>();
94
  for (auto i = 0; i < 6; i++) {
95
    ASSERT_EQ(actual_result[i], 0);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  }
}

TEST(API, ones_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::INT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<int32_t>();
  dense_x_data[0] = 0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::ones_like(x, pten::DataType::INT32);

  // 3. check result
117 118
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
119 120 121 122 123 124 125 126 127 128 129 130
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::INT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<int32_t>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_EQ(actual_result[i], 1);
  }
}
131

132
TEST(API, full1) {
133 134 135 136
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  auto dense_shape = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::INT64,
                            framework::make_ddim({2}),
                            pten::DataLayout::NCHW));
  auto* shape_data = dense_shape->mutable_data<int64_t>();
  shape_data[0] = 2;
  shape_data[1] = 3;

  auto dense_scalar = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({1}),
                            pten::DataLayout::NCHW));
  dense_scalar->mutable_data<float>()[0] = 1.0;

  paddle::experimental::Tensor value(dense_scalar);

  paddle::experimental::Tensor tensor_shape(dense_shape);

157 158 159
  float val = 1.0;

  // 2. test API
160 161
  auto out =
      paddle::experimental::full(tensor_shape, value, pten::DataType::FLOAT32);
162 163

  // 3. check result
164
  ASSERT_EQ(out.shape().size(), 2UL);
165
  ASSERT_EQ(out.shape()[0], 2);
166 167 168 169 170 171 172 173 174 175 176 177
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
TEST(API, full2) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  auto dense_scalar = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::INT32,
                            framework::make_ddim({1}),
                            pten::DataLayout::NCHW));
  dense_scalar->mutable_data<int32_t>()[0] = 2;

  paddle::experimental::Tensor shape_scalar1(dense_scalar);
  paddle::experimental::Tensor shape_scalar2(dense_scalar);
  std::vector<paddle::experimental::Tensor> list_shape{shape_scalar1,
                                                       shape_scalar2};

  float val = 1.0;

  auto out =
      paddle::experimental::full(list_shape, val, pten::DataType::FLOAT32);

  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 2);
  ASSERT_EQ(out.numel(), 4);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 4; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}

TEST(API, full3) {
  std::vector<int64_t> vector_shape{2, 3};

  float val = 1.0;

  auto out =
      paddle::experimental::full(vector_shape, val, pten::DataType::INT32);

  ASSERT_EQ(out.shape().size(), 2UL);
  ASSERT_EQ(out.shape()[0], 2);
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::INT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<int>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_EQ(actual_result[i], 1);
  }
}

238 239
}  // namespace tests
}  // namespace paddle