nn.py 315.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
C
chengduozh 已提交
172 173
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
174 175 176 177 178 179 180 181 182
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
183
       is_test=False,
184
       name=None):
Y
Yu Yang 已提交
185
    """
186
    **Fully Connected Layer**
Y
Yu Yang 已提交
187

188 189 190 191 192 193 194 195
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
196
    to the output as well.
C
caoying03 已提交
197

C
caoying03 已提交
198
    This process can be formulated as follows:
199 200 201

    .. math::

202
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
203 204 205

    In the above equation:

C
caoying03 已提交
206 207 208 209
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
210
    * :math:`Act`: The activation function.
C
caoying03 已提交
211
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
212 213

    Args:
R
ranqiu 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
229 230
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
231
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
232
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
233
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
234

235
    Returns:
F
fengjiayi 已提交
236
        Variable: The transformation result.
237 238

    Raises:
C
caoying03 已提交
239
        ValueError: If rank of the input tensor is less than 2.
240 241 242 243

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
244
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
245
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
246
    """
C
caoying03 已提交
247

C
caoying03 已提交
248
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
249 250 251 252

    dtype = helper.input_dtype()

    mul_results = []
253 254
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
255 256 257
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
258

Y
Yu Yang 已提交
259
        w = helper.create_parameter(
260
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
261
        tmp = helper.create_variable_for_type_inference(dtype)
262
        helper.append_op(
263 264 265
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
266
            outputs={"Out": tmp},
M
mozga-intel 已提交
267 268
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
269 270 271 272
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
273
    else:
X
Xin Pan 已提交
274
        pre_bias = helper.create_variable_for_type_inference(dtype)
275
        helper.append_op(
276 277 278
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
279
            attrs={"use_mkldnn": False})
280 281 282 283
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
284 285


286 287 288
def embedding(input,
              size,
              is_sparse=False,
289
              is_distributed=False,
290 291 292
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
293
    """
294 295
    **Embedding Layer**

296
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
297 298
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
299 300 301

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
302 303

    Args:
304 305 306 307 308
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
309
        is_distributed(bool): Whether to run lookup table from remote parameter server.
310 311
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
312
            with zeros whenever lookup encounters it in :attr:`input`. If
313
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
314 315
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
316
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
317

318 319 320
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
321

322 323
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
324

C
chengduoZH 已提交
325
          dict_size = len(dataset.ids)
326
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
327
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
328 329 330
    """

    helper = LayerHelper('embedding', **locals())
331 332 333 334 335
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
336 337
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
    tmp = helper.create_variable_for_type_inference(dtype)
339 340
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
341 342 343 344 345
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
346 347 348
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
349
            'remote_prefetch': remote_prefetch,
350 351
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
352 353 354
    return tmp


W
wopeizl 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
371

W
wopeizl 已提交
372 373 374 375 376 377 378 379 380 381 382
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
383

W
wopeizl 已提交
384 385 386 387
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
388

W
wopeizl 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
475 476


Y
Yibing Liu 已提交
477 478 479 480 481 482 483 484 485 486 487
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
488 489
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
490 491 492
    """
    **Dynamic LSTMP Layer**

493 494 495 496 497 498
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
499 500 501 502 503

    The formula is as follows:

    .. math::

504
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
505

506
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
507

508
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
509

510
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
511

512
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
513

514
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
515

516
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
517

Y
Yibing Liu 已提交
518 519 520 521 522 523
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
524
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
525
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
526
          bias vector).
Y
Yibing Liu 已提交
527 528 529
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
530
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
531
    * :math:`h`: The hidden state.
532
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
533 534
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
535
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
536
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
537
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
538 539
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
540 541 542 543

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
544

Y
Yibing Liu 已提交
545 546 547 548 549 550 551 552 553 554 555 556
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
557
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
558 559
                               hidden-hidden weight and projection weight.

560 561
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
562 563
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
564 565
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
566
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
567 568 569 570 571

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
572
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
573 574 575 576 577 578
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
579
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
580 581 582
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
583
                                - The shape is (1 x 7D).
C
chengduo 已提交
584 585 586 587 588

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
589 590 591 592 593 594 595 596 597
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
598
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
599 600
                              default "tanh".
        proj_activation(str): The activation for projection output.
601
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
602 603
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
604 605
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
606 607

    Returns:
608 609 610 611
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
612 613

    Examples:
614

Y
Yibing Liu 已提交
615 616
        .. code-block:: python

617 618 619 620
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
621
            hidden_dim, proj_dim = 512, 256
622
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
623
                                     act=None, bias_attr=None)
624 625 626
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
627 628 629 630
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
631
    """
632

C
chengduo 已提交
633
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
634
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
635
    size = size // 4
Y
Yibing Liu 已提交
636 637 638 639 640 641 642 643 644 645
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
646 647 648 649 650 651
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
680 681 682 683 684 685 686 687 688
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
689
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
690

691
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
692
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
693

G
guosheng 已提交
694 695 696 697 698 699 700 701 702
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
703

G
guosheng 已提交
704
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
705

G
guosheng 已提交
706
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
707 708
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
709 710 711 712
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
713
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
714 715

    Args:
716 717
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
718
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
719
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
720 721
            is the hidden size.
        size(int): The dimension of the gru cell.
722
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
723 724
            hidden-hidden weight matrix. Note:

725
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
726
              :math:`D` is the hidden size.
727
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
728
              The first part are weights of the update gate and reset gate with
729
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
730
              candidate hidden state with shape :math:`(D \\times D)`.
731 732 733 734 735

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
736
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
737
            the bias in the update gate, reset gate and candidate calculations.
738 739 740
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
741 742
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
743
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
744 745 746
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
747
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
748
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
749 750 751 752
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
753 754

    Returns:
G
guosheng 已提交
755
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
756
            and sequence length is the same with the input.
757

G
guosheng 已提交
758
    Examples:
759

G
guosheng 已提交
760 761
        .. code-block:: python

762 763 764 765
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
766
            hidden_dim = 512
767
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
768 769 770 771 772 773 774 775 776 777
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
778
    batch_size = input.shape[0]
G
guosheng 已提交
779
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
780
    if h_0:
G
guosheng 已提交
781
        assert h_0.shape == (
Y
Yancey 已提交
782 783 784
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
785

X
Xin Pan 已提交
786 787 788 789
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
808 809 810
def gru_unit(input,
             hidden,
             size,
811 812
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
813
             activation='tanh',
814
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
815
    """
816
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
817

818 819
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
820

821
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
822

823
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
824

825
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
826 827

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
828 829 830
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
831 832
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

833 834
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
835 836 837
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
838 839 840

    Args:
        input (Variable): The fc transformed input value of current step.
841
        hidden (Variable): The hidden value of gru unit from previous step.
842
        size (integer): The input dimension value.
843 844 845 846 847 848 849 850 851 852 853 854 855 856
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
857
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
858
            the bias in the update gate, reset gate and candidate calculations.
859 860 861
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
862 863
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
864 865 866 867
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
868

869 870 871 872 873 874
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
875

876
             # assuming we have x_t_data and prev_hidden of size=10
877
             x_t = fluid.layers.fc(input=x_t_data, size=30)
878 879
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
892
    size = size // 3
Y
Yu Yang 已提交
893 894

    # create weight
895 896
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
897

X
Xin Pan 已提交
898 899 900
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
901
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
902
    # create bias
903
    if helper.bias_attr:
Y
Yu Yang 已提交
904 905 906
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
907
        inputs['Bias'] = bias
Y
Yu Yang 已提交
908 909 910

    helper.append_op(
        type='gru_unit',
911
        inputs=inputs,
Y
Yu Yang 已提交
912 913 914 915 916 917
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
918 919
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
920 921 922 923 924
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
925
@templatedoc()
926
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
927 928 929 930 931 932 933
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
934
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
935 936 937 938
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
939 940 941
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
942 943

    """
Y
Yu Yang 已提交
944 945 946 947 948 949
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
950 951 952 953 954 955 956 957
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
973 974 975 976
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
977

W
wopeizl 已提交
978 979
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
980

W
wopeizl 已提交
981
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
982

W
wopeizl 已提交
983
        label(${label_type}): ${label_comment}
984

W
wopeizl 已提交
985 986
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
987

W
wopeizl 已提交
988 989
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
990

W
wopeizl 已提交
991 992 993 994 995 996 997 998 999 1000
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1001
                "Transition": transition,
W
wopeizl 已提交
1002 1003
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1004

W
wopeizl 已提交
1005
    return viterbi_path
Y
Yu Yang 已提交
1006 1007


Y
yi.wu 已提交
1008
@templatedoc()
F
fengjiayi 已提交
1009
def cos_sim(X, Y):
Y
Yu Yang 已提交
1010
    """
Y
yi.wu 已提交
1011 1012 1013
    ${comment}

    Args:
1014 1015
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1016

Y
yi.wu 已提交
1017
    Returns:
1018
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1019
    """
F
fengjiayi 已提交
1020
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1021 1022 1023
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1034 1035 1036 1037 1038
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1039
            dropout_implementation="downgrade_in_infer"):
1040 1041 1042 1043 1044
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1045
    training. The dropout operator randomly sets (according to the given dropout
1046 1047 1048 1049
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1050 1051
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1052 1053 1054 1055 1056 1057 1058
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1070
                                           dropout op can be removed from the program.
P
phlrain 已提交
1071
                                           the program will be efficient
1072

P
phlrain 已提交
1073

1074 1075

    Returns:
1076
        Variable: A tensor variable is the shape with `x`.
1077 1078

    Examples:
1079

1080 1081
        .. code-block:: python

1082 1083
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1084 1085
    """

F
fengjiayi 已提交
1086
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1087 1088 1089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1090 1091 1092 1093

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1094 1095 1096 1097 1098
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1099 1100 1101 1102
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1103 1104
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1105
        })
1106 1107 1108
    return out


1109
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1110
    """
Y
Yibing Liu 已提交
1111 1112
    **Cross Entropy Layer**

1113 1114 1115
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1116 1117

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1118
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1119

