test_eigvals_op.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

20 21 22
import paddle
import paddle.fluid.core as core

23 24 25 26 27
np.set_printoptions(threshold=np.inf)


def np_eigvals(a):
    res = np.linalg.eigvals(a)
28
    if a.dtype == np.float32 or a.dtype == np.complex64:
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        res = res.astype(np.complex64)
    else:
        res = res.astype(np.complex128)

    return res


class TestEigvalsOp(OpTest):
    def setUp(self):
        np.random.seed(0)
        paddle.enable_static()
        self.op_type = "eigvals"
        self.set_dtype()
        self.set_input_dims()
        self.set_input_data()

        np_output = np_eigvals(self.input_data)

        self.inputs = {'X': self.input_data}
        self.outputs = {'Out': np_output}

    def set_dtype(self):
        self.dtype = np.float32

    def set_input_dims(self):
        self.input_dims = (5, 5)

    def set_input_data(self):
57
        if self.dtype == np.float32 or self.dtype == np.float64:
58
            self.input_data = np.random.random(self.input_dims).astype(
59 60
                self.dtype
            )
61
        else:
62 63 64 65
            self.input_data = (
                np.random.random(self.input_dims)
                + np.random.random(self.input_dims) * 1j
            ).astype(self.dtype)
66 67 68

    def test_check_output(self):
        self.__class__.no_need_check_grad = True
69 70 71
        self.check_output_with_place_customized(
            checker=self.verify_output, place=core.CPUPlace()
        )
72 73 74 75 76

    def verify_output(self, outs):
        actual_outs = np.sort(np.array(outs[0]))
        expect_outs = np.sort(np.array(self.outputs['Out']))
        self.assertTrue(
77 78 79 80 81 82 83 84 85 86
            actual_outs.shape == expect_outs.shape,
            "Output shape has diff.\n"
            "Expect shape "
            + str(expect_outs.shape)
            + "\n"
            + "But Got"
            + str(actual_outs.shape)
            + " in class "
            + self.__class__.__name__,
        )
87 88

        n_dim = actual_outs.shape[-1]
89 90 91 92
        for actual_row, expect_row in zip(
            actual_outs.reshape((-1, n_dim)), expect_outs.reshape((-1, n_dim))
        ):
            is_mapped_index = np.zeros((n_dim,))
93 94 95 96
            for i in range(n_dim):
                is_mapped = False
                for j in range(n_dim):
                    if is_mapped_index[j] == 0 and np.isclose(
97 98 99 100
                        np.array(actual_row[i]),
                        np.array(expect_row[j]),
                        atol=1e-5,
                    ):
101 102 103 104 105
                        is_mapped_index[j] = True
                        is_mapped = True
                        break
                self.assertTrue(
                    is_mapped,
106 107 108 109 110 111 112 113 114 115 116 117 118
                    "Output has diff in class "
                    + self.__class__.__name__
                    + "\nExpect "
                    + str(expect_outs)
                    + "\n"
                    + "But Got"
                    + str(actual_outs)
                    + "\nThe data "
                    + str(actual_row[i])
                    + " in "
                    + str(actual_row)
                    + " mismatch.",
                )
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196


class TestEigvalsOpFloat64(TestEigvalsOp):
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsOpComplex64(TestEigvalsOp):
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsOpComplex128(TestEigvalsOp):
    def set_dtype(self):
        self.dtype = np.complex128


class TestEigvalsOpLargeScare(TestEigvalsOp):
    def set_input_dims(self):
        self.input_dims = (128, 128)


class TestEigvalsOpLargeScareFloat64(TestEigvalsOpLargeScare):
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsOpLargeScareComplex64(TestEigvalsOpLargeScare):
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsOpLargeScareComplex128(TestEigvalsOpLargeScare):
    def set_dtype(self):
        self.dtype = np.complex128


class TestEigvalsOpBatch1(TestEigvalsOp):
    def set_input_dims(self):
        self.input_dims = (1, 2, 3, 4, 4)


class TestEigvalsOpBatch2(TestEigvalsOp):
    def set_input_dims(self):
        self.input_dims = (3, 1, 4, 5, 5)


class TestEigvalsOpBatch3(TestEigvalsOp):
    def set_input_dims(self):
        self.input_dims = (6, 2, 9, 6, 6)


class TestEigvalsAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(0)

        self.small_dims = [6, 6]
        self.large_dims = [128, 128]
        self.batch_dims = [6, 9, 2, 2]

        self.set_dtype()

        self.input_dims = self.small_dims
        self.set_input_data()
        self.small_input = np.copy(self.input_data)

        self.input_dims = self.large_dims
        self.set_input_data()
        self.large_input = np.copy(self.input_data)

        self.input_dims = self.batch_dims
        self.set_input_data()
        self.batch_input = np.copy(self.input_data)

    def set_dtype(self):
        self.dtype = np.float32

    def set_input_data(self):
197
        if self.dtype == np.float32 or self.dtype == np.float64:
198
            self.input_data = np.random.random(self.input_dims).astype(
199 200
                self.dtype
            )
201
        else:
202 203 204 205
            self.input_data = (
                np.random.random(self.input_dims)
                + np.random.random(self.input_dims) * 1j
            ).astype(self.dtype)
206 207 208 209 210

