pipeline_optimizer.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
import os
15 16 17 18

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
19 20
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
21
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_loss_grad_op, is_backward_op, is_optimizer_op
22

23 24
__all__ = []

25

26
class PipelineOptimizer(MetaOptimizerBase):
27

28 29 30
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
31 32 33 34
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
35 36 37
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
38 39 40
        self.global_ring_id = 1
        self.dp_ring_id = 2
        self.start_pipeline_ring_id = 20  # Just a magic number
41 42 43

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
44 45 46
        super(PipelineOptimizer,
              self)._set_basic_info(loss, role_maker, user_defined_optimizer,
                                    user_defined_strategy)
47 48
        self.micro_batch_size = user_defined_strategy.pipeline_configs[
            'micro_batch_size']
49
        self.num_microbatches = user_defined_strategy.pipeline_configs[
50
            'accumulate_steps']
51 52
        self.schedule_mode = user_defined_strategy.pipeline_configs[
            'schedule_mode']
53
        self.use_sharding = user_defined_strategy.sharding
54 55

    def _can_apply(self):
56 57 58
        if not self.role_maker._is_collective:
            return False

59 60 61 62
        # FIXME revise for hybrid parallelism
        if self.use_sharding:
            return False

63 64 65 66 67 68
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
69 70 71 72 73
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
            "schedule_mode": "1F1B",
        }
74

75
    def _enable_strategy(self, dist_strategy, context):
76
        dist_strategy.pipeline = True
77 78 79
        dist_strategy.pipeline_configs = {
            "micro_batch_size": 1,
            "accumulate_steps": 1,
80
            "schedule_mode": "1F1B",
81
        }
82

83 84 85 86 87 88 89
    def _broadcast_params(self, ring_id):
        block = self.startup_program.global_block()
        param = None
        for param in block.iter_parameters():
            if param.is_distributed:
                continue

90 91 92 93 94 95 96 97
            block.append_op(type='c_broadcast',
                            inputs={'X': param},
                            outputs={'Out': param},
                            attrs={
                                'ring_id': ring_id,
                                'root': 0,
                                OP_ROLE_KEY: OpRole.Forward
                            })
98 99

        if not param: return  # no parameter on this device
100 101 102 103 104 105 106
        block.append_op(type='c_sync_comm_stream',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Forward
                        })
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    def _get_process_group_info(self):
        # global ring info
        self.global_endpoints = self.endpoints
        self.global_rank = self.rank
        self.global_nranks = self.nranks

        # data parallel ring info
        if self.pipeline_num > 1:
            self.dp_rank = self.rank // self.inner_parallelism
            self.dp_nranks = self.nranks // self.inner_parallelism
            start_index = self.rank % self.inner_parallelism
            self.dp_endpoints = [
                self.endpoints[start_index + i * self.inner_parallelism]
                for i in range(self.pipeline_num)
            ]

    def _init_process_group(self, pipeline_pair, pipeline_ring_map):
        self._get_process_group_info()
        collective_helper = CollectiveHelper(self.role_maker, wait_port=False)
        # Create global ring for all gpus (ring_id = 0)
128 129 130 131 132 133
        collective_helper._init_communicator(self.startup_program,
                                             self.current_endpoint,
                                             self.global_endpoints,
                                             self.global_rank,
                                             self.global_ring_id, True,
                                             self.global_ring_id, True)
134 135 136 137 138 139 140 141 142 143 144
        # Create pipeline rings
        if self.inner_parallelism > 1:
            pipeline_id = self.rank // self.inner_parallelism
            start_index = pipeline_id * self.inner_parallelism
            for pair in pipeline_pair:
                pair_key = pair[0] * 1000 + pair[1]
                ring_id = pipeline_ring_map[pair_key]
                assert ring_id >= self.start_pipeline_ring_id
                first_node = pair[0] + start_index
                second_node = pair[1] + start_index
                if self.rank != first_node and self.rank != second_node:
145 146 147
                    collective_helper._init_communicator(
                        self.startup_program, None, None, None, None, False,
                        self.global_ring_id, True)
148 149 150 151 152 153
                    continue
                pipeline_endpoints = [
                    self.endpoints[first_node], self.endpoints[second_node]
                ]
                pipeline_rank = 0 if self.rank == first_node else 1
                pipeline_nranks = 2
154 155 156 157 158 159
                collective_helper._init_communicator(self.startup_program,
                                                     self.current_endpoint,
                                                     pipeline_endpoints,
                                                     pipeline_rank, ring_id,
                                                     False, self.global_ring_id,
                                                     True)
160 161 162 163 164 165 166 167