Y
Yibing Liu 已提交
1120
        .. math::
Y
yangyaming 已提交
1121

Y
Yibing Liu 已提交
1122 1123 1124
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1125 1126
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1127 1128 1129 1130 1131

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1132
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1133 1134 1135
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1136 1137
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1138
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1139

Y
Yibing Liu 已提交
1140
    Args:
Y
yangyaming 已提交
1141
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1142 1143 1144 1145
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1146
        label (Variable|list): the ground truth which is a 2-D tensor. When
1147 1148 1149 1150
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1151
        soft_label (bool): a flag indicating whether to
1152
                                           interpretate the given labels as soft
1153
                                           labels. Default: `False`.
M
minqiyang 已提交
1154 1155
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1156
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1157 1158 1159 1160 1161

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1162 1163 1164 1165 1166
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1167 1168 1169 1170 1171 1172

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1173
    """
F
fengjiayi 已提交
1174
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1175
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1176 1177 1178 1179 1180
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1181 1182
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1183 1184 1185
    return out


F
fengjiayi 已提交
1186
def square_error_cost(input, label):
Y
Yu Yang 已提交
1187
    """
1188 1189
    **Square error cost layer**

1190 1191
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1206 1207
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1208 1209

    Returns:
G
guosheng 已提交
1210
        Variable: The tensor variable storing the element-wise squared error \
1211
                  difference of input and label.
1212 1213 1214 1215 1216 1217 1218 1219

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1220
    """
F
fengjiayi 已提交
1221
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1222
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1223 1224 1225 1226 1227 1228
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1229
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1230
    helper.append_op(
F
fengjiayi 已提交
1231 1232
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1233 1234 1235
    return square_out


Y
yi.wu 已提交
1236
@templatedoc()
Y
Yu Yang 已提交
1237 1238 1239 1240
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1241
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1242
    """
Y
yi.wu 已提交
1243
    **Chunk Evaluator**
Y
yi.wu 已提交
1244

Y
yangyaming 已提交
1245
    This function computes and outputs the precision, recall and
1246
    F1-score of chunk detection.
Y
yi.wu 已提交
1247

Y
yi.wu 已提交
1248 1249 1250 1251 1252 1253 1254 1255
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1256

Y
yi.wu 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1282

Y
yi.wu 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1307
    Args:
1308 1309 1310 1311 1312
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1313

Y
yi.wu 已提交
1314
    Returns:
Y
update  
yi.wu 已提交
1315 1316 1317
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1318

Y
yi.wu 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1331
    """
F
fengjiayi 已提交
1332
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1333 1334

    # prepare output
X
Xin Pan 已提交
1335 1336 1337 1338 1339 1340 1341
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1342 1343 1344 1345 1346 1347 1348 1349

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1350 1351 1352 1353
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1354 1355 1356
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1357 1358
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1359
        })
1360 1361
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1362 1363


1364
@templatedoc()
Y
Yu Yang 已提交
1365 1366 1367 1368 1369 1370 1371
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1372 1373
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1374 1375 1376 1377
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1378 1379 1380 1381 1382 1383 1384

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1398

1399 1400
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1401 1402 1403 1404 1405 1406 1407
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1408
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1419
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1420 1421 1422 1423 1424 1425
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1426
def sequence_softmax(input, use_cudnn=False, name=None):
1427 1428 1429
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1430
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1447 1448 1449
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1462 1463
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1464
    softmax_out = helper.create_variable_for_type_inference(dtype)
1465 1466 1467 1468 1469 1470 1471 1472
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1473
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1474
    """
1475
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1476
    has the same shape as the input.
Q
qiaolongfei 已提交
1477

1478 1479 1480 1481 1482 1483
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1484
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1485 1486 1487 1488 1489 1490 1491

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1492
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1493 1494 1495 1496 1497 1498 1499 1500

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1501 1502 1503
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1516 1517
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1518
    softmax_out = helper.create_variable_for_type_inference(dtype)
1519 1520 1521 1522 1523 1524 1525 1526
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1527 1528 1529
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1530 1531
           stride=1,
           padding=0,
1532
           dilation=1,
Y
Yu Yang 已提交
1533 1534 1535
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1536
           use_cudnn=True,
1537 1538
           act=None,
           name=None):
Y
Yu Yang 已提交
1539
    """
C
chengduoZH 已提交
1540
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1541 1542
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1543
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1544 1545 1546 1547 1548 1549 1550
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1551 1552 1553
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1554

1555
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1556

C
chengduoZH 已提交
1557 1558
    .. math::

C
refine  
chengduoZH 已提交
1559
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1560

T
tensor-tang 已提交
1561
    Where:
C
chengduoZH 已提交
1562

1563 1564 1565 1566 1567
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1568
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1569 1570 1571

    Example:

1572 1573
        - Input:

W
weixing02 已提交
1574
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1575

W
weixing02 已提交
1576
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1577

1578
        - Output:
T
tensor-tang 已提交
1579

W
weixing02 已提交
1580
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1581

C
chengduoZH 已提交
1582
        Where
1583 1584

        .. math::
C
chengduoZH 已提交
1585

W
weixing02 已提交
1586 1587
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1588 1589

    Args:
1590
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1591
        num_filters(int): The number of filter. It is as same as the output
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1620 1621
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1622 1623
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1624
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1625
            will be named automatically. Default: None
C
chengduoZH 已提交
1626 1627

    Returns:
G
guosheng 已提交
1628
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1629 1630
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1631
    Raises:
1632 1633
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1634

C
chengduoZH 已提交
1635 1636 1637
    Examples:
        .. code-block:: python

1638 1639
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1640 1641 1642
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1643
    assert param_attr is not False, "param_attr should not be False here."
1644
    l_type = 'conv2d'
X
xzl 已提交
1645 1646
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1647
        l_type = 'depthwise_conv2d'
1648 1649 1650 1651

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1652 1653 1654 1655 1656
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1657
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1658

C
chengduoZH 已提交
1659 1660 1661
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1662
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1663

C
chengduoZH 已提交
1664 1665
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1666 1667

    input_shape = input.shape
M
minqiyang 已提交
1668
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1669 1670

    def _get_default_param_initializer():
C
chengduo 已提交
1671 1672
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1681
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1697
    helper.append_op(
1698
        type=l_type,
Y
Yu Yang 已提交
1699 1700 1701 1702 1703
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1704 1705 1706
        attrs={
            'strides': stride,
            'paddings': padding,
1707
            'dilations': dilation,
C
chengduoZH 已提交
1708
            'groups': groups,
1709
            'use_cudnn': use_cudnn,
1710
            'use_mkldnn': False,
C
chengduoZH 已提交
1711
        })
Y
Yu Yang 已提交
1712 1713 1714 1715 1716 1717

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1735 1736 1737 1738 1739 1740
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1750 1751
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1752 1753 1754
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1755
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1781
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1782 1783
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1784
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1785 1786
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1787
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1788 1789
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1790
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1791 1792 1793 1794 1795 1796
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1807 1808
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1809 1810
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1811
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1812
            will be named automatically. Default: None.
C
chengduoZH 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1825 1826
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1827 1828 1829
    """

    l_type = 'conv3d'
C
chengduo 已提交
1830
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1841
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1855 1856 1857
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1858 1859 1860 1861 1862 1863 1864 1865
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1866
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1881
            'use_mkldnn': False
C
chengduoZH 已提交
1882 1883
        })

1884
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1885 1886 1887 1888

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1889
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1890
    """
Y
yangyaming 已提交
1891 1892 1893
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1905
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1906 1907 1908 1909 1910
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1911
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1912 1913 1914 1915 1916 1917 1918

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1919 1920
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1921

L
Luo Tao 已提交
1922 1923
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1924
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1925
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1926
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1927 1928 1929 1930 1931 1932 1933

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1934

Y
yangyaming 已提交
1935
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1936 1937 1938 1939 1940
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1941 1942
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1943
    """
F
fengjiayi 已提交
1944
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1945
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1946 1947
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1948 1949 1950 1951 1952 1953

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1954 1955
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1956

Y
yangyaming 已提交
1957 1958 1959 1960 1961
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1962 1963 1964
    return pool_out


C
add doc  
chengduoZH 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1984
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1985 1986 1987 1988 1989
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1990
def sequence_first_step(input):
L
Luo Tao 已提交
1991
    """
L
Luo Tao 已提交
1992
    This function gets the first step of sequence.
L
Luo Tao 已提交
1993 1994 1995 1996

    .. code-block:: text

       x is a 1-level LoDTensor:
1997
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1998 1999 2000 2001 2002
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2003
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2004
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2005

L
Luo Tao 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2015

Y
yangyaming 已提交
2016
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2017 2018 2019
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2020 2021 2022
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2023
def sequence_last_step(input):
L
Luo Tao 已提交
2024
    """
L
Luo Tao 已提交
2025
    This function gets the last step of sequence.
L
Luo Tao 已提交
2026 2027 2028 2029

    .. code-block:: text

       x is a 1-level LoDTensor:
2030
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2031 2032 2033 2034 2035
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2036
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2037
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2038

L
Luo Tao 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2048

Y
yangyaming 已提交
2049
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2050 2051 2052
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2053 2054 2055
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2056 2057 2058 2059
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2060
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2061 2062 2063 2064 2065
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2066

Y
Yibing Liu 已提交
2067 2068
	- Case:

2069
            Given the input Variable **input**:
2070

2071 2072 2073
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2074

2075
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2076

2077
            the output Variable will be
2078

2079 2080 2081
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2082 2083

    NOTE: The first dimension size of **input**, **offset** and **length**
2084
          should be equal. The **offset** should start from 0.
2085

Y
Yibing Liu 已提交
2086
    Args:
2087
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2088
                         sequences.
Y
Yibing Liu 已提交
2089 2090 2091 2092 2093 2094
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2095
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2106
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2107 2108 2109 2110
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2111
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2126
@templatedoc()
Y
Yu Yang 已提交
2127
def pool2d(input,
C
chengduoZH 已提交
2128 2129
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2130 2131
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2132
           global_pooling=False,
C
chengduoZH 已提交
2133
           use_cudnn=True,
2134
           ceil_mode=False,
2135 2136
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2137
    """
F
fengjiayi 已提交
2138
    ${comment}
2139 2140

