model.py 6.1 KB
Newer Older
W
wuhuachaocoding 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import os
import numpy as np
from .base import topology as tp
from .base.topology import ParallelMode
from .meta_parallel import TensorParallel, model_parallel_random_seed
21
from .meta_parallel import PipelineParallel, ShardingParallel, PipelineParallelWithInterleave, PipelineLayer
W
wuhuachaocoding 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
from paddle.fluid import core
from paddle.fluid.dygraph.varbase_patch_methods import _grad_scalar
from paddle.distributed import fleet

_grad_scalar = None


def distributed_model(model):
    """
    Return distributed data parallel model (Only work in dygraph mode)

    Args:
        model (Layer): the user-defind model which inherits Layer.

    Returns:
        distributed data parallel model which inherits Layer.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn as nn
            from paddle.distributed import fleet

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)

                def forward(self, x):
                    return self._linear2(self._linear1(x))

            # 1. initialize fleet environment
            fleet.init(is_collective=True)

            # 2. create layer & optimizer
            layer = LinearNet()
            loss_fn = nn.MSELoss()
            adam = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=layer.parameters())

            # 3. get data_parallel model using fleet
            adam = fleet.distributed_optimizer(adam)
            dp_layer = fleet.distributed_model(layer)

            # 4. run layer
            inputs = paddle.randn([10, 10], 'float32')
            outputs = dp_layer(inputs)
            labels = paddle.randn([10, 1], 'float32')
            loss = loss_fn(outputs, labels)

            print("loss:", loss.numpy())

            loss.backward()

            adam.step()
            adam.clear_grad()


    """
    fleet_env = fleet.fleet

    assert model is not None, "model should not be None"
    if fleet_env.worker_num() <= 1:
        return model

    amp_enable = False
    strategy = fleet_env._user_defined_strategy
    if strategy.amp == True:
        amp_enable = True
        amp_level = "O2" if strategy.amp_configs['use_pure_fp16'] else "O1"
        if amp_level.upper() == "O2":
            model = paddle.amp.decorate(models=model,
                                        optimizers=None,
                                        level="O2",
                                        master_weight=None,
                                        save_dtype=None)
        init_loss_scaling = strategy.amp_configs['init_loss_scaling']
        incr_ratio = strategy.amp_configs['incr_ratio']
        decr_ratio = strategy.amp_configs['decr_ratio']
        incr_every_n_steps = strategy.amp_configs['incr_every_n_steps']
        decr_every_n_nan_or_inf = strategy.amp_configs[
            'decr_every_n_nan_or_inf']
        use_dynamic_loss_scaling = strategy.amp_configs[
            'use_dynamic_loss_scaling']

        global _grad_scalar
        _grad_scalar = paddle.amp.GradScaler(
            init_loss_scaling=init_loss_scaling,
            incr_ratio=incr_ratio,
            decr_ratio=decr_ratio,
            incr_every_n_steps=incr_every_n_steps,
            decr_every_n_nan_or_inf=decr_every_n_nan_or_inf,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)

    if strategy.heter_ccl_mode == True:
        distributed_model = paddle.DataParallel(
            model,
            comm_buffer_size=strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=strategy.last_comm_group_size_MB,
            find_unused_parameters=strategy.find_unused_parameters)
        return distributed_model

    if fleet_env._hcg.get_parallel_mode() == ParallelMode.SHARDING_PARALLEL:
        model = ShardingParallel(model, fleet_env._hcg, strategy=strategy)
    elif fleet_env._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:

        # NOTE (JZ-LIANG) init parameters broadcast within sharding group
        # normally it should be done inside DataParallel
        if fleet_env.sharding_degree > 1:
            from paddle.distributed.fleet.utils.hybrid_parallel_util import broadcast_mp_parameters, broadcast_sharding_parameters
            assert fleet_env.sharding_degree == fleet_env._hcg.get_sharding_parallel_world_size(
            )
            broadcast_sharding_parameters(model, fleet_env._hcg)
        model = paddle.DataParallel(
            model,
            comm_buffer_size=strategy.fuse_grad_size_in_MB,
            last_comm_buffer_size=strategy.last_comm_group_size_MB,
142 143
            find_unused_parameters=strategy.find_unused_parameters,
            group=fleet_env._hcg.get_data_parallel_group())
W
wuhuachaocoding 已提交
144 145 146
    elif fleet_env._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
        model = TensorParallel(model, fleet_env._hcg, strategy=strategy)
    elif fleet_env._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
147 148 149 150 151 152 153 154 155 156 157
        assert isinstance(
            model, PipelineLayer
        ), "For pipeline parallel, the model should an instance of PipelineLayer"
        if model.get_num_virtual_stages() == 1:
            # 1f1b pipeline
            model = PipelineParallel(model, fleet_env._hcg, strategy=strategy)
        else:
            # interleave pipeline
            model = PipelineParallelWithInterleave(model,
                                                   fleet_env._hcg,
                                                   strategy=strategy)
W
wuhuachaocoding 已提交
158 159

    return model