        # Create dp rings
        if self.pipeline_num > 1:
            collective_helper._init_communicator(
                self.startup_program, self.current_endpoint, self.dp_endpoints,
                self.dp_rank, self.dp_ring_id, True, self.global_ring_id, True)
            self._broadcast_params(self.dp_ring_id)

168 169 170 171 172
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
173 174
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.role_maker._worker_index()]
175 176
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
177

178 179 180 181 182 183 184 185 186 187 188 189 190
        self.wrapped_opt = PO(self.inner_opt,
                              num_microbatches=self.num_microbatches)
        orig_startup_program = startup_program if startup_program else fluid.default_startup_program(
        )
        block = loss.block
        program = block.program

        program._pipeline_opt = dict()
        program._pipeline_opt['local_rank'] = self.rank
        program._pipeline_opt['global_ring_id'] = self.global_ring_id
        program._pipeline_opt['ring_id'] = self.start_pipeline_ring_id
        program._pipeline_opt['micro_batch_size'] = self.micro_batch_size
        program._pipeline_opt['schedule_mode'] = self.schedule_mode
191
        program._pipeline_opt['use_sharding'] = False
192 193
        program._pipeline_opt['mp_degree'] = 1
        program._pipeline_opt['mp_rank'] = 0
194
        optimize_ops, params_grads, prog_list, pp_pair, ring_map = self.wrapped_opt.minimize(
195
            loss, startup_program, parameter_list, no_grad_set)
196 197 198
        self.startup_program = orig_startup_program._pipeline_opt[
            'startup_program']
        self.inner_parallelism = program._pipeline_opt['inner_parallelism']
199
        assert self.nranks % self.inner_parallelism == 0
200 201
        assert prog_list
        self.pipeline_num = len(self.endpoints) // self.inner_parallelism
202

203
        self._init_process_group(pp_pair, ring_map)
204

205 206 207 208
        self.main_program_list = prog_list
        self.main_program = program
        if self.pipeline_num > 1:
            self._transpile_main_program(loss)
209
        return optimize_ops, params_grads
210

211 212 213
    def _transpile_main_program(self, loss):
        self._insert_loss_grad_ops(loss, self.pipeline_num)
        self._insert_allreduce_ops(self.dp_ring_id)
214

215
    def _insert_loss_grad_ops(self, loss, pipeline_num):
216 217 218 219
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
220
        block = self.main_program_list[-1].global_block()
221 222 223
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
224 225 226 227 228 229 230 231
                block._insert_op(idx + 1,
                                 type='scale',
                                 inputs={'X': loss_grad_var},
                                 outputs={'Out': loss_grad_var},
                                 attrs={
                                     'scale': 1.0 / pipeline_num,
                                     OP_ROLE_KEY: OpRole.Backward
                                 })
232 233

    def _insert_allreduce_ops(self, ring_id):
234 235
        block = self.main_program._pipeline_opt['section_program'].global_block(
        )
236 237
        origin_block = self.main_program.global_block()
        grad = None
238
        processed_param_name = set()
239
        first_optimize_op_idx = None
240
        for idx, op in reversed(list(enumerate(block.ops))):
241 242 243 244
            if is_backward_op(op) and not first_optimize_op_idx:
                first_optimize_op_idx = idx + 1
                # no optimize phase
                if first_optimize_op_idx == len(block.ops): return
245
            if is_backward_op(op) and \
246
                    OP_ROLE_VAR_KEY in op.attr_names:
247 248 249 250
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
251
                offset = 0
252
                for i in range(0, len(op_role_var), 2):
253
                    param_name = op_role_var[i]
254
                    param = block.vars[op_role_var[i]]
255 256
                    if param_name in processed_param_name: continue
                    processed_param_name.add(param_name)
257
                    grad_name = op_role_var[i + 1]
258
                    if 'MERGED' not in grad_name: grad_name += '@MERGED'
259
                    grad = block.vars[grad_name]
260 261 262 263
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue

264 265 266 267 268 269 270 271 272
                    block._insert_op(first_optimize_op_idx + offset,
                                     type='c_allreduce_sum',
                                     inputs={'X': grad},
                                     outputs={'Out': grad},
                                     attrs={
                                         'ring_id': ring_id,
                                         'use_calc_stream': True,
                                         OP_ROLE_KEY: OpRole.Optimize
                                     })