    Args:
2141 2142 2143
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2144
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2145
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2146 2147
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2148
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2149 2150 2151 2152 2153 2154
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2155 2156 2157
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2158
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2159
                        layer will be named automatically.
2160
        exclusive (bool): Whether to exclude padding points in average pooling
2161
                          mode, default is true
F
fengjiayi 已提交
2162

2163
    Returns:
F
fengjiayi 已提交
2164
        Variable: The pooling result.
F
fengjiayi 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2178 2179 2180 2181
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2182
                            global_pooling=False)
Y
Yu Yang 已提交
2183 2184 2185 2186 2187
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2188

C
chengduoZH 已提交
2189 2190 2191 2192 2193
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2194 2195 2196 2197
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2198 2199
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2200

C
Add doc  
chengduoZH 已提交
2201
    l_type = 'pool2d'
2202 2203

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2204
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2205
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2206 2207

    helper.append_op(
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2219 2220
            "use_mkldnn": False,
            "exclusive": exclusive,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2234 2235
           name=None,
           exclusive=True):
2236 2237
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2238
    pooling configurations mentioned in input parameters.
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2251
        exclusive (bool): Whether to exclude padding points in average pooling
2252
                          mode, default is true
2253

2254
    Returns:
2255
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2256 2257 2258 2259 2260
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2261

C
chengduoZH 已提交
2262 2263 2264 2265 2266
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2267 2268 2269
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2270

C
chengduoZH 已提交
2271 2272
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2273

2274 2275
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2276
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2277
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2278 2279

    helper.append_op(
2280
        type=l_type,
Y
Yu Yang 已提交
2281 2282 2283 2284 2285 2286 2287
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2288
            "paddings": pool_padding,
2289
            "use_cudnn": use_cudnn,
2290
            "ceil_mode": ceil_mode,
2291 2292
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2305
               data_layout='NCHW',
Y
Yang Yang 已提交
2306
               in_place=False,
2307 2308
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2309
               moving_variance_name=None,
2310 2311
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2312
    """
Q
qiaolongfei 已提交
2313 2314 2315 2316
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2317

Q
qiaolongfei 已提交
2318
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2319

Q
qiaolongfei 已提交
2320 2321
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2322 2323 2324
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2337 2338

    Args:
Q
qiaolongfei 已提交
2339
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2340 2341 2342 2343
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2344 2345 2346 2347 2348 2349 2350 2351
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2352
        data_layout(string, default NCHW): NCHW|NHWC
2353
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2354 2355 2356 2357
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2358
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2359
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2360 2361

    Returns:
Q
qiaolongfei 已提交
2362
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2363 2364 2365 2366 2367 2368 2369

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2370
    """
C
chengduo 已提交
2371
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2394
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2395

2396 2397
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2398 2399 2400
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2401
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2402
        shape=param_shape,
2403 2404 2405 2406 2407 2408 2409
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2410
            trainable=False,
W
wanghaoshuang 已提交
2411
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2412
        shape=param_shape,
2413 2414
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2415 2416 2417 2418 2419 2420

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2421 2422 2423 2424
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2425

X
Xin Pan 已提交
2426 2427
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2445 2446 2447 2448
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2449
            "use_mkldnn": False,
2450
            "fuse_with_relu": fuse_with_relu
2451
        })
Y
Yu Yang 已提交
2452 2453 2454 2455

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2456
@templatedoc()
G
guosheng 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2467
    ${comment}
G
guosheng 已提交
2468 2469 2470

    The formula is as follows:

Y
yuyang18 已提交
2471
    ..  math::
G
guosheng 已提交
2472 2473 2474 2475 2476 2477 2478

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2479 2480 2481 2482 2483 2484 2485 2486
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2487

G
guosheng 已提交
2488 2489
    Args:
        input(Variable): The input tensor variable.
2490
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2491
            normalization. Default True.
2492
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2493 2494
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2495
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2496
            Default 1.
2497
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2498
            division by zero. Default 1e-05.
G
guosheng 已提交
2499
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2500 2501
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2502 2503
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2504
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2505 2506
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2507
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2508
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2509
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2510 2511 2512
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2513 2514

    Returns:
Y
yuyang18 已提交
2515
        ${y_comment}
G
guosheng 已提交
2516 2517 2518

    Examples:

Y
yuyang18 已提交
2519 2520 2521
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2537
    if shift:
G
guosheng 已提交
2538 2539 2540 2541 2542 2543
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2544 2545 2546 2547 2548
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2642 2643 2644 2645
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2646 2647 2648
                     padding=0,
                     stride=1,
                     dilation=1,
2649
                     groups=None,
C
caoying03 已提交
2650
                     param_attr=None,
2651
                     bias_attr=None,
C
chengduoZH 已提交
2652
                     use_cudnn=True,
2653
                     act=None,
C
caoying03 已提交
2654
                     name=None):
Y
Yu Yang 已提交
2655
    """
2656 2657 2658 2659 2660 2661 2662 2663
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2664 2665
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2666 2667 2668
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2669 2670 2671 2672 2673

    For each input :math:`X`, the equation is:

    .. math::

2674
        Out = \sigma (W \\ast X + b)
2675

2676
    Where:
2677 2678 2679

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2680 2681 2682 2683
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2684

2685 2686 2687 2688
    Example:

        - Input:

2689
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2690

2691
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2692 2693 2694

        - Output:

2695
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2696 2697

        Where
Y
Yu Yang 已提交
2698

2699 2700
        .. math::

2701 2702 2703 2704
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2705 2706

    Args:
2707 2708 2709 2710
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2711 2712 2713 2714
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2743
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2744 2745 2746
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2747
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2748
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2749 2750

    Returns:
2751
        Variable: The tensor variable storing the convolution transpose result.
2752 2753

    Raises:
2754 2755
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2756 2757 2758 2759

    Examples:
       .. code-block:: python

2760 2761
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2762
    """
C
chengduo 已提交
2763
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2764 2765 2766 2767 2768 2769 2770 2771
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2772 2773 2774
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2775 2776 2777
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2778

C
chengduoZH 已提交
2779 2780
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2781

Y
Yu Yang 已提交
2782 2783 2784 2785 2786
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2787

Y
Yu Yang 已提交
2788 2789
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2790

C
chengduoZH 已提交
2791
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2792
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2793
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2794
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2795
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2796 2797 2798
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2799

2800 2801 2802 2803 2804 2805 2806
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2807
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2808
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2809

Y
Yu Yang 已提交
2810 2811 2812
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2813
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2814
    helper.append_op(
2815
        type=op_type,
Y
Yu Yang 已提交
2816 2817
        inputs={'Input': [input],
                'Filter': [img_filter]},
2818
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2819
        attrs={
2820
            'output_size': output_size,
2821 2822 2823 2824 2825
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2826 2827
        })

2828 2829 2830
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2831 2832


2833
def conv3d_transpose(input,
Y
Yu Yang 已提交
2834 2835 2836
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2837 2838 2839
                     padding=0,
                     stride=1,
                     dilation=1,
2840
                     groups=None,
C
caoying03 已提交
2841
                     param_attr=None,
2842
                     bias_attr=None,
C
chengduoZH 已提交
2843
                     use_cudnn=True,
2844
                     act=None,
C
caoying03 已提交
2845
                     name=None):
Y
Yu Yang 已提交
2846
    """
2847
    **Convlution3D transpose layer**
2848

2849
    The convolution3D transpose layer calculates the output based on the input,
2850
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2851 2852 2853 2854 2855 2856
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2857 2858 2859
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2860 2861 2862 2863 2864

    For each input :math:`X`, the equation is:

    .. math::

2865
        Out = \sigma (W \\ast X + b)
2866 2867 2868

    In the above equation:

2869 2870
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2871 2872 2873 2874
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2875

2876 2877 2878 2879
    Example:

        - Input:

2880
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2881

2882
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2883 2884 2885

        - Output:

2886
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2887 2888

        Where
Y
Yu Yang 已提交
2889

2890 2891
        .. math::

2892 2893 2894
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2895 2896

    Args:
2897
        input(Variable): The input image with [N, C, D, H, W] format.
2898 2899 2900
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2901
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2902 2903
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2904
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2905 2906 2907
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2908 2909
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2910
        stride(int|tuple): The stride size. If stride is a tuple, it must
2911 2912
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2913
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2914 2915 2916
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2917 2918 2919 2920 2921
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2931 2932
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2933 2934
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2935 2936
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2937 2938

    Returns:
2939
        Variable: The tensor variable storing the convolution transpose result.
2940 2941

    Raises:
2942 2943
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2944 2945 2946 2947

    Examples:
       .. code-block:: python

2948 2949
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2950
    """
C
chengduo 已提交
2951
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2952 2953
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2954
    if not isinstance(input, Variable):
2955
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2956 2957
    input_channel = input.shape[1]

2958 2959 2960
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2961

C
chengduoZH 已提交
2962 2963 2964
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2965 2966 2967 2968 2969 2970
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2971 2972 2973
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2974

2975
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2976
                         padding[0] - 1) // dilation[0] + 1
2977
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2978
                         padding[1] - 1) // dilation[1] + 1
2979
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2980
                         padding[2] - 1) // dilation[2] + 1
2981
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2982
    else:
2983 2984
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2985

2986
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2987
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2988 2989 2990
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2991
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2992
    helper.append_op(
2993
        type=l_type,
Y
Yu Yang 已提交
2994 2995
        inputs={'Input': [input],
                'Filter': [img_filter]},
2996
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2997 2998 2999 3000
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3001
            'groups': groups,
C
chengduoZH 已提交
3002 3003
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3004

3005 3006
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3007
    return out
Y
yangyaming 已提交
3008 3009


Y
yangyaming 已提交
3010
def sequence_expand(x, y, ref_level=-1, name=None):
3011
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3012 3013 3014 3015
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3016 3017 3018 3019 3020