    def verify_output(self, actural_outs, expect_outs):
        actual_outs = np.array(actural_outs)
        expect_outs = np.array(expect_outs)
        self.assertTrue(
211 212 213 214 215 216 217 218 219 220
            actual_outs.shape == expect_outs.shape,
            "Output shape has diff."
            "\nExpect shape "
            + str(expect_outs.shape)
            + "\n"
            + "But Got"
            + str(actual_outs.shape)
            + " in class "
            + self.__class__.__name__,
        )
221 222

        n_dim = actual_outs.shape[-1]
223 224 225 226
        for actual_row, expect_row in zip(
            actual_outs.reshape((-1, n_dim)), expect_outs.reshape((-1, n_dim))
        ):
            is_mapped_index = np.zeros((n_dim,))
227 228 229 230
            for i in range(n_dim):
                is_mapped = False
                for j in range(n_dim):
                    if is_mapped_index[j] == 0 and np.isclose(
231 232 233 234
                        np.array(actual_row[i]),
                        np.array(expect_row[j]),
                        atol=1e-5,
                    ):
235 236 237 238 239
                        is_mapped_index[j] = True
                        is_mapped = True
                        break
                self.assertTrue(
                    is_mapped,
240 241 242 243 244 245 246 247 248 249 250 251 252
                    "Output has diff in class "
                    + self.__class__.__name__
                    + "\nExpect "
                    + str(expect_outs)
                    + "\n"
                    + "But Got"
                    + str(actual_outs)
                    + "\nThe data "
                    + str(actual_row[i])
                    + " in "
                    + str(actual_row)
                    + " mismatch.",
                )
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

    def run_dygraph(self, place):
        paddle.disable_static()
        paddle.set_device("cpu")
        small_input_tensor = paddle.to_tensor(self.small_input, place=place)
        large_input_tensor = paddle.to_tensor(self.large_input, place=place)
        batch_input_tensor = paddle.to_tensor(self.batch_input, place=place)

        paddle_outs = paddle.linalg.eigvals(small_input_tensor, name='small_x')
        np_outs = np_eigvals(self.small_input)
        self.verify_output(paddle_outs, np_outs)

        paddle_outs = paddle.linalg.eigvals(large_input_tensor, name='large_x')
        np_outs = np_eigvals(self.large_input)
        self.verify_output(paddle_outs, np_outs)

        paddle_outs = paddle.linalg.eigvals(batch_input_tensor, name='small_x')
        np_outs = np_eigvals(self.batch_input)
        self.verify_output(paddle_outs, np_outs)

    def run_static(self, place):
        paddle.enable_static()
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
            small_input_tensor = paddle.static.data(
                name='small_x', shape=self.small_dims, dtype=self.dtype
            )
            large_input_tensor = paddle.static.data(
                name='large_x', shape=self.large_dims, dtype=self.dtype
            )
            batch_input_tensor = paddle.static.data(
                name='batch_x', shape=self.batch_dims, dtype=self.dtype
            )

            small_outs = paddle.linalg.eigvals(
                small_input_tensor, name='small_x'
            )
            large_outs = paddle.linalg.eigvals(
                large_input_tensor, name='large_x'
            )
            batch_outs = paddle.linalg.eigvals(
                batch_input_tensor, name='batch_x'
            )
297 298 299 300 301 302 303

            exe = paddle.static.Executor(place)

            paddle_outs = exe.run(
                feed={
                    "small_x": self.small_input,
                    "large_x": self.large_input,
304
                    "batch_x": self.batch_input,
305
                },
306 307
                fetch_list=[small_outs, large_outs, batch_outs],
            )
308 309 310 311 312 313 314 315 316 317 318 319

            np_outs = np_eigvals(self.small_input)
            self.verify_output(paddle_outs[0], np_outs)

            np_outs = np_eigvals(self.large_input)
            self.verify_output(paddle_outs[1], np_outs)

            np_outs = np_eigvals(self.batch_input)
            self.verify_output(paddle_outs[2], np_outs)

    def test_cases(self):
        places = [core.CPUPlace()]
320
        # if core.is_compiled_with_cuda():
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        #    places.append(core.CUDAPlace(0))
        for place in places:
            self.run_dygraph(place)
            self.run_static(place)

    def test_error(self):
        paddle.disable_static()
        x = paddle.to_tensor([1])
        with self.assertRaises(BaseException):
            paddle.linalg.eigvals(x)

        self.input_dims = [1, 2, 3, 4]
        self.set_input_data()
        x = paddle.to_tensor(self.input_data)
        with self.assertRaises(BaseException):
            paddle.linalg.eigvals(x)


class TestEigvalsAPIFloat64(TestEigvalsAPI):
    def set_dtype(self):
        self.dtype = np.float64


class TestEigvalsAPIComplex64(TestEigvalsAPI):
    def set_dtype(self):
        self.dtype = np.complex64


class TestEigvalsAPIComplex128(TestEigvalsAPI):
    def set_dtype(self):
        self.dtype = np.complex128


if __name__ == "__main__":
    unittest.main()