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3021
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3022
                x.data = [[a], [b], [c], [d]]
3023 3024 3025
                x.dims = [4, 1]

            y is a LoDTensor:
3026 3027
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3028

Y
yangyaming 已提交
3029
            ref_level: 0
3030

Y
yangyaming 已提交
3031
            then output is a 1-level LoDTensor:
3032
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3033
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3034 3035 3036 3037
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3038
                x.data = [[a], [b], [c]]
3039 3040 3041
                x.dims = [3, 1]

            y is a LoDTensor:
3042
                y.lod = [[2, 0, 3]]
3043

Y
yangyaming 已提交
3044
            ref_level: -1
3045

Y
yangyaming 已提交
3046 3047 3048
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3049 3050 3051
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3052 3053
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3054
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3055
                        will be named automatically.
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3066
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3067
    """
Y
yangyaming 已提交
3068
    helper = LayerHelper('sequence_expand', input=x, **locals())
3069
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3070
    tmp = helper.create_variable_for_type_inference(dtype)
3071
    helper.append_op(
Y
yangyaming 已提交
3072 3073 3074 3075 3076
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3077
    return tmp
3078 3079


C
chengduo 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3136
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3137 3138 3139 3140 3141 3142 3143 3144
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3145
@templatedoc()
3146
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3147 3148 3149 3150 3151
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3152 3153 3154
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3155
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3156 3157 3158 3159
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3160 3161 3162
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3163

F
fengjiayi 已提交
3164
    Returns:
M
minqiyang 已提交
3165
        Variable: The padded sequence batch and the original lengths before
3166
                  padding. All sequences has the same length.
M
minqiyang 已提交
3167

F
fengjiayi 已提交
3168 3169 3170 3171 3172 3173 3174
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3175
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3176
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3177 3178 3179 3180 3181
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3182 3183
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3184 3185 3186 3187

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3188 3189 3190 3191 3192 3193
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3194 3195
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3196
        attrs={'padded_length': maxlen})
3197
    return out, length
F
fengjiayi 已提交
3198 3199


3200
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3201
    """
3202
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3203

3204 3205
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3215 3216 3217
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3218
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3219 3220 3221 3222 3223 3224

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3225
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3226 3227 3228 3229 3230 3231

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3232 3233
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3248
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3260 3261 3262 3263 3264 3265 3266 3267 3268
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3269 3270
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3271 3272 3273

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3274 3275

    This layer does the search in beams for one time step. Specifically, it
3276 3277 3278 3279 3280 3281
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3282

3283 3284 3285 3286 3287 3288 3289 3290
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3291

3292
    Args:
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3318

3319
    Returns:
3320 3321
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3322 3323 3324 3325

    Examples:
        .. code-block:: python

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3343 3344 3345 3346
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3347 3348 3349
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3350 3351 3352 3353 3354

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3355
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3373 3374 3375 3376 3377 3378 3379
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3390

3391 3392 3393 3394 3395 3396
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3397

3398 3399 3400 3401 3402 3403 3404 3405
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3406 3407
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3423 3424 3425 3426
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3427
              param_attr=None,
C
caoying03 已提交
3428 3429
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3430 3431 3432 3433
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3434
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3435

3436
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3437

3438
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3439

3440
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3441 3442 3443

            h_t & = o_t tanh(c_t)

3444 3445 3446 3447 3448 3449
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3450 3451 3452

        .. math::

3453
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3454 3455 3456 3457 3458 3459 3460 3461

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3462
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3463 3464

    Args:
Y
yangyaming 已提交
3465 3466 3467 3468 3469 3470
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3471
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3484 3485
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3486 3487

    Returns:
Y
yangyaming 已提交
3488
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3489 3490

    Raises:
3491 3492 3493 3494
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3495 3496 3497 3498 3499 3500

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3501
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3502
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3503
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3520
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3521 3522 3523 3524
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3525 3526
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3527 3528 3529
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3530
    size = cell_t_prev.shape[1]
3531
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3532 3533
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3534
                param_attr=param_attr,
3535
                bias_attr=bias_attr)
Y
yangyaming 已提交
3536
    dtype = x_t.dtype
X
Xin Pan 已提交
3537 3538
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3548
    return h, c
G
guosheng 已提交
3549 3550


C
caoying03 已提交
3551
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3552
    """
Y
yangyaming 已提交
3553
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3554 3555 3556

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3557
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3558 3559
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3560 3561
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3562
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3563
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3564
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3565 3566
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3567 3568 3569

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3570

G
guosheng 已提交
3571 3572 3573 3574 3575 3576
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3577
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3578 3579 3580 3581
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3582 3583 3584 3585

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3586
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3587 3588 3589
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3590 3591
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3592
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3593 3594
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3595 3596 3597 3598 3599
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3600
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3601 3602 3603 3604
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3605 3606


C
caoying03 已提交
3607
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3608
    """
Y
Yibing Liu 已提交
3609
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3610 3611 3612

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3613 3614 3615
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3616
            must be in the range :math:`[-rank(input), rank(input))`. If
3617
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3618
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3619 3620
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3621
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3622
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3623
                       will be named automatically.
G
guosheng 已提交
3624 3625

    Returns:
Y
Yibing Liu 已提交
3626
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3627

G
guosheng 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3638 3639
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3640 3641 3642 3643 3644 3645 3646

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3647 3648
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3649
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3650 3651
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3652 3653 3654 3655 3656
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3657
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3658 3659 3660 3661
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3662 3663


C
caoying03 已提交
3664
def reduce_max(input, dim=None, keep_dim=False, name=None):
3665
    """
Y
yangyaming 已提交
3666
    Computes the maximum of tensor elements over the given dimension.
3667 3668 3669

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3670
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3671 3672 3673
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3674
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3675 3676
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3677
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3678 3679
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3680 3681 3682

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3683

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3695 3696 3697 3698 3699 3700 3701

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3702 3703
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3704
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3705 3706
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3707 3708 3709 3710 3711
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3712
            'dim': dim if dim != None else [0],
3713 3714 3715 3716 3717 3718
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3719
def reduce_min(input, dim=None, keep_dim=False, name=None):
3720
    """
Y
yangyaming 已提交
3721
    Computes the minimum of tensor elements over the given dimension.
3722 3723 3724

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3725
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3726 3727 3728
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3729
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3730 3731
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3732
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3733 3734
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3735 3736 3737

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3750 3751 3752 3753 3754 3755 3756

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3757 3758
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3759
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3760 3761
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3762 3763 3764 3765 3766
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3767
            'dim': dim if dim != None else [0],
3768 3769 3770 3771
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3772 3773


3774 3775 3776 3777 3778 3779
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3780
        dim (list|int|None): The dimensions along which the product is performed. If
3781 3782
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3783 3784
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3785 3786 3787
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3788
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3789
            layer will be named automatically.
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3804
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3805
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3806 3807 3808 3809 3810 3811 3812

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3813 3814
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3815
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3816 3817
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3818 3819 3820 3821 3822
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3823
            'dim': dim if dim != None else [0],
3824 3825 3826 3827 3828 3829
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3830
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3831
    """
C
caoying03 已提交
3832
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3833 3834 3835

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3836 3837 3838 3839 3840
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3841
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3842
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3843
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3844 3845
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3846 3847

    Returns:
D
dzhwinter 已提交
3848
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3858 3859
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3875
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3898
    .. math::
3899 3900

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3901 3902 3903 3904 3905

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3906
        x(Variable|list): The input tensor to l2_normalize layer.
3907
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3908 3909
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3910
        epsilon(float): The epsilon value is used to avoid division by zero, \
3911
            the defalut value is 1e-10.
3912
        name(str|None): A name for this layer(optional). If set None, the layer \
3913
            will be named automatically.
C
caoying03 已提交
3914 3915

    Returns:
3916
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3917 3918

    Examples:
3919

C
caoying03 已提交
3920 3921
        .. code-block:: python

3922 3923 3924 3925
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3926 3927
    """

F
fengjiayi 已提交
3928 3929
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3930 3931
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3932 3933
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3934
    helper.append_op(
3935 3936 3937 3938
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3939
        attrs={
3940 3941
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3942 3943
        })
    return out
3944 3945


S
sneaxiy 已提交
3946
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3947
    """
Y
ying 已提交
3948 3949 3950 3951
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3952

C
chengduoZH 已提交
3953
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3954
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3955

3956 3957 3958 3959 3960
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3961
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3962

C
chengduoZH 已提交
3963
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3964
      performs in the following way.
G
guosheng 已提交
3965

3966
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3967
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3968
        last two dimensions and a batched matrix multiply supporting broadcast
3969
        applies on the two tensors.
G
guosheng 已提交
3970

Y
ying 已提交
3971 3972
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3973
    removed after matrix multiplication.
G
guosheng 已提交
3974 3975 3976

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3977 3978 3979
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3980
        alpha (float): The scale of output. Default 1.0.
3981
        name(str|None): A name for this layer(optional). If set None, the layer
3982
            will be named automatically.
G
guosheng 已提交
3983 3984

    Returns:
3985
        Variable: The product Tensor variable.
G
guosheng 已提交
3986

G
guosheng 已提交
3987 3988 3989
    Examples:
        .. code-block:: python

3990
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3991 3992
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3993

3994 3995
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3996

3997 3998
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3999

4000 4001
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4002 4003 4004 4005

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4006 4007
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4008

Y
ying 已提交
4009
            # x: [M], y: [N]
4010
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4011
    """
Y
ying 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4024
            y_shape = y_shape + [1]
Y
ying 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4041
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4042
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4043
    helper.append_op(
4044 4045 4046 4047
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4048 4049 4050
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4051
            'alpha': float(alpha),
S
sneaxiy 已提交
4052
        })
4053
    return out
4054 4055


4056
def topk(input, k, name=None):
Q
qingqing01 已提交
4057 4058 4059 4060
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4061
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4062 4063 4064 4065 4066 4067
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4089 4090 4091
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4092
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4093
                 of input.
4094
        name(str|None): A name for this layer(optional). If set None, the layer
4095
                       will be named automatically.
F
fengjiayi 已提交
4096
                       Default: None
Q
qingqing01 已提交
4097 4098

    Returns:
4099 4100 4101
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4102
        within the last dimension of input.
Q
qingqing01 已提交
4103

F
fengjiayi 已提交
4104 4105
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4106 4107 4108 4109 4110 4111 4112

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4113 4114
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4126
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4127
    """
Y
ying 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4137

Y
ying 已提交
4138
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4139

4140
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4141 4142
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4143
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4144

4145
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4146 4147
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4148

4149 4150 4151
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4152
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4153
                          the length of reference string.
4154
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4155
                                     calculating edit distance.
4156
        name (str): The name of this layer. It is optional.
4157

W
wanghaoshuang 已提交
4158
    Returns:
W
wanghaoshuang 已提交
4159
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4160 4161 4162 4163

    Examples:
        .. code-block:: python

T
tink2123 已提交
4164 4165
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4166
            cost = fluid.layers.edit_distance(input=x,label=y)
4167
    """
4168
    helper = LayerHelper("edit_distance", **locals())
4169

4170
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4171
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4172 4173
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4174 4175 4176 4177 4178

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4179
            attrs={"tokens": ignored_tokens})
4180 4181 4182 4183 4184
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4185
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4186
            attrs={"tokens": ignored_tokens})
4187 4188
        label = erased_label

4189
    # edit distance op
X
Xin Pan 已提交
4190 4191
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4192 4193 4194 4195
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4196 4197
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4198 4199
        attrs={"normalized": normalized})

4200
    return edit_distance_out, sequence_num
4201 4202 4203 4204 4205


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4206

Y
ying 已提交
4207 4208 4209 4210
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4228
        input.lod = [[4, 4]]
4229 4230 4231 4232 4233 4234 4235

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4236
        output.lod = [[2, 1]]
4237 4238 4239

    Args:

Y
ying 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4249
        name (str): The name of this layer. It is optional.
4250 4251

    Returns:
4252
        Variable: CTC greedy decode result. If all the sequences in result were
4253
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4254 4255 4256 4257 4258

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4259

4260
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4261
    """
4262
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4263
    _, topk_indices = topk(input, k=1)
4264 4265

    # ctc align op
X
Xin Pan 已提交
4266
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4267 4268 4269
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4270
        outputs={"Output": [ctc_out]},
4271 4272
        attrs={"merge_repeated": True,
               "blank": blank})
4273
    return ctc_out
4274 4275


W
Wu Yi 已提交
4276
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4277
    """
4278 4279
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4280
    to compute Connectionist Temporal Classification (CTC) loss.
4281 4282
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4283 4284 4285
    input tensor.

    Args:
4286
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4287 4288 4289 4290
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4291
       label (Variable): The ground truth of variable-length sequence,
4292 4293 4294
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4295 4296
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4297 4298 4299
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4300
         follewed by a mean_op.
W
Wu Yi 已提交
4301
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4302 4303

    Returns:
4304 4305
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4306 4307

    Examples:
4308

W
wanghaoshuang 已提交
4309
        .. code-block:: python
4310

4311 4312 4313
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4314 4315

    """
F
fengjiayi 已提交
4316
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4317 4318
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4319 4320 4321 4322 4323 4324
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4325 4326 4327 4328 4329
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4330
    return loss_out
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4346 4347 4348
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4349 4350 4351 4352 4353
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4354

4355
            out.lod  = [[0, 1, 3]]
4356 4357 4358 4359

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4360 4361 4362 4363 4364 4365 4366
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4367 4368 4369

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4370 4371

    Returns:
4372

4373 4374 4375 4376 4377
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4378
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4379
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4380 4381
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4382
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4383 4384 4385 4386 4387 4388
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4389 4390


4391 4392 4393 4394
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4395 4396 4397 4398 4399 4400
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4401
        num_neg_samples=None,
4402 4403 4404
        name=None,
        sampler="uniform",
        custom_dist=None,
4405 4406
        seed=0,
        is_sparse=False):
4407 4408 4409 4410 4411 4412 4413
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4414 4415
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4416
            sample is 1.0.
C
chengduo 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4426
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4427 4428
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4429 4430 4431
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4432
        custom_dist (float[]): A float[] with size=num_total_classes.
4433 4434 4435 4436
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4437
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4438

4439
    Returns:
Y
Yibing Liu 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4467 4468 4469 4470 4471 4472 4473 4474 4475

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4476

4477
    """
Y
Yang Yu 已提交
4478 4479 4480
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4481 4482

    dim = input.shape[1]
Y
Yang Yu 已提交
4483 4484 4485 4486 4487 4488
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4489
    inputs = {}
C
chengduo 已提交
4490 4491 4492 4493 4494 4495 4496
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4497 4498 4499
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4500

4501 4502 4503 4504
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4505 4506 4507 4508 4509 4510 4511

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4564 4565 4566 4567
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4568 4569 4570 4571 4572
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4573 4574
    attrs = {
        'num_total_classes': int(num_total_classes),
4575 4576
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4577 4578
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4579
    }
Y
Yang Yu 已提交
4580 4581 4582

    helper.append_op(
        type='nce',
C
chengduo 已提交
4583
        inputs=inputs,
Y
Yang Yu 已提交
4584 4585 4586 4587 4588 4589
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4590
    return cost / (num_neg_samples + 1)
4591 4592


C
chengduo 已提交
4593 4594
def hsigmoid(input,
             label,
4595
             num_classes,
C
chengduo 已提交
4596 4597
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4598
             name=None,
4599 4600 4601
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4602
             is_sparse=False):
W
weixing02 已提交
4603 4604
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4605
    process of language model. This operator organizes the classes into a
4606 4607
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4608 4609 4610 4611 4612 4613
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4614
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4615
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4616

4617 4618 4619 4620 4621 4622 4623 4624 4625
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4626
    Args:
M
minqiyang 已提交
4627
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4628 4629 4630 4631
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4632 4633 4634
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4646 4647 4648 4649 4650 4651 4652
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4653
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4654 4655
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4656 4657

    Returns:
J
JiabinYang 已提交
4658
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4659 4660 4661 4662 4663

    Examples:

        .. code-block:: python

G
guosheng 已提交
4664 4665 4666
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4667 4668 4669 4670
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4671 4672
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4673
    dim = input.shape[1]
4674
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4675 4676 4677
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4678 4679 4680 4681
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4682 4683
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4684 4685 4686
    else:
        pass

J
JiabinYang 已提交
4687 4688
    weights = None

4689
    if not is_custom:
J
JiabinYang 已提交
4690 4691 4692 4693 4694 4695 4696 4697
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4698
            shape=[num_classes, dim],
J
JiabinYang 已提交
4699 4700
            is_bias=False,
            dtype=input.dtype)
4701 4702 4703
    inputs = {
        "X": input,
        "W": weights,
4704 4705
        "PTable": path_table,
        "PathCode": path_code,
4706 4707
        "Label": label
    }
W
weixing02 已提交
4708
    if helper.bias_attr:
4709
        if not is_custom:
J
JiabinYang 已提交
4710 4711
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4712
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4713 4714 4715 4716 4717 4718
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4719
                shape=[num_classes, 1],
J
JiabinYang 已提交
4720 4721 4722
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4723 4724
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4725
        inputs=inputs,
W
weixing02 已提交
4726 4727
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4728 4729
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4730 4731 4732
    return out


Y
fix ci.  
ying 已提交
4733
def transpose(x, perm, name=None):
Y
ying 已提交
4734 4735 4736 4737 4738 4739 4740
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4741 4742 4743
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4744 4745 4746 4747 4748 4749 4750

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4751
            # use append_batch_size=False to avoid prepending extra
4752
            # batch size in shape
4753
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4754
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4755
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4756 4757
    """

Y
fix ci.  
ying 已提交
4758
    if len(perm) != len(x.shape):
Y
ying 已提交
4759 4760 4761
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4762 4763 4764 4765 4766 4767
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4768 4769

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4770 4771
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4772
    helper.append_op(
4773
        type='transpose2',
Y
fix ci.  
ying 已提交
4774
        inputs={'X': [x]},
4775 4776
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4777 4778
        attrs={'axis': perm})
    return out
4779 4780


4781 4782 4783 4784 4785 4786 4787
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4788
    """
4789 4790 4791 4792 4793 4794 4795
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4824 4825 4826 4827 4828 4829 4830 4831 4832
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4833 4834 4835
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4836 4837 4838 4839 4840
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4868 4869 4870
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4883
            output.dims = {8, 8}
4884

4885
            output.lod = [[4, 4]]
4886

D
dzhwinter 已提交
4887
     Examples:
4888 4889 4890

        .. code-block:: python

4891 4892
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4893 4894

    """
W
wanghaoshuang 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4905 4906 4907 4908 4909 4910 4911
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4912
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4913
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4914
    helper.append_op(
4915
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4916
    return out
4917 4918


Y
yuyang18 已提交
4919
@templatedoc()
4920
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4921 4922
    """
    ${comment}
4923 4924

    Args:
Y
yuyang18 已提交
4925
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4926 4927
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4928 4929 4930 4931 4932
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4933
        ${out_comment}.
4934 4935

    Examples:
Y
yuyang18 已提交
4936 4937 4938 4939
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4940 4941 4942 4943 4944 4945
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4946
    out = helper.create_variable_for_type_inference(dtype)
4947 4948 4949 4950 4951
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4952
    return helper.append_activation(out)
4953 4954


Y
yuyang18 已提交
4955
@templatedoc()
4956 4957
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4958 4959 4960 4961 4962 4963 4964
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4965 4966

    Args:
Y
yuyang18 已提交
4967 4968
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4969 4970

    Returns:
Y
yuyang18 已提交
4971
        ${out_comment}.
4972 4973
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4974 4975 4976 4977 4978

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4979
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4980 4981 4982 4983 4984 4985
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4986 4987


4988 4989 4990
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4991
                               ignore_index=-100,
4992 4993
                               numeric_stable_mode=False,
                               return_softmax=False):
4994 4995
    """
    **Softmax With Cross Entropy Operator.**
4996

4997 4998 4999 5000
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5001

5002 5003 5004
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5005

5006 5007 5008
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5009

5010
    The equation is as follows:
5011

5012
    1) Hard label (one-hot label, so every sample has exactly one class)
5013

5014 5015 5016 5017
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5018

5019 5020 5021
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5022

5023 5024 5025 5026
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5027 5028 5029
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5030

S
sneaxiy 已提交
5031 5032 5033 5034 5035 5036 5037 5038
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5039 5040 5041 5042 5043 5044 5045 5046
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5047 5048
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5049
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5050 5051 5052
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5053 5054 5055
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5056
                                    stable algorithm. Default: False
5057
        return_softmax (bool): A flag indicating whether to return the softmax
5058
                               along with the cross entropy loss. Default: False
5059

5060
    Returns:
5061 5062 5063 5064
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5065
                              2-D tensor with shape [N x K].
5066 5067 5068 5069 5070 5071 5072

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5073 5074
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5075 5076
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5077 5078
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5079 5080 5081 5082 5083 5084
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5085 5086 5087 5088 5089
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5090 5091 5092 5093

    if return_softmax:
        return loss, softmax

5094 5095 5096 5097 5098
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5099 5100
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5101
    For each instance, it computes the smooth L1 loss element by element first
5102
    and then sums all the losses. So the shape of ouput Variable is
5103
    [batch_size, 1].
5104

5105 5106
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5107
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5108
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5109
            L1 loss op with same shape as :attr:`x`.
5110
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5111 5112
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5113
            by this tensor element by element.
5114
        outside_weight (Variable|None): A tensor with rank at least 2. This
5115 5116
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5117
            element by element.
5118
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5119 5120
           scalar with default value 1.0.

5121
    Returns:
5122
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5123 5124 5125 5126 5127

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5128 5129
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5130
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5131
            out = fluid.layers.smooth_l1(x=fc, y=label)
5132
    """
5133

5134
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5135 5136
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5149 5150 5151 5152


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5153
    This layer creates the one-hot representations for input indices.
5154 5155

    Args:
Y
Yibing Liu 已提交
5156 5157
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5158 5159

    Returns:
Y
Yibing Liu 已提交
5160
        Variable: The one-hot representations of input.
5161 5162

    Examples:
C
caoying03 已提交
5163
        .. code-block:: python
5164

Y
Yibing Liu 已提交
5165 5166
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5167 5168
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5169
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5170 5171 5172 5173 5174 5175
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5176 5177


Y
Yu Yang 已提交
5178
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5179
    """
Y
yi.wu 已提交
5180 5181 5182
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5183 5184 5185 5186 5187 5188

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5189 5190
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5191 5192 5193 5194 5195 5196

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5197 5198
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5199 5200
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5201 5202 5203 5204 5205
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5206
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5207
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5208 5209
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5210 5211
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5212 5213 5214
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5215 5216


5217
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5218
    """
C
caoying03 已提交
5219 5220
    Gives a new shape to the input Tensor without changing its data.

5221 5222 5223 5224 5225
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5226

5227
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5228

5229 5230 5231 5232
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5233
    2. 0 means the actual dimension value is going to be copied from the
5234 5235 5236 5237
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5238 5239

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5240
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5241
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5242

5243
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5244 5245
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5246 5247
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5248
    dimensions.
C
caoying03 已提交
5249

5250
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5251 5252 5253 5254
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5255 5256

    Args:
5257
        x(variable): The input tensor.
C
caoying03 已提交
5258 5259
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5260 5261 5262 5263 5264
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5265 5266
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5267 5268 5269 5270 5271 5272 5273
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5274
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5275

5276
    Returns:
G
guosheng 已提交
5277 5278 5279 5280
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5281

X
Xin Pan 已提交
5282 5283 5284
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5285 5286
    Examples:
        .. code-block:: python
G
guosheng 已提交
5287

5288
            data = fluid.layers.data(
5289
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5290
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5291
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5292 5293 5294
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5295
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5296 5297 5298 5299 5300
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5301

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5317
    helper = LayerHelper("reshape2", **locals())
5318 5319
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5320
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5321
    helper.append_op(
5322
        type="reshape2",
X
Xin Pan 已提交
5323
        inputs=inputs,
D
dzhwinter 已提交
5324
        attrs={"shape": shape},
5325 5326
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5327

D
dzhwinter 已提交
5328
    return helper.append_activation(out)
5329

5330

5331
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5332
    """
M
minqiyang 已提交
5333 5334 5335
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5336
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5337

Y
Yibing Liu 已提交
5338 5339
    Examples:
    Case 1:
M
minqiyang 已提交
5340
      Given
Y
Yibing Liu 已提交
5341 5342 5343 5344 5345 5346 5347 5348
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5349
        and
Y
Yibing Liu 已提交
5350 5351 5352
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5353

Y
Yibing Liu 已提交
5354
    Args:
5355
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5356
        axes (list): List of integers, indicating the dimensions to be squeezed.
5357
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5358 5359 5360 5361 5362 5363 5364 5365

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5366
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5367 5368
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5369 5370
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5371
    helper.append_op(
5372
        type="squeeze2",
5373
        inputs={"X": input},
Y
Yibing Liu 已提交
5374
        attrs={"axes": axes},
5375 5376
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5377

5378 5379 5380
    return out


5381
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5382
    """
M
minqiyang 已提交
5383 5384 5385
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5386

M
minqiyang 已提交
5387 5388
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5389
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5390

Y
Yibing Liu 已提交
5391
    Args:
5392
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5393
        axes (list): List of integers, indicating the dimensions to be inserted.
5394
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5395 5396 5397 5398 5399 5400 5401 5402

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5403
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5404 5405
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5406 5407
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5408
    helper.append_op(
5409
        type="unsqueeze2",
5410
        inputs={"X": input},
Y
Yibing Liu 已提交
5411
        attrs={"axes": axes},
5412 5413
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5414

5415 5416
    return out

5417

Y
yangyaming 已提交
5418
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5419
    """
Y
Yibing Liu 已提交
5420
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5421 5422 5423 5424
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5425
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5426 5427 5428 5429 5430 5431

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5432
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5433 5434 5435
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5436
            target_lod: [4, 2]
Y
yangyaming 已提交
5437 5438

            then we get a 1-level LoDTensor:
5439
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5440 5441 5442 5443 5444 5445
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5446
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5447 5448 5449 5450
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5451
                y.data = [[2, 4]]
Y
yangyaming 已提交
5452 5453 5454
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5455
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5456 5457 5458 5459 5460 5461
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5462
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5463 5464 5465 5466
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5467
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5468 5469 5470 5471
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5472
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5473 5474 5475 5476 5477
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5478
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5479
                           from :attr:`y`.
Y
yangyaming 已提交
5480
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5481
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5482 5483

    Returns:
Y
Yibing Liu 已提交
5484
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5485 5486

    Raises:
Y
Yibing Liu 已提交
5487
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5497
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5523
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5552 5553
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5566 5567 5568
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5582 5583 5584 5585


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5586
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5587
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5588

G
guosheng 已提交
5589 5590 5591 5592
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5615
                         The length of :attr:paddings must be
G
guosheng 已提交
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5626

G
guosheng 已提交
5627 5628 5629 5630 5631 5632
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5633
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5634 5635 5636 5637 5638 5639 5640
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5641 5642


C
chengduo 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5713
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5723 5724 5725 5726 5727 5728 5729
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5730 5731
    called label-smoothing regularization (LSR).

5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5755
                              be :math:`(1, class\_num)`.
5756 5757
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5758
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5778
    smooth_label = helper.create_variable_for_type_inference(dtype)
5779 5780 5781 5782 5783 5784 5785
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5786 5787


W
wopeizl 已提交
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5824 5825


J
jerrywgz 已提交
5826 5827 5828 5829 5830 5831
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5832 5833
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5850 5851 5852
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5853 5854 5855 5856 5857 5858
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5859
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5900 5901
        .. code-block:: python

W
whs 已提交
5902 5903 5904 5905
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5906
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5907 5908 5909 5910 5911 5912
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5913 5914


5915 5916 5917 5918
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5919 5920
                 resample='BILINEAR',
                 actual_shape=None):
5921
    """
Q
qiaolongfei 已提交
5922
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5923

5924
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5925 5926 5927
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5928

5929
        'BILINEAR' : Bilinear interpolation
5930
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5931

5932
    Args:
5933
        input (Variable): The input tensor of image resize layer,
5934 5935
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5936
        out_shape(list|tuple|Variable|None): Output shape of image resize
5937 5938
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5939
        scale(float|None): The multiplier for the input height or width.
5940 5941 5942
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5943 5944
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5945
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5946
                       currently.
5947
                       Default: 'BILINEAR'
5948 5949 5950
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5951
                                :attr:`out_shape` and :attr:`scale` specifying
5952 5953 5954 5955 5956 5957 5958
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5959 5960
                                constructing stage.
                                Default: None
5961 5962

    Returns:
Q
update  
qiaolongfei 已提交
5963 5964
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5965

5966 5967 5968
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5969
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5970 5971 5972 5973
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5974 5975 5976
    Examples:
        .. code-block:: python

5977
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5978
    """
5979 5980 5981 5982
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5983 5984
    if resample not in resample_methods:
        raise ValueError(
5985
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5986
        )
5987
    resample_type = resample_methods[resample]
5988
    if out_shape is None and scale is None:
5989
        raise ValueError("One of out_shape and scale must not be None.")
5990
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5991
    dtype = helper.input_dtype()
5992 5993 5994 5995

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5996 5997 5998
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5999
    if out_shape is not None:
6000 6001 6002 6003
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6004
            inputs['OutSize'] = out_shape
6005 6006 6007 6008 6009 6010 6011 6012
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6013 6014 6015 6016
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6017 6018 6019 6020 6021
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6022
    out = helper.create_variable_for_type_inference(dtype)
6023
    helper.append_op(
6024
        type='{}_interp'.format(resample_type),
6025
        inputs=inputs,
6026
        outputs={"Out": out},
6027 6028 6029
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6030
    return out
F
stash  
fengjiayi 已提交
6031 6032


6033
@templatedoc(op_type="bilinear_interp")
6034 6035 6036 6037 6038
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6039
    """
6040 6041
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6042 6043
    in priority order.

6044 6045 6046 6047
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6048 6049
    again in the other direction.

6050
    For details of bilinear interpolation, please refer to Wikipedia:
6051
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6052 6053 6054 6055 6056

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6057

Y
yuyang18 已提交
6058 6059 6060 6061 6062
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6063 6064 6065
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6066
                                :attr:`out_shape` and :attr:`scale` specifying
6067 6068 6069 6070 6071 6072 6073
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6074 6075
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6076 6077 6078

    Returns:
        ${out_comment}.
6079 6080 6081 6082 6083

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6084 6085
    """

6086
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6087 6088


6089
@templatedoc(op_type="nearest_interp")
6090 6091 6092 6093 6094
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6095
    """
6096
    Resize input by performing nearest neighbor interpolation in both the
6097 6098
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6099 6100
    out_shape and scale in priority order.

6101
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6102
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6103 6104 6105 6106 6107

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6108

Y
yuyang18 已提交
6109 6110 6111 6112 6113
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6114 6115 6116
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6117
                                :attr:`out_shape` and :attr:`scale` specifying
6118 6119 6120 6121 6122 6123 6124
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6125 6126
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6127 6128 6129

    Returns:
        ${out_comment}.
6130 6131 6132 6133 6134

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6135 6136
    """

6137
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6138 6139 6140 6141


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6142 6143 6144
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6145 6146 6147 6148 6149 6150 6151
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6152
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6153

6154
    Returns:
Q
update  
qiaolongfei 已提交
6155
        Variable: The output is a 4-D tensor of the shape
6156
        (num_batches, channls, out_h, out_w).
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6167 6168 6169
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6170 6171 6172
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6173 6174
def gather(input, index):
    """
Q
qiaolongfei 已提交
6175 6176
    **Gather Layer**

6177
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6178 6179 6180 6181
    of X indexed by `index` and concatenate them together.

    .. math::

6182
        Out = X[Index]
W
whs 已提交
6183 6184 6185 6186 6187 6188 6189


    .. code-block:: text


                Given:

6190 6191
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6202
        input (Variable): The source input with rank>=1.
W
whs 已提交
6203 6204 6205 6206 6207 6208
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6209

W
whs 已提交
6210 6211 6212 6213 6214 6215
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6216
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6217 6218 6219 6220 6221 6222 6223 6224
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6256
    out = helper.create_variable_for_type_inference(dtype)
6257 6258 6259 6260 6261 6262 6263 6264 6265
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6316
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6339

6340 6341 6342
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6343
    """
F
stash  
fengjiayi 已提交
6344
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6345
    dtype = x.dtype
X
Xin Pan 已提交
6346
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6347
    if seed is None:
6348
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6349
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6350
    if isinstance(seed, int):
F
fengjiayi 已提交
6351 6352 6353 6354 6355
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6356 6357 6358 6359
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6360
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6361 6362
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6363 6364
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6365
    return out
W
whs 已提交
6366 6367


6368
def log(x, name=None):
W
wanghaoshuang 已提交
6369 6370 6371 6372 6373
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6374
        Out = \\ln(x)
W
wanghaoshuang 已提交
6375 6376

    Args:
6377
        x (Variable): Input tensor.
6378 6379
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6380 6381 6382 6383 6384 6385 6386 6387

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6388
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6389 6390
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6391
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6392
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6393
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6394 6395 6396
    return out


6397
def relu(x, name=None):
W
wanghaoshuang 已提交
6398 6399
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6400
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6401 6402 6403 6404
    the tensor elementwise.

    .. math::

6405
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6406 6407

    Args:
6408
        x (Variable): The input tensor.
6409 6410
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6411 6412 6413 6414 6415 6416 6417 6418

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6419
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6420 6421
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6422
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6423
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6424
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6425
    return out
6426 6427


C
chengduo 已提交
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6469 6470 6471
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6472 6473 6474 6475
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6476
    .. math::
6477 6478

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6479

6480
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6481 6482 6483 6484 6485
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6486
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6487
                           Its shape should be the same as input.
6488
        num_classes (int): The possible number of labels.
W
whs 已提交
6489 6490 6491 6492

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6493
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6494 6495 6496 6497

    Examples:

        .. code-block:: python
6498

W
whs 已提交
6499 6500 6501 6502
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6503 6504 6505
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6506 6507
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6508 6509
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6510
        outputs={
W
whs 已提交
6511 6512 6513
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6514 6515 6516
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6591
            isinstance(shape, Variable)):
6592 6593 6594 6595 6596
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6597
    out = helper.create_variable_for_type_inference(x.dtype)
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6615 6616


W
whs 已提交
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6634

W
whs 已提交
6635
              out_shape = [2, 3, 5, 5]
6636

W
whs 已提交
6637
          Step 1:
6638

W
whs 已提交
6639 6640 6641
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6642

W
whs 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6713
            isinstance(out_shape, Variable)):
W
whs 已提交
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6735 6736 6737 6738 6739 6740 6741 6742
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6743

6744 6745
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6746

6747 6748 6749 6750
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6751

6752 6753 6754 6755 6756
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6757 6758 6759

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6795
    out = helper.create_variable_for_type_inference("float32")
6796 6797 6798 6799 6800 6801 6802 6803

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6804 6805


M
minqiyang 已提交
6806 6807
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6808
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6809
    which compares left score and right score passed in.
M
minqiyang 已提交
6810
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6811 6812 6813 6814 6815 6816

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6817
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6818 6819
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6820
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6821 6822 6823
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6824
       Variable: The ranking loss.
M
minqiyang 已提交
6825
    Raises:
M
minqiyang 已提交
6826
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6827 6828 6829 6830 6831 6832 6833
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6834
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6835 6836 6837 6838 6839 6840
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6841 6842
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6868

W
whs 已提交
6869 6870
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6871

W
whs 已提交
6872
      Case 0:
M
minqiyang 已提交
6873

W
whs 已提交
6874 6875 6876
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6877

W
whs 已提交
6878 6879 6880
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6881

W
whs 已提交
6882
      Case 1:
M
minqiyang 已提交
6883

W
whs 已提交
6884 6885
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6886

W
whs 已提交
6887 6888 6889
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6890

W
whs 已提交
6891
      Case 2:
M
minqiyang 已提交
6892

W
whs 已提交
6893 6894
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6895

W
whs 已提交
6896 6897 6898
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6899 6900


W
whs 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6927
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6954 6955 6956 6957 6958

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6959 6960
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
6961 6962
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6963
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6984 6985 6986 6987 6988

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6989 6990
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
6991 6992
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6993
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7014 7015 7016 7017 7018

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7019 7020
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7021 7022
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7023
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7045 7046 7047 7048 7049

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7050
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7051
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7052 7053
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7054
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7077 7078 7079 7080 7081

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7082 7083
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7084 7085
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7086
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7108 7109 7110 7111 7112

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7113 7114
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7115 7116
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7117
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7118 7119 7120 7121 7122 7123 7124 7125
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7126 7127 7128 7129
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7130
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7131 7132 7133

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7134 7135
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7136 7137 7138 7139
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7140
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7141
                       will be named automatically.
J
jerrywgz 已提交
7142 7143 7144 7145 7146 7147 7148 7149

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7150
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7164
        attr=helper.param_attr,
J
jerrywgz 已提交
7165 7166 7167 7168
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7169
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7189
    Returns:
7190
        output(${out_type}): ${out_comment}
7191 7192 7193 7194 7195 7196 7197

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7198 7199
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7200
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7219
    Returns:
7220
        output(${out_type}): ${out_comment}
7221 7222 7223 7224 7225 7226 7227

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7228 7229
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7248
    Returns:
7249
        output(${out_type}): ${out_comment}
7250 7251 7252 7253 7254 7255 7256

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7257 7258
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7259
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7260 7261 7262 7263 7264 7265 7266 7267
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7281

7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7292 7293
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7309
        ValueError: If axis is not in range [0, rank(x)].
7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7326 7327
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7328
    helper.append_op(
7329
        type='flatten2',
7330
        inputs={"X": x},
7331 7332
        outputs={'Out': out,
                 'XShape': x_shape},
7333 7334
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7335 7336


C
chenweihang 已提交
7337
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7338
    """
C
chenweihang 已提交
7339
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7340
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7341 7342
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7343

C
chenweihang 已提交
7344 7345 7346 7347
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7348
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7349 7350 7351 7352 7353 7354
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7355
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7356 7357 7358
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7359 7360 7361
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7373 7374
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7375 7376 7377 7378 7379 7380
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7381
    return out
7382

7383

S
sneaxiy 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7393

S
sneaxiy 已提交
7394
    .. math::
7395

S
sneaxiy 已提交
7396 7397 7398
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7399
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7400 7401 7402 7403
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7404 7405 7406
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7407 7408
    Returns:
        Variable: The output sequence mask.
7409

S
sneaxiy 已提交
7410 7411
    """

Q
qingqing01 已提交
7412
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7413
    if name is None:
X
Xin Pan 已提交
7414
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7415
    else:
X
Xin Pan 已提交
7416
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7417

Q
qingqing01 已提交
7418 7419 7420
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7421 7422
        outputs={'Y': out},
        attrs={
7423
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7424 7425 7426
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7427 7428


X
Xin Pan 已提交
7429
def stack(x, axis=0):
S
sneaxiy 已提交
7430 7431 7432 7433
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7434 7435 7436 7437 7438 7439 7440

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7441
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7442
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7443 7444

    Args:
7445
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7446
        axis (int|None): The axis along which all inputs are stacked.
7447

S
sneaxiy 已提交
7448 7449
    Returns:
        Variable: The stacked variable.
7450

S
sneaxiy 已提交
7451 7452
    """

X
Xin Pan 已提交
7453 7454 7455 7456 7457 7458
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7459
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7460
    helper.append_op(
S
sneaxiy 已提交
7461 7462
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7463

X
Xin Pan 已提交
7464
    return out
D
dzhwinter 已提交
7465 7466 7467 7468 7469 7470 7471


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7472

D
dzhwinter 已提交
7473 7474 7475
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7476
    raised.
D
dzhwinter 已提交
7477 7478

    Args:
M
minqiyang 已提交
7479
        x (Variable): Input variable.
D
dzhwinter 已提交
7480 7481
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7482

D
dzhwinter 已提交
7483 7484
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7485

D
dzhwinter 已提交
7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7497
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7498 7499 7500 7501 7502 7503 7504 7505

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7518

W
whs 已提交
7519 7520 7521 7522
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7523

W
whs 已提交
7524
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7525

W
whs 已提交
7526
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7527

W
whs 已提交
7528 7529 7530 7531
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7532

W
whs 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7549
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7550 7551 7552 7553 7554 7555
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7556 7557


G
fix  
gongweibao 已提交
7558 7559 7560
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7561
@templatedoc()
G
fix  
gongweibao 已提交
7562 7563 7564 7565 7566 7567 7568 7569 7570
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7571
    ${comment}
G
fix  
gongweibao 已提交
7572 7573

    Args:
G
gongweibao 已提交
7574 7575 7576
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7577
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7578 7579 7580
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7581 7582
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7583
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7584 7585 7586 7587

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7588
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7605 7606


G
gongweibao 已提交
7607
@templatedoc()
X
Xin Pan 已提交
7608
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7609
    """
G
gongweibao 已提交
7610
    ${comment}
G
fix  
gongweibao 已提交
7611 7612

    Args:
G
gongweibao 已提交
7613 7614 7615 7616
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7617 7618 7619
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7620
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7621 7622 7623 7624

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7625
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7636
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7637 7638 7639 7640 7641
        })

    return out


G
gongweibao 已提交
7642
@templatedoc()
G
fix  
gongweibao 已提交
7643
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7644
    """
G
gongweibao 已提交
7645
    ${comment}
G
fix  
gongweibao 已提交
7646 7647

    Args:
G
gongweibao 已提交
7648 7649 7650 7651
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7652
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7653 7654

    Returns:
G
gongweibao 已提交
7655
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7656 7657 7658 7659

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7660
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7672
@templatedoc()
G
fix  
gongweibao 已提交
7673 7674 7675 7676 7677 7678 7679 7680 7681
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7682
    ${comment}
G
fix  
gongweibao 已提交
7683 7684

    Args:
G
gongweibao 已提交
7685 7686
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7687
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7688 7689 7690 7691
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7692
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7693 7694

    Returns:
G
gongweibao 已提交
7695
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7696 7697 7698
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7699
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7718
@templatedoc()
X
Xin Pan 已提交
7719
def sum(x):
G
fix  
gongweibao 已提交
7720
    """
G
gongweibao 已提交
7721
    ${comment}
G
fix  
gongweibao 已提交
7722 7723

    Args:
G
gongweibao 已提交
7724
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7725 7726

    Returns:
G
gongweibao 已提交
7727
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7728 7729 7730
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7731 7732
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7733 7734 7735 7736
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7737
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7738 7739 7740 7741

    return out


G
gongweibao 已提交
7742
@templatedoc()
G
fix  
gongweibao 已提交
7743 7744
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7745
    ${comment}
G
fix  
gongweibao 已提交
7746 7747

    Args:
G
gongweibao 已提交
7748 7749 7750 7751
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7752 7753

    Returns:
G
gongweibao 已提交
7754
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7755 7756 7757 7758

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7759 7760
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7772
@templatedoc()
G
fix  
gongweibao 已提交
7773 7774
def shape(input):
    """
G
gongweibao 已提交
7775
    ${comment}
G
fix  
gongweibao 已提交
7776 7777

    Args:
G
gongweibao 已提交
7778
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7779 7780

    Returns:
G
gongweibao 已提交
7781
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7782 7783 7784 7785

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7786 7787
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7788
    helper.append_op(
G
fix  
gongweibao 已提交
7789
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7790 7791

    return out
G
merge  
gongweibao 已提交
7792 7793


S
sneaxiy 已提交
7794 7795 7796 7797 7798 7799 7800 7801
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7802 7803
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7804
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7805 7806 7807
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7808

S
sneaxiy 已提交
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7820
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7821 7822 7823 7824 7825 7826 7827 7828
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7829
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7830
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7831 7832 7833 7834 7835 7836

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7837
    if name is None:
X
Xin Pan 已提交
7838
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7839 7840 7841
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7852
    return helper.append_activation(out)
S
sneaxiy 已提交
7853 7854


X
Xin Pan 已提交
7855
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7856 7857 7858
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7859
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7860 7861 7862
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7863
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7864 7865 7866
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7867
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7868 7869 7870
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7871
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7872 7873 7874
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7875
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7876 7877 7878
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7879
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7891 7892
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7893
        ])
M
minqiyang 已提交
7894 7895


7896
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7897 7898
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7899 7900
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7901 7902 7903

    if out is None:
        if name is None:
X
Xin Pan 已提交
7904
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7920
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7932 7933 7934 7935 7936 7937 7938 7939 7940

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7941 7942 7943 7944 7945 7946 7947
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7948
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7960 7961 7962 7963 7964 7965 7966 7967 7968

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7969 7970 7971 7972 7973 7974 7975
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7976
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7988 7989 7990 7991 7992 7993 7994 7995 7996

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
7997 7998 7999 8000 8001 8002 8003
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8004
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8015 8016 8017 8018 8019 8020 8021

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8022 8023 8024 8025
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8041 8042 8043 8044 8045 8046 8047

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8048 8049 8050 8051 8052
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8053 8054 8055 8056
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8080 8081 8082 8083 8084 8085 8086

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8087 8088 8089 8090 8091
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8092 8093 8094 8095
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8096 8097 8098 8099 8100 8101 8102 8103

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8122
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8123 8124 8125 8126 8127 8128 8129 8130 8131 8132
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduozh 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8175
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8176 8177 8178 8179 8180 8181 8182 8183 8184
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8185 8186
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8209
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8239
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8250 8251


J
JiabinYang 已提交
8252
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8253
    """
J
JiabinYang 已提交
8254
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8255 8256 8257

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8258
    The attr blocksize indicates the input block size.
8259 8260

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8261
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8262 8263

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8264
    (but keeping all data)
J
JiabinYang 已提交
8265

J
JiabinYang 已提交
8266
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8267
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8268 8269 8270 8271 8272
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8273
    Args:
J
JiabinYang 已提交
8274
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8275
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8276 8277

    Returns:
J
JiabinYang 已提交
8278
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8279 8280

    Raises:
J
JiabinYang 已提交
8281
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8282 8283 8284 8285 8286 8287

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8288
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8289
                x=data, blocksize=2)
J
JiabinYang 已提交
8290 8291
    """

J
JiabinYang 已提交
8292
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8293

J
JiabinYang 已提交
8294 8295
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8296 8297

    if name is None:
J
JiabinYang 已提交
8298 8299
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8300 8301 8302 8303 8304
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8305
        type="space_to_depth",
J
JiabinYang 已提交
8306
        inputs={"X": x},
J
JiabinYang 已提交
8307
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8308
        outputs={"Out": out})
J
JiabinYang 已提交
8309 8310
    return out

J
JiabinYang 已提交
8311

S
sneaxiy 已提交
8312 8313
@templatedoc()
def sequence_reverse(x, name=None):
8314
    """
S
sneaxiy 已提交
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8326
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8337 8338


8339 8340 8341 8342 8343 8344
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8345

8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8365
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8378 8379


B
barrierye 已提交
8380
def similarity_focus(input, axis, indexes, name=None):
8381
    """
B
barrierye 已提交
8382
    SimilarityFocus Operator
B
barrierye 已提交
8383 8384

    Generate a similarity focus mask with the same shape of input using the following method:
8385 8386 8387
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8388
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8389 8390 8391 8392 8393 8394 8395
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8396
       each index.
B
barrierye 已提交
8397 8398 8399 8400
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8450
    Args:
8451
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8452
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8453
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8454
            1, 2 or 3.
B
barrierye 已提交
8455
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8456 8457

    Returns:
8458
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8459
            as the input.
8460

B
barrierye 已提交
8461 8462 8463
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8464 8465
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8478 8479 8480 8481 8482
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8483 8484 8485 8486 8487 8488 8489
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8490 8491


M
minqiyang 已提交
8492 8493
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8494 8495
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8496 8497
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8536
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8537
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8538 8539 8540 8541 8542 8543 8544 8545 8546

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8547 8548
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8549 8550
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8551 8552 8553 8554 8555 8556 8557
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8558 8559


D
dengkaipeng 已提交
8560
@templatedoc()
8561 8562
def grid_sampler(x, grid, name=None):
    """
8563
    This operation samples input X by using bilinear interpolation based on
8564
    flow field grid, which is usually gennerated by affine_grid. The grid of
8565 8566 8567 8568
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8569
    interpolation value of 4 nearest corner points.
8570 8571 8572 8573 8574 8575 8576 8577

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8578
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8608 8609

    Args:
8610 8611 8612
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8613 8614

    Returns:
8615
        out(Variable): Output of shape [N, C, H, W] data samples input X
8616 8617 8618 8619 8620 8621 8622 8623 8624
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8625 8626 8627 8628 8629 8630 8631 8632 8633
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8634
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8635 8636
    ipts = {'X': x, 'Grid': grid}

8637
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8638 8639 8640
    return out


G
gmcather 已提交
8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8735 8736 8737 8738 8739 8740 8741 8742 8743 8744


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8745
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8746

Q
Qiao Longfei 已提交
8747
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8748 8749 8750
    For example:

    .. math::
8751
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8752

Q
Qiao Longfei 已提交
8753
    In this formula:
8754 8755
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8756
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8757
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8758 8759 8760
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8761 8762
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8763 8764 8765
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8766
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8767
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8768
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8769 8770 8771 8772
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8773
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8774 8775 8776 8777

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8778
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8779 8780
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8781
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8782 8783 8784 8785

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8786
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduozh 已提交